COCOA®" PROGRAMMING FOR MAC® OS X

FoumrTH EDiTiON

Cocoa® Programming for Mac® OS X, Fourth Edition

Aaron Hillegass
Adam Preble

vvAddison-Wesley

Upper Saddle River, NJ * Boston ¢ Indianapolis « San Francisco
New York « Toronto « Montreal « London ¢ Munich « Paris « Madrid
Capetown * Sydney * Tokyo ¢ Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hillegass, Aaron.
Cocoa programming for Mac OS X / Aaron Hillegass, Adam Preble.—4th ed.
p. cm.
Includes index.
ISBN 978-0-321-77408-8 (pbk. : alk. paper)
1. Cocoa (Application development environment) 2. Operating systems
(Computers) 3. Mac OS. 4. Macintosh (Computer)—Programming. |. Preble, Adam. II. Title.

QA76.76.063H57145 2012
005.26'8—dc23
2011034459

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-77408-8
ISBN-10: 0-321-77408-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2011

For Aaron’s sons, Walden and Otto

and

For Adam’s daughter, Aimee

Contents

Preface

Acknowledgments

Chapter 1 Cocoa: What s It?
A Little History
Tools
Language

Objects, Classes, Methods, and Messages
Frameworks

How to Read This Book
Typographical Conventions
Common Mistakes

How to Learn

Chapter 2 Let’s Get Started
In Xcode
Create a New Project
The main Function
In Interface Builder

The Utility Area
The Blank Window

Lay Out the Interface
The Dock
Create a Class
Create an Instance
Make Connections
A Look at Objective-C
Types and Constants in Objective-C
Look at the Header File
Edit the Implementation File
Build and Run
awakeFromNib
Documentation

What Have You Done?

Chronology of an Application

Chapter 3 Objective-C
Creating and Using Instances
Using Existing Classes
Sending Messages to nil
NSObject, NSArray, NSMutableArray, and NSString
“Inherits from” versus “Uses” or “Knows About”
Creating Your Own Classes
Creating the LotteryEntry Class
Changing main.m
Implementing a description Method
Writing Initializers

Initializers with Arguments

The Debugger
What Have You Done?

Meet the Static Analyzer
For the More Curious: How Does Messaging Work?
Challenge

Chapter 4 Memory Management

Living with Manual Reference Counting
Leak-Free Lottery
dealloc
Autoreleasing Objects
The Retain-Count Rules
Accessor Methods
Living with ARC

Strong References
Weak References

ARC Odds and Ends

Chapter 5 Target/Action
Some Commonly Used Subclasses of NSControl
NSButton
NSSlider
NSTextField
Start the SpeakLine Example
Lay Out the XIB File
Making Connections in Interface Builder
Implementing the SpeakLineAppDelegate Class
For the More Curious: Setting the Target Programmatically
Challenge
Debugging Hints

Chapter 6 Helper Objects

Delegates

The NSTableView and Its dataSource
SpeakLineAppDelegate Interface File

Lay Out the User Interface

Make Connections

Edit SpeakLineAppDelegate.m
Common Errors in Implementing a Delegate
Many Objects Have Delegates

For the More Curious: How Delegates Work

Challenge: Make a Delegate

Challenge: Make a Data Source

Chapter 7 Key-Value Coding and Key-Value Observing

Key-Value Coding
Bindings

Key-Value Observing
Making Keys Observable
Properties

Attributes of a Property
For the More Curious: Key Paths

For the More Curious: Key-Value Observing

Chapter 8 NSArrayController
Starting the RaiseMan Application
RMDocument.xib
Key-Value Coding and nil
Add Sorting
For the More Curious: Sorting without NSArrayController
Challenge 1
Challenge 2

Chapter 9 NSUndoManager
NSInvocation
How the NSUndoManager Works
Adding Undo to RaiseMan
Key-Value Coding and To-Many Relationships

Key-Value Observing
Undo for Edits

Begin Editing on Insert
For the More Curious: Windows and the Undo Manager

Chapter 10 Archiving
NSCoder and NSCoding
Encoding
Decoding
The Document Architecture
Info.plist and NSDocumentController
NSDocument
NSWindowController
Saving and NSKeyedArchiver
Loading and NSKeyedUnarchiver
Setting the Extension and Icon for the File Type

For the More Curious: Preventing Infinite Loops
For the More Curious: Creating a Protocol

For the More Curious: Automatic Document Saving

For the More Curious: Document-Based Applications without Undo
Universal Type Identifiers

Chapter 11 Basic Core Data
NSManagedObjectModel
Interface
View-Based Table Views
Connections and Bindings
How Core Data Works
For the More Curious: View-Based versus Cell-Based Table Views

Challenge

Chapter 12 NIB Files and NSWindowController
NSPanel

Adding a Panel to the Application
Setting Up the Menu ltem

AppController.m
Preferences.xib

PreferenceController.m

For the More Curious: NSBundle
Challenge

Chapter 13 User Defaults

NSDictionary and NSMutableDictionary
NSDictionary
NSMutableDictionary

NSUserDefaults
Precedence of Types of Defaults

Setting Defaults
The Identifier for the Application
Create Keys for the Names of the Defaults
Register Defaults

Letting the User Edit the Defaults

Using the Defaults
Suppressing the Creation of Untitled Documents

Setting the Background Color on the Table View
For the More Curious: NSUserDefaultsController

For the More Curious: Reading and Writing Defaults from the Command Line

Challenge

Chapter 14 Using Notifications
What Notifications Are and Are Not
What Notifications Are Not
NSNotification
NSNotificationCenter
Posting a Notification
Registering as an Observer
Handling the Notification When It Arrives
The userlnfo Dictionary

For the More Curious: Delegates and Notifications

Challenge

Chapter 15 Using Alert Panels

Make the User Confirm the Deletion

Challenge

Chapter 16 Localization
Localizing a NIB File
String Tables
Creating String Tables

Using the String Table
For the More Curious: ibtool

For the More Curious: Explicit Ordering of Tokens in Format Strings

Chapter 17 Custom Views
The View Hierarchy

Get a View to Draw ltself

Create an Instance of a View Subclass
Size Inspector
drawRect
Drawing with NSBezierPath
NSScrollView
Creating Views Programmatically
For the More Curious: Cells
For the More Curious: isFlipped
Challenge

Chapter 18 Images and Mouse Events

NSResponder
NSEvent
Getting Mouse Events
Using NSOpenPanel

Change the XIB File

Edit the Code
Composite an Image onto Your View
The View's Coordinate System
Autoscrolling
For the More Curious: NSImage
Challenge

Chapter 19 Keyboard Events
NSResponder
NSEvent
Create a New Project with a Custom View

Lay Out the Interface
Make Connections

Write the Code

For the More Curious: Rollovers

The Fuzzy Blue Box

Chapter 20 Drawing Text with Attributes
NSFont
NSAttributedString
Drawing Strings and Aftributed Strings
Making Letters Appear
Getting Your View to Generate PDF Data
For the More Curious: NSFontManager
Challenge 1
Challenge 2

Chapter 21 Pasteboards and Nil-Targeted Actions
NSPasteboard
Add Cut, Copy, and Paste to BigLetterView
Nil-Targeted Actions
Looking at the XIB File

For the More Curious: Which Object Sends the Action Message?
For the More Curious: UTls and the Pasteboard

Custom UTls
For the More Curious: Lazy Copying
Challenge 1
Challenge 2

Chapter 22 Categories
Add a Method to NSString
For the More Curious: Declaring Private Methods

Chapter 23 Drag-and-Drop

Make BigLetterView a Drag Source
Starting a Drag
After the Drop

Make BigLetterView a Drag Destination
registerForDraggedTypes:
Add Highlighting
Implement the Dragqging Destination Methods
Add a Second BigLetterView

For the More Curious: Operation Mask

Chapter 24 NSTimer
Lay Out the Interface
Make Connections
Add Code to TutorController
For the More Curious: NSRunLoop
Challenge

Chapter 25 Sheets
Adding a Sheet
Add Outlets and Actions
Lay Out the Interface
Add Code
For the More Curious: contextinfo

For the More Curious: Modal Windows

Chapter 26 Creating NSFormatters
A Basic Formatter
Create ColorFormatter.h
Edit the XIB File
NSColorList
Searching Strings for Substrings
Implement the Basic Formatter Methods
The Delegate of the NSControl Class
Checking Partial Strings

Formatters That Return Attributed Strings
For the More Curious: NSValueTransformer

Chapter 27 Printing
Dealing with Pagination
For the More Curious: Are you Drawing to the Screen?
Challenge

Chapter 28 Web Services

RanchForecast Project
NSURL Connection

Add XML Parsing to ScheduleFetcher

Lay Out the Interface
Write Controller Code

Opening URLs
Challenge: Add a WebView

Chapter 29 Blocks
Block Syntax
Memory and Objects within Blocks
Availability of Blocks
RanchForecast: Going Asynchronous
Receiving the Asynchronous Response
Challenge: Design a Delegate

Chapter 30 Developing for iOS
Porting RanchForecast to iOS
ScheduleFetcher
RootViewController
Add a Navigation Controller
ScheduleViewController
UlTableViewController

Pushing View Controllers
Challenge

Chapter 31 View Swapping
Get Started

Create the ManagedViewController Class
Create ViewControllers and their XIB files

Add View Swapping to MyDocument
Resizing the Window

Chapter 32 Core Data Relationships

Edit the Model

Create Custom NSManagedObject Classes
Employee
Department

Lay Out the Interface
EmployeeView.xib

Events and nextResponder

Chapter 33 Core Animation
Scattered
Implicit Animation and Actions
More on CALayer
Challenge 1
Challenge 2

Chapter 34 Concurrency

Multithreading
A Deep Chasm Opens Before You

Simple Cocoa Background Threads
Improving Scattered: Time Profiling in Instruments
Introducing Instruments

NS OperationQueue
Multithreaded Scattered

Thread Synchronization

For the More Curious: Faster Scattered

Challenge

Chapter 35 Cocoa and OpenGL
A Simple Cocoa/OpenGL Application

Lay Out the Interface
Write Code

Chapter 36 NSTask
ZIPspector
Asynchronous Reads
iPing
Challenge: .tar and .tgzfiles
Chapter 37 Distributing Your App
Build Configurations
Preprocessor Macros and Using Build Configurations to Change Behavior
Creating a Release Build

Application Sandboxing
Entitlements

Mediated File Access and Powerbox

The Mac App Store

Chapter 38 The End

Index

Preface

If you are developing applications for the Mac, or are hoping to do so, this book is just the resource you need. Does it cover everything you will ever want
to know about programming for the Mac? Of course not. But it does cover probably 80% of what you need to know. You can find the remaining 20%—the
20% that is unique to you—in Apple’s online documentation.

This book, then, acts as a foundation. It covers the Objective-C language and the major design patterns of Cocoa. It will also get you started with the two
most commonly used developer tools: Xcode and Instruments. After reading this book, you will be able to understand and utilize Apple’s online
documentation.

There is a lot of code in this book. Through that code, we will introduce you to the idioms of the Cocoa community. Our hope is that by presenting
exemplary code, we can help you to become more than a Cocoa developer—a stylish Cocoa developer.

This fourth edition includes technologies introduced in Mac OS X 10.6 and 10.7. These include Xcode 4, ARC, blocks, view-based table views, and the
Mac App Store. We have also devoted one chapter to the basics of iOS development.

This book is written for programmers who already know some C programming and something about objects. If you don’t know C or objects, you should
first read Objective-C Programming: The Big Nerd Ranch Guide. You are not expected to have any experience with Mac programming. This hands-on
book assumes that you have access to Mac OS X and the developer tools. Xcode 4.2, Apple’s IDE, is available for free. If you are a member of the paid
Mac or iOS Developer Programs, Xcode can also be downloaded from the Apple Developer Connection Web site (http://developer.apple.com/).
Enroliment in these programs enables you to submit your applications to the Mac and iOS App Stores, respectively.

We have tried to make this book as useful for you as possible, if not indispensable. That said, we’d love to hear from you at
cocoabook@bignerdranch.com if you have any suggestions for improving it.

—Aaron Hillegass and Adam Preble

Acknowledgments

Creating this book required the efforts of many people. We want to thank them for their help. Their contributions have made this a better book than we
could have ever written alone.

Thanks to the students who took the Cocoa programming course at the Big Nerd Ranch. They helped us work the kinks out of the exercises and
explanations that appear here. Their curiosity inspired us to make the book more comprehensive, and their patience made it possible.

Thank you to all the readers of the first three editions, who made such great suggestions on our forums (http://forums.bignerdranch.com/).
Thank you to all the instructors at the Ranch, who made great additions and caught many of our most egregious errors.

A final shout out to the people at Addison-Wesley, who took our manuscript and made it into a book. They put the book on trucks and convinced
bookstores to put it on the shelves. Without their help, it would still be just a stack of paper.

Chapter 1. Cocoa: What Is It?

A Little History

The story of Cocoa starts with a delightful bit of history. Once upon a time, two guys named Steve started a company called Apple Compuiter in their
garage. The company grew rapidly, so they hired an experienced executive named John Sculley to be its CEO. After a few conflicts, John Sculley moved
Steve Jobs to a position where he had no control over the company at all. Steve Jobs left to form another computer company, called NeXT Computer.

NeXT hired a small team of brilliant engineers. This small team developed a computer, an operating system, a printer, a factory, and a set of development
tools. Each piece was years ahead of competing technologies, and the masses were excited and amazed. Unfortunately, the excited masses did not buy
either the computer or the printer. In 1993, the factory was closed, and NeXT Computer, Inc., became NeXT Software, Inc.

The operating system and the development tools continued to sell under the name NeXTSTEP. While the average computer user had never heard of
NeXTSTEP, it was very popular with several groups: scientists, investment banks, and inteligence agencies. These were people who developed new
applications every week, and they found that NeXTSTEP enabled them to implement their ideas faster than any other technology.

What was this operating system? NeXT decided to use Unix as the core of NeXTSTEP. It relied on the source code for BSD Unix from the University of
California at Berkeley. Why Unix? Unix crashed much less frequently than Microsoft Windows or Mac OS and came with powerful, reliable networking
capabilities.

Apple has made the source code to the Unix part of Mac OS X available under the name Darwin. A community of developers continues to work to
improve Darwin. You can learn more about Darwin at www.macosforge.org.

NeXT then wrote a window server for the operating system. A window server takes events from the user and forwards them to the applications. The
application then sends drawing commands back to the window server to update what the user sees. One of the nifty things about the NeXT window server
is that the drawing code that goes to the window server is the same drawing code that would be sent to the printer. Thus, a programmer has to write the
drawing code only once, and it can then be used for display on the screen or printing. In the NeXTSTEP days, programmers were writing code that
generated PostScript. With Mac OS X, programmers are writing code that uses the Core Graphics framework (also known as Quartz). Quartz can
composite those graphics onto the screen, send them to the printer, or generate PDF data. The Portable Document Format is an open standard for
vector graphics created by the Adobe Corporation.

If you have used Unix machines before, you are probably familiar with the X window server. The window server for Mac OS X is completely different but
fulfills the same function as the X window server: It gets events from the user, forwards them to the applications, and puts data from the applications onto
the screen.

NeXTSTEP came with a set of libraries and tools to enable programmers to deal with the window manager in an elegant manner. The libraries were
called frameworks. In 1993, the frameworks and tools were revised and renamed OpenStep, which was itself later renamed Cocoa.

As shown in Figure 1.1, the window server and your application are Unix processes. Cocoa enables your application to receive events from the window
server and draw to the screen.

Figure 1.1. Where Is Cocoa?

events
Window [, i | Your
Server |, oo Cocoal A
| drawing | PP
4.4 BSD UNIX

Mach Microkernel

Programming with the frameworks is done in a language called Objective-C. Like C++, Objective-C is a C programming language extension that made it
object-oriented. Unlike C++, Objective-C is weakly typed and extremely powerful. With power comes responsibility: Objective-C also allows programmers
to make ridiculous errors. Objective-C is a very simple addition to C, and you will find it very easy to learn.

Programmers loved OpenStep. It enabled them to experiment more easily with new ideas. In fact, Tim Berners-Lee developed the first Web browser and
the first Web server on NeXTSTEP. Securities analysts could code and test new financial models much more quickly. Colleges could develop the
applications that made their research possible. We don’t know what the intelligence community was using it for, but they bought thousands of copies of
OpenStep. Because the OpenStep development tools were so useful, they were ported to Solaris and Windows NT, and the NeXTSTEP operating
system was ported to most of the popular CPUs of the day: Intel, Motorola, Hewlett-Packard’s PA-RISC, and SPARC. (Oddly enough, OpenStep didn’t
run on a Mac until the first version of Mac OS X Server, known as Rhapsody, shipped in 1999.)

For many years, Apple Computer had been working to develop an operating system with many of the features of NeXTSTEP. This effort was known as
Copland. Project Copland gradually spun out of control, and Apple finally decided to pull the plug and buy the next version of Mac OS from another
company. After surveying the existing operating systems, Apple selected NeXTSTEP. Because NeXT was small, Apple simply bought the whole
company in December 1996.

NeXTSTEP became Mac OS X. It is Unix underneath, and you can get all the standard Unix programs (such as the Apache Web server) on Mac OS X. It
is extremely stable and the user interface is spectacular.

In 2008, the iOS SDK, as it would eventually be called, was announced. Apple’s incredibly successful App Store has brought an audience of millions to
iOS developers, many of whom are also Cocoa developers on the Mac. Cocoa Touch is built on top of the very same foundations as Cocoa, and indeed

many of the classes are identical. More important, the principles and design patterns are essentially unchanged. In 2010, just ahead of Mac OS X Lion,
Apple introduced the Mac App Store, bringing the same ease of distribution to Mac developers.

You, the developer, are going to love Mac OS X because Cocoa will enable you to write full-featured applications in a radically more efficient and elegant
manner.

Tools

You will love Cocoa but perhaps notimmediately. First, you will learn the basics. Let’s start with the tools that you will use.

All the tools for Cocoa development come as part of the Mac OS X Developer Tools, and you get them for free with Mac OS X. Although the Developer
Tools will add about a dozen handy applications to your system, you will use one application primarily: Xcode. Behind the scenes, either the LLVM (Low
Level Virtual Machine) or the GNU C compiler (gcc) will be used to compile your code, and the GNU debugger (gdb) or the LLDB (Low Level Debugger)
will help you find your errors.

Xcode tracks all the resources that will go into an application: code, images, sounds, and so on. You will edit your code in Xcode, and Xcode can compile
and launch your application. Xcode can also be used to invoke and control the debugger. We strongly recommend using Xcode 4.2 or greater when trying
the exercises in this book. While many of the concepts covered can be applied in the Xcode 3 and even earlier, the style of memory management used
(ARC) requires the Xcode 4.2 compiler.

Inside Xcode, you will use the Interface Builder editor as a GUI builder. It edits XIB files, allowing you to lay out windows and add widgets to those
windows. It is, however, much more. Interface Builder allows the developer to create objects and edit their attributes. Most of those objects are Ul
elements such as buttons and text fields, but some will be instances of classes that you create.

You will also use Instruments to profile your application’'s CPU, memory, and filesystem usage. Instruments can also be used to debug memory-
management issues. Instruments is built on top of dtrace, which makes it possible to create new instruments.

Language

This book uses Objective-C for all the examples. Objective-C is a simple and elegant extension to C, and mastering it will take about two hours if you
already know C and an object-oriented language such as Java or C++.

It is possible to develop Cocoa applications in Ruby or Python. This book will not cover that technique, but there is plenty of information on the Web. To
understand that information, you will still need a working knowledge Objective-C.

With Mac OS 10.5, Objective-C underwent a major revision. All the code in this book is Objective-C 2.0, and almost all of the code in this book uses ARC
for memory management. We will discuss memory management in further detail in Chapter 4.

The Objective-C code will be compiled by the LLVM compiler. The compiler allows you to freely mix C, C++, and Objective-C code in a single file.
The debugger, gdb or lidb, will be used to set breakpoints and browse variables at runtime. Objective-C gives you a lot of freedom to do dumb things; you
will be glad to have a decent debugger.

Objects, Classes, Methods, and Messages

All Cocoa programming is done using object-oriented concepts. This section very briefly reviews terms used in object-oriented programming. If you have
not done any object-oriented programming before, we recommend that you read The Objective-C Language. The PDF file for the book is on the Apple

Web site, The URL is http://developer.apple.com/library/mac/documentaion/Cocoa/Conceptual/Objective C/ObjC.pdf.

What is an object? An object is like a C struct: It takes up memory and has variables inside it. The variables in an object are called instance variables. So
when dealing with objects, the first questions we typically ask are: How do you allocate space for one? What instance variables does the object have?
How do you destroy the object when you are done with it?

Some of the instance variables of an object will be pointers to other objects. These pointers enable one object to “know about” another.

Classes are structures that can create objects. Classes specify the variables that the object has and are responsible for allocating memory for the object.
We say that the object is an instance of the class that created it (Eigure 1.2).

Figure 1.2. Classes Create Instances

Theclass acts as a ...areates instances
factory thal. .. of thal class.
Groovy : Groovy
% : float : ¥=37
) PR Groovy
- doublax
w=4.2
- doubleX

An object is better than a struct because an object can have functions associated with it. We call the functions methods. To call a method, you send the
object a message (Figure 1.3).

Figure 1.3. Messages Trigger Methods

... friggears a mathod in the
object that receives it.

Sending a message. .. Groovy
doubleX -.__
e =74
- doubleX

Frameworks

A framework is a collection of classes that are intended to be used together. That is, the classes are compiled together into a reusable library of code.
Any related resources are put into a directory with the library. The directory is renamed with the extension . framework. You can find the built-in
frameworks for your machine in /systen/Library/Frameworks. Cocoa is made up of three frameworks:

1. Foundation: Every object-oriented programming language needs the standard value, collection, and utility classes. Strings, dates, lists, threads,
and timers are in the Foundation framework.

2. AppKit: All things related to the user interface are in the AppKit framework. These include windows, buttons, text fields, events, and drawing
classes. You will also see this framework called the ApplicationKit.

3. Core Data: Core Data makes it easy to save your objects to a file and then reload them into memory. We say that it is a persistence framework.

We will focus on these three frameworks because they are the most commonly used. Once you have mastered these, the other frameworks will be easier
to understand. Numerous other frameworks handle such duties as encryption, QuickTime, and CD burning.

You can also create your own frameworks from the classes that you create. Typically, if a set of classes is used in several applications, you will want to
turn them into a framework.

How to Read This Book

This book acts as the guide through activities to help you understand Cocoa programming. Often, we will ask you to do something and explain the details
or theory afterward. If you are confused, read a little more. Usually, the help you seek will be only a paragraph or two away.

If you are still stumped, you can get help on the Web site for this book: www.bignerdranch.com/books. Errata, hints, and examples are listed there as well.
Also, all the solutions for the exercises can be downloaded from there. You can also post questions about the book and concepts discussed in the book
on the Big Nerd Ranch forums (http://forums.bignerdranch.com/).

Each chapter will guide you through the process of adding features to an application. This is not, however, a cookbook. This book teaches ideas, and the
exercises show these ideas in action. Don’t be afraid to experiment.

There are about 300 classes in the Cocoa frameworks. All are documented in the online reference (accessed through Xcode'’s se1p menu). Cocoa
programmers spend a lot of time browsing through these pages. But until you understand a lot about Cocoa, it is hard to find the right starting place in
your search for answers. As this book introduces you to a new class, look it up in the reference. You may not understand everything you find there, but
browsing through the reference will give you some appreciation for the richness of the frameworks. When you reach the end of this book, the reference will
become your guide.

Most of the time, Cocoa fulfills the following promise: Common things are easy, and uncommon things are possible. If you find yourself writing many lines
of code to do something rather ordinary, you are probably on the wrong track.

Typographical Conventions

To make the book easier to comprehend, we’ve used several typographical conventions.

In Objective-C, class names are always capitalized. In this book, we’ve also made them appear in a monospaced bold font. In Objective-C, method
names start with a lowercase letter. Method names will also appear in a monospaced bold font. For example, you might see “The class Nsobject has the
method dealioc.”

Other literals, including instance variable names that you would see in code, will appear in a regular monospaced font. Also, filenames will appear in this
same font. Thus, you might see “In Myc1ass.m, set the variable favoritecolor toni1.”

Code samples in this book appear in the regular monospaced font. New portions, which you will need to type yourself, will appear in bold.
Common Mistakes

Having watched many, many people work through this material, we’ve seen the same mistakes made hundreds of times. Two mistakes are particularly
common: capitalization mistakes and forgotten connections.

Capitalization mistakes happen because C and Objective-C are case-sensitive languages—the compiler does not consider roo and foo to be the same

thing. If you are having trouble making something compile, check to make sure that you have typed all the letters in the correct case.

When creating an application, you will use the Interface Builder editor to connect objects together. Forgotten connections usually allow your application to
build and run but result in aberrant behavior. If your application is misbehaving, go back to Interface Builder and check your connections.

It is easy to miss some warnings the first time a file is compiled. Because Xcode does incremental compiles, you may not see those warnings again
unless you clean and rebuild the project. If you are stuck, cleaning and rebuilding is certainly worth a try.

How to Learn

All sorts of people come to our class: the bright and the not so bright, the motivated and the lazy, the experienced and the novice. Inevitably, the people
who get the most from the class share one characteristic: They remain focused on the topic at hand.

The first trick to maintaining focus is to get enough sleep: ten hours of sleep each night while you are studying new ideas. Before dismissing this idea, try
it. You will wake up refreshed and ready to learn. Caffeine is not a substitute for sleep.

The second frick is to stop thinking about yourself. While learning something new, many students will think, “Damn, this is hard for me. | wonder if | am
stupid.” Because stupidity is such an unthinkably terrible thing in our culture, the students will then spend hours constructing arguments that explain why
they are intelligent yet are having difficulties. The moment you start down this path, you have lost your focus.

Aaron used to have a boss named Rock. Rock had earned a degree in astrophysics from Cal Tech and had never had a job that used his knowledge of
the heavens. He was once asked if he regretted getting the degree. “Actually, my degree in astrophysics has proved to be very valuable,” he said. “Some
things in this world are just hard. When | am struggling with something, | sometimes think ‘Damn, this is hard for me. | wonder if | am stupid,’ and then |
remember that | have a degree in astrophysics from Cal Tech; | must not be stupid.”

Before going any further, assure yourself that you are not stupid and that some things are just hard. Armed with this silly affirmation and a well-rested
mind, you are ready to conquer Cocoa.

Chapter 2. Let’s Get Started

Many books would start off by giving you a lot of philosophy. This would be a waste of precious paper at this point. Instead, we are going to guide you
through writing your first Cocoa application. Upon finishing, you will be excited and confused...and ready for the philosophy.

Our first project will be a random number generator application. It will have two buttons: Seed random number generator using time and Generate
random number. A text field will display the generated number. This simple example involves taking user input and generating output. At times, the
description of what you are doing and why will seem, well, terse. Don’t worry—we will explore all this in more detail throughout this book. For now, just play
along.

Figure 2.1 shows what the completed application will look like.

Figure 2.1. Completed Application

806 Window

Seed random number generator using time
Generate random number

89

In Xcode

Assuming that you have installed the Developer Tools, you will find Xcode in /peveloper/Applications/. You will be using the application a lot, so drag it
to the dock at the bottom of your screen. Launch Xcode. (If you have never run Xcode before, you may get a Welcome page. Just take all the defaults and
click through.)

As mentioned earlier, Xcode will keep track of all the resources that go into your application. All these resources will be kept in a directory called the
project directory. The first step in developing a new application is to create a new project directory with the default skeleton of an application.

Create a New Project

Under the File menu, choose New, then New Project.... When the panel appears (see Figure 2.2), choose the type of project you would like to create:
Cocoa Application. Note that many other types of projects are available as well.

Figure 2.2. Choose Project Type

- _ loaieg | a m =
O 2 N
Choose a template for your new project:
N os
Appicuion 2\ < .y
Framework & Library [:
Other — .
EEEEETRERNEER Cowa-AppleSaipt Command Line Toal

Appdication

J\, Cocoa Application

This teeplare builds 3 Cocoa-based applcation writlan in D&jective-C.

Cancel | Hext

In this book, we will discuss the following major types of projects:
Application: A program that creates windows.
Tool: A program that does not have a graphical user interface. Typically, a tool is a command-line utility or a daemon that runs in the background.

Bundle or framework: A directory of resources that can be used in an application or tool. A bundle (also called a plug-in) is dynamically loaded at
runtime. An application typically links against a framework at compile time.

For the project name, type in Random, as in Figure 2.3. Application names are typically capitalized. Set the Class Prefix to Random and uncheck Create

Document-Based Application, Use Core Data, and Include Unit Tests. Make sure that Use Automatic Reference Counting is checked. We will use this
setting in every new project in this book.

Figure 2.3. Name Project

Choose options for your new project:

—

——
Froduct hame | Randar|
Company Identifier (u‘\:.l!lgﬁhdllﬁ(":
Bandle identifier
Class Preflx Random
Apa Store Category | Mooe

Creare Document-Based Application

| Document Extension

Use Core Dana
o Use Automaic Reference Counting
Include Urig Tests

Cancel Previous | Wext |

Next, you will pick the directory in which your project directory will be created. By default, your project directory will be created inside your home directory.
Uncheck Create local git repository for this project. Click the Create button.

A project directory will be created for you, with the skeleton of an application inside it. You will extend this skeleton into the source for a complete
application and then compile the source into a working application.

Looking at the new project in Xcode, you will see an outline view on the left side of the window. Each item in the outline view represents a file in your
project. This is the project tab of the navigator; other navigator tabs show such information as compiler errors or find results. For now, you will be dealing
with editing files, so expand the item that says Random to see the files that will be compiled into an application.

The skeleton of a project that was created for you will compile and run. It has a menu and a window. Click on the Run toolbar item to build and run the
project, as shown in Figure 2.4.

Figure 2.4. Skeleton of a Project

Choose
ana 71 Random - Random xcodepeaj
fb' s | Keode
o | [Randen
Summary nfo Build Setiings Buid Prases Buidleh Rty
B Random X o Targel
Random - Mar 05 X Appecatan Targe
'] RandemAppDetegate.h TS _
m RandomsppDetegate.m Applicavon Capegory | Nore .
- Ramdon i — —
Mar b
: Kent®ar corn bignerdranch
| Supperting Files
Fommantis Weriion | |
Product >3
App runs on Mac 05 X =} and abewe
Misin interface | nanMeny -
Aap Wah
Linked Framamnras sad Lisearies
§S Cocoa framewo R d
+
4+ EED= Add Targer

While the application is launching, you will see a bouncing icon in the dock. The name of your application will then appear in the menu. This means that
your application is now active. The window for your application may be hidden by another window. If you do not see your window, choose Hide Others
from the Random menu. You should see an empty window, as shown in Figure 2.5.

Figure 2.5. Running the Project

‘ Random File Edit Format View Window Help

The main Function

AN6e

Random

Figure 2.6. main() Function

Although it doesn’t do much, your application is already fully functional. Even printing works. There is exactly one line of code in the application. Let's look
at it now; quit Random and return to Xcode.

Expand Supporting Files and selectmain.m by single-clicking on it. The code will appear in the editor (Eigure 2.6). If you double-click on the filename, it
will open in a new window. Because we deal with many files in a day, this tends to overwhelm us rather quickly, so we use the single-window style.

808 B el ks =
com o | = | @aE maG) &
Run Sop Scheme Breakpoinis. Editor Viaw Organizer
|lm = ® A = = @ | w4 > | [yrandom Fasrdom Supporning Files | m enan.m - No Sekection

=, Random
= 1 tamger, Mac 05 % S0% 10.8

_ Randam
b RandomAppleiegate.h
m RandamAsplelegate m
MMk aib
Supparting Files

In Interface Builder

Bandemn-inka, plisy
|Mﬂﬁ|$‘.iﬂ:ﬁ9£ 1 t main{int argc, cha
|| Randor-Prefix.pch aturn NSApp
o) 3
= Credits. el
Frameworks
Products
+ @EE S

r sargell]

icationMainlarge, (consl char welargvl:

Figure 2.7. MainMenu.xib

You will almost never modify main.m in an application project. The default main () simply calls NsapplicationMain (), Which loads and runs the objects that
make up your application. In the next section, we will learn how NsapplicationMain () knows which objects to load.

In the project navigator under Random, you will find a file called mainMenu.xib. Click on it to open it in the Interface Builder editor. Next, click the Ultilities
view toggle in the toolbar to show the right-side panel (Figure 2.7).

Menu for your app Inspector panel Utilities view toggle

4 Handom - ManMen wib

L
¥y B Random dardue a- Masions aib Engiuhl NoSdeczon | 3 @ @ 4 o O 5 B
Random File Edit Format View Window Help iy E

Rangaem, . ip)

il
€ Fli et g raadnr

I o i &=

| |l rite Tomptare Usrary B n.
.|: Ospuciiva—C chass - & Dlgarihe E
|

Uliwmantrolier dubciais
] Dtinctiar - Wew (aneecie Lbcian)

| B g oy -
+* o - . II L4 -
|
/ | \
| X
Window for your app, Canvas Library utility panel

in the Interface Builder Dock

Interface Builder allows you to create and edit user interface objects, such as windows and buttons, for use in your application. You can also create
instances of your custom classes and make connections between those instances and the standard user interface objects. When users interact with the
user interface objects, the connections you have made between them and your custom classes will cause your code to be executed. Interface Builder
saves these objects and their connections to a XIB (pronounced “zib”) file.

The Utility Area

The utility area has two panels: the Inspector and the Library. The Inspector panel contains settings for the currently selected file or Interface Builder
object. The Library panel contains file templates, snippets, objects, and media that can be used in your project. User interface widgets can be dragged
from the object library into your interface. For example, if you want a button, you can drag it from the object library area.

The Blank Window

Click on the window icon in the Interface Builder dock. The blank window that appears represents an instance of the Nswindow class that is inside your XIB

file (Eigure 2.8).
Figure 2.8. NSWindow Instance

anm T3 Randam - MainMenu. xily
o o [
() (B [Rascom ity Mac][] Elo= FHoE] (=)
Btz neme ke scares Feinor e L o L]
|m = @ 4 = = @ |z < ¢ S Tarsbgen - - Masbeei il Maritre ui by b Wisdaw - Raripe /DB @ " 0 & B
'.lfﬂ_ﬂlf‘. — Randam File Edit Forsal View Window Hélp ey i
g SRR T Tos Mae WanAEnu A0
Raree o <
[FLREree— | B Thv | -Ovtunt: It £.-90%
LA Tal Random
L 1
A
1
1
= -
LEO) - .
o il viie Terts Litniry 2 (1B
s i 5
pibve-€ las - o Do L)
. € lany weh g beasar
+ B@ a

As you drop objects from the library onto the window, they will be added to the XIB file. After you have created instances of these objects and edited their
attributes, saving the XIB file is like “freeze-drying” (or archiving) the objects into the file. When our random application runs, NSRunaApplication ()

unarchives the objects we created in the XIB and brings them back to life. A more complex application would likely have several XIB files that are loaded
as needed.

Once your application has loaded the objects, it simply waits for the user to do something. When the user clicks or types, your code will be called
automatically. If you have never written an application with a graphical user interface before, this change will be startling to you: The user is in control, and
your code simply reacts to what the user does.

For the More Curious: XIBs and NIBs

A XIB file is an XML representation of user interface objects and their connections. When you build your application, the XIB file is compiled into a NIB
file. The XIB file is easier to work with, particularly for source control, but the NIB file is smaller and easier to parse, which is why the file that ships with
your application is a NIB. Generally speaking, you will manipulate only XIB files, and your application will use only NIB files, but most developers use the

words XIB and NIB interchangeably. (Trivia: “NIB” stands for “NeXT Interface Builder”; “NS” stands for “NeXTSTEP.”)
Lay Out the Interface

We are going to walk you through it, but keep in mind that your goal is to create a user interface that looks like Figure 2.9.

Figure 2.9. Completed Interface

0.0.6, Window |

| Seed random number generator using time

L Generate random number)

89
4

Select Cocoa in the library selector bar. Drag a button from the Library window (as shown in Figure 2.10) and drop it onto the blank window. (To make it
easier to find, you can either select the Cocoa -> Controls group in the pop-up at the top of the Library panel or type button in the search field.)

Figure 2.10. Dragging a Button

ans 2 Bandoo - Maisbeny xib =
(»)(m | fandomimpacie i) m] Tvethd g ot oo nloE o

| @& 4 E = B = a v Cilasdem anazem Mgnbemuh Mo s - Wndowm - Bandom Eiview [} B @ (% # & 5 B
B o b 05 55 108 Random File Edit Format View Window Help

Framawercs -.r‘\‘_

+ GER~ =l

Double-click on the button to change its title to Seed random number generator using time.

Copy and paste the button. Relabel the new button Generate random number. Drag out a Label text field (as shown in Figure 2.11) and drop it onto the
window.

Figure 2.11. Dragging a Text Field

ano 3 Randoen - MainMenu.xib =]
(») () (rsonl_] [=] B e =) =

o & 8
Focas Ring | Detauh)
Dvawing] Hidden
! FandombgsDlegain.m B Aennreszes Subviens

! Can Dvaw Concurmenty

v i 5upporting Fiiey T RAA o
Random-date plist]
infolfiat sirngs i Saed random numbser gensrator uging tims
b Randes-Prefie peh '
I i GEnerile FRH0OM AUMEs?
& Credns.nf fabs - '
Fram M [
7] Framawnries o e
Produs :
O {l @& m
8 B T s
Label - Doyt that fhe upr
S 2 i\
Text Flald - Dnsliys it Thit the
BT TN JRCT OF 408 380 that sends
3 IO MESLRJE 10 HS LT
m— Search Field - imglemeras afrst o
a e coatral EAar b optimized for

+ SRAS 3]

To make the text field as wide as the buttons, drag the left and right sides of the text field toward the sides of the window. (You may notice that blue lines

appear when you are close to the edge of the window. These guides are intended to help you conform to Apple’s GUI guidelines.)

Make the window smaller by dragging the transparent handles surrounding it.

To make the text field center its contents, you will need to use the Attributes Inspector. Select the text field, and select the Attributes Inspector tab at the
top of the inspector panel. Click on the center-justify button (Figure 2.12).

Figure 2.12. Text Field Attributes Inspector

Aann B Rardam - MainMeng. xib

() (o (Randor i) = Elo= @moE] @
Aun g Scheme Breakginmy - aitor Vorm Cganiee
| ® A S = .i;- A v | Py Rancom RoBe B oW view ThaTea- i |) @ 0B (% S O & B

Random File Edit Format View Window Help Text Fid
Aol tdgate n PR
m FandomAppDetegate.m = e
LR Random =
$ Seed random rumbss’ generiine wiing time s
Cerrate rindom number
A
Label

=
[] o
. " i e Label Labee! - Despleys 1 v

Click to center justify o
[=

The Dock

In your XIB file, some objects, such as buttons, are visible, and others (like your custom controller objects), are invisible. The icons that represent the
invisible objects appear in the dock.

The dock contains icons representing the main menu and the window. First Responder is a fictional object, but it is a very useful fiction. It will be fully
explained in Chapter 21. File’s Owner in this XIB is the Nsapplication Object for your application. The Nsapp1ication Object takes events from the event
queue and forwards them to the appropriate window. We will discuss the meaning of File’s Owner in depth in Chapter 12.

Create a Class

In Objective-C, every class is defined by two files: a header file and an implementation file. The header file, also known as the interface file, declares the
instance variables and methods your class will have. The implementation file defines what those methods do.

In Xcode, use the File->New->New File... menu item to create a new Cocoa -> Objective-C class. Name the class randomcontroller and setit to be a
subclass of Nsobject. (Eigure 2.13).

Figure 2.13. Create a New Class

B4 Random - RandomAppDelegate.m

|
B) [Rowm.] [= | = £]| &
ISR - e
o o, Random Choose options for your new file:
B e
Rando -
W Ran —

Class !Pdn:llll'.\{ﬂnll-a- et]

Subclass of NSODject

Cancel Previous | hext |

PN T) — T - = — —

The files RandomController.h and RandomController.m Will appear in your project. If they don’t appear in the Random group, drag them there (Figure
2.14).

Figure 2.14. RandomController.h and .m in the Random Group

C ekl 4 Random - RandomControlier.m
o = | S — = g
(»| (8] |Random 3] [m] : EHos EaE (D
B Wop Scheme Wreakpoints - . - . fditar M Organizer
|| & h = = @ | =i 4 » | TRangom . Random | lm RandomControlerm | ho Section noa
=, Randam * Identity and Type P
=] 1 carget, Mac 05 ¥ 508 106
Hansan File Kame Wuln
h| RandomAppielegace.h ¥ by Kdem Peeble sn 373711, il Type | Default - ol 7. 58]
mi RandomAppDielegate.m : nt 2811 Big Werd Rench. ALL rignts ressrved :
Mainbbenu.xib Locaios | Relaive 1o Grown 18]
Supporting Files simport
Randam-info.plist Full P
InfeMhtaanegs g g ¥ Lotaicalion

RandosCentroller
h| Random-Prefs. po

i - [} imit
» Credits.nfd
hi

tletl * -
; vitislizat e here ¥ Tugat Mambershin
[y

Randam
Products A ~

S

[voldhdenllo D (e =

er sealloc); (il Cpect Library

Label - Duplyy texk that the user can
Label ey

MUl "

ine Wrapping Label - Disclays tect that
the e cas select

Labsl

4+ aEa S O, ket

In Randomcontroller.h, you will add instance variables and methods to your class. Instance variables that are pointers to other objects are called outlets.
Methods that can be triggered by user interface objects are called actions.

Edit Randomcontroller.n to look like this:
#import <Foundation/Foundation.h>

@interface RandomController : NSObject {
IBOutlet NSTextField *textField;

}
- (IBAction)seed: (id) sender;
- (IBAction)generate: (id) sender;
@end
What can an Objective-C programmer tell from this file?
1. RandomController iS a subclass of NSObject.
2. RandomController has one instance variable: textrield is a pointer to an instance of the class NsTextField.
3. RandomController has two methods: seed: and generate: alre action methods.

By convention, the names of methods and instance variables start with lowercase letters. If the name would be multiple words in English, each new word
after the first one is capitalized—for example, favoritecolor. Also by convention, class names start with capital letters—for example, RandomController.

Save randomController.h.
Create an Instance

Next, you will create an instance of the class RandomController in your XIB file. Select MainmMenu. xib to return to Interface Builder. From the Library panel,
drag a blue Object (under Cocoa -> Objects & Controllers), and drop it onto the Interface Builder dock (Eigure 2.15).

Figure 2.15. Drag an Object onto the Interface Builder dock.

4 Randam - MainMenu.xib —
) (=] ol @om @)
T @ i = = @[z 4 - Dhandom | R B B Mainkenusk English]) NoSdecion | D B @ W O & =
|© Random File Edit Format View Window Help

h| RangomAppD4spae.h
m RandomAppDeiegace.m P RNy Ranitk
Supporting Fiey Lx Saed random number generator using time
| Random-inf.plisy b=
Mo aerings Generata rancom number Mo Exlucinn
h! Random: Prefix.pch ‘ Label
m mainm
& Credits.rif e\
h} RangdomConirolierh o |
m RandamCantralior.m
* | Fesmmarha -
*] Preducts =T
G LE 0D (ile=
. B oo & Comrotiens 15 (HE]
Qllspeer = Prowicies an inszance of an |
MEbject subclans that is ot i
anailable in irneface Sulser,]
C——
. View Controller - A comtroler that
' manages 3 wew, hpeady baded
fram & n& He
Sk Objeci Canbroller - & Cocsa
bindings-companible comroler duss.
Srsiiactias ol e isbod niined o
+ @EE = = q,

In the Identity Inspector, set its class to Randomcontroller (Figure 2.16). (Your actions and outlets should appear in the Connections Inspector. If they do
not, check rRandomcontroller.nh. You have a mistake init, or it hasn’'t been saved.)

Figure 2.16. Setting the Class

D Bl8B[w s 0 & =

| T_}hﬂﬁ;ﬂass Py
Identity | Class | RandomController O =]
| ¥ User Defined Runtime Attributes
| Key Path Type V&_llue
|
[+][= — T —
LY Identity
!
Label | Xcode Specific Label |
®
Object ID 541 |
Lock [Inherited - (Nothing) &) *|
| =3 ¥ |

Make Connections

A lot of object-oriented programming has to do with which objects need to know about which other objects. Now you are going to introduce some objects
to each other. Cocoa programmers would say, “We are now going to set the outlets of our objects.” To introduce one object to another, you will Control-
drag from the object that needs to know to the object it needs to know about. The object diagram in Figure 2.17 shows which objects need to be
connected in your example.

Figure 2.17. Object Diagram

NSButton
action=seed:
target
RandomController NSButton
. target — action=generate:
- seed:
- generate:
5 i e
awakeaFromNib TaxtField
NSTextField
- setintValue:
- setObjectValue:

You will set RandomController’s textField instance variable to point to the NsTextField object on the window that currently says Label. Right-click (or

Control-click if you have a one-button mouse) on the icon that represents your instance of Randomcontroller. The Connection panel will then appear.
Drag from the circle beside textrield to the text field that says Label (Figure 2.18).

Figure 2.18. Set the textField Outlet

Random MainMenu. b
() ["~ Xeod)| =1 (i =] (1]
l;,' M| | Rando... % = ode Ela= [} =
Bun Saop Scheme Breakpoints Editer wiew Ceganizer
|miZ & A = » B =4 » B ManMenub iinglish) : liRandomConteller O B @ | £ © & =

. Random
52 1 usger, Mac 05 % SDK 10.8
Fangom !
I RandomAppOeiegate h ¥ User Defined Rumime Anribstes

Random File Edit Format View Window Help 7 Custss Class r

Olats | RandomCoeratier O *

| RandomappDelegate.m ‘ & i Key Path Type [re
Swir il e Seed random number genaratar wsing time
Random-infp plist ”’\
Infofintatrngs Cenerate rardom rumber
| Random-Frefoc pch Lab >
s - Soaicren - Lo RS
o Craditsrtf ef e — -
| RandomControlier b E D i}|& =
m RandomControtier.m = (me =)
Frameworiy Ll Onject Libeary e 1=
i - Push Batton - interoepss mosae- [
dewn evernts and seads an soisn
T message D a target object when
. Gradiont Bultan - isteiesti
meouse-down events and sends an
actinn message o 3 tanget object
Rounded Rect Button - Imenepns .
mouse-down events and sEnds an
T, SAALIAS i A A s
4 OERH S q

This step is all about pointers: You have to just set the pointer textField in your RandomController Object to point to the text field.

Now you will set the Seed button’s target outlet to point to your instance of RandomController. Furthermore, you want the button to trigger
RandomController'S seed: method. Control-drag from the button to your instance of Randomcontrolier. When the panel appears, select seed: (Eigure
2.19).

Figure 2.19. Set the Target and Action of the Seed Button

Random File Edit Format View Window Help [0 Random File Edit Formal View Window Help

w ASA Random ' Aara Rangom
S -J andum number gesardhor uiing time

Gererate random nurier --’\
Labal Lakel

Sewil fandim fesber GEneTEr Wiy B

Canerate random rumber

A\

8 ®
]
&

Similarly, you will set the Generate button’s target outlet to point to your instance of Randomcontroller and set its action to the generate: method.
Control-drag from the button to RandomControliler. Choose generate: in the Received Actions panel (Eigure 2.20).

Figure 2.20. Set the Target and Action of the Generate Button

Random File Edit Format View Window Help I Random File Edin Format Wiew Window Help |
‘ anA Random ‘ i) Ranom
A Sead random number gerRsralor using time ‘\ Seed random nembar GINETROr UG D
a * Generate random mumiter ‘Cenerate sandom number
Labal Laksel
-

®
"
&

| el m

A Look at Objective-C

If this is the first time that you are seeing Objective-C code, you may be alarmed to discover that it looks quite different from C++ or Java code. The syntax
may be different, but the underlying concepts are the same. For example, a class in Java would be declared like this:

import com.megacorp.Bar;
import com.megacorp.Baz;

public class Rex extends Bar implements Baz {
..methods and instance variables...

}

This says, “The class rex inherits from the class Bar and implements the methods declared in the Baz interface.”

The analogous class in Objective-C would be declared like this:

#import <megacorp/Bar.h>
#import <megacorp/Baz.h>

@interface Rex : Bar <Baz> {
..instance variables...

}
..methods. ..
@end

If you know Java, Objective-C really isn’'t so strange. Note that like Java, Objective-C allows only single inheritance; that is, a class has only one
superclass.

Types and Constants in Objective-C

Objective-C programmers use a few types that are not found in the rest of the C world.
* id is a pointer to any type of object.
* BoOL is the same as char butis used as a Boolean value.
*YESis 1.
*nois 0.

* 1BOutlet iS @ macro that evaluates to nothing. Ignore it. (1Bout1et is a hint to Interface Builder when it reads the declaration of a class from a .n
file.)

e IBAction iS the same as void. It also acts as a hint to Interface Builder.

*nil is the same as nurn. We use ni1 instead of nurt for pointers to objects.

Look at the Header File

Click on rRandomController.h. Study it for a moment. It declares Randomcontroller to be a subclass of Nsobject. Instance variables are declared inside
the braces.

#import <Foundation/Foundation.h>

@interface RandomController : NSObject

{
IBOutlet NSTextField *textField;

}

- (IBAction)generate: (id) sender;
- (IBAction)seed: (id) sender;
@end

#import is similar to the C preprocessor’s #inciude. However, #import ensures that the file is included only once. You are importing <Foundation/
Foundation.h> because thatincludes the declaration of Nsobject, which is the superclass of RandomController.

Note that the declaration of the class starts with ginterrace. The @ symbol is not used in the C programming language. To minimize conflicts between C
code and Objective-C code, Objective-C keywords are prefixed by e. Here are a few other Objective-C keywords: @end, @implementation, @class,

@selector, @protocol, @property, and @synthesize.

Edit the Implementation File

Now look atrandomcontroller.m. It contains the implementations of the methods. You can find it in the project navigator, or you can use Xcode’s
Navigate -> Jump to Next Counterpart command, Control-Command-UpArrow, which flips the editor between corresponding .n and . files. You can
also enable the Assistant Editor in the toolbar, which automatically shows the counterpart for the selected file beside it.

In C++ or Java, you might implement a method something like this:

public void increment (Object sender) {

count++;
textField.setIntValue (count) ;

}

In English, you would say, “increment is a public instance method that takes one argument that is an object. The method doesn’t return anything. The
method increments the count instance variable and then sends the message setintvalue () to the textField object with count as an argument.”

In Objective-C, the analogous method would look like this:

- (void)increment: (id) sender

{

count++;
[textField setIntValue:count];
}

Objective-C is a very simple language. It has no visibility specifiers: All methods are public, and all instance variables are protected. (In fact, there are
visibility specifiers for instance variables, but they are rarely used. The default is protected, and that works nicely.)

In Chapter 3, we will explore Objective-C in all its beauty. For now, just copy the following methods. You can safely remove the init and dealioc methods
Xcode has created for you.

#import "RandomController.h"

@implementation RandomController

- (IBAction)generate: (id) sender
// Generate a number between 1 and 100 inclusive
int generated;
generated = (int) (random() % 100) + 1;

NSLog (@"generated = %d", generated);

// Ask the text field to change what it is displaying
[textField setIntValue:generated];

(IBAction) seed: (id) sender

// Seed the random number generator with the time
srandom ((unsigned) time (NULL)) ;
[textField setStringValue:@"Generator seeded"];

}
@end
(Remember that 1Baction is the same as void. Neither method returns anything.)
Because Objective-C is C with a few extensions, you can call functions, such as random () and srandom () from the standard C and Unix libraries.

Build and Run

Your application is now finished. Click Run in the toolbar to run your application again.

If your code has an error, Xcode’s status display will show that the build has failed. Select the Issue navigator to see a list of build issues. If you click on
an issue, the erroneous line of code will be highlighted in the editor. In Eigure 2.21, the programmer has forgotten a semicolon. The compiler is smart
about certain types of errors; in this case, a callout is shown with a proposed solution to the problem. Press Return to apply the proposed solution.

Figure 2.21. Compiling

) Random - RandomCantroller.m

(Ej- ™ (o] (=] [Bulld Randam: Failed | Today at 1:16 FM | oz @Eoo (=
Run ~ Z0p Scheme Breakpoints. Frege @1 Editor Wlew Organazer
B DA = » @[z 4« » [Jrasdom | Rastom) m RandenContoserm : (1] -seea: a0
I by Type

_M?’mﬂ B jlmp ntat RangosController

e e : (IBkct lonlgenerate: {id] sender
Cencrate o mmber between 1 and 20 dr

Int gensrated;

generated = {intl

NSLogl@“genersted = %", generated);
he text field to change what i
id setIntValue:generated]:

- (IBAction)seed; (id)sender

eded"] 0 Esprsnes ahwragmpen |

CHD & end @ Expected " after expretsion

Once your application is running, click the buttons and see the generated random numbers. Congratulations—you have a working Cocoa application.

Did you see the log statement on the console? When things go badly, the Cocoa classes will log to the console, so you will want to keep an eye on the
console while testing your application. The console is part of the Debug Area. You can control console visibility by using the Debug Area toggle on the
toolbar. By default, Xcode is configured to show the console only when log output is generated and to hide it when the program exits. You can configure
Xcode to always show the log in the Behaviors tab of the Preferences panel, as shown in Eigure 2.22.

Figure 2.22. Behaviors in Preferences

ame Behaviors
e s - 9 E
i L8 i u &
General Behaviors | Fonts & Colors Text Editing Key Bindings. . Documentation Locations Source Trees Distributed Builds

Build starts
+ Build generates new issues
¥ Build succeeds
v Build fails

_| Play sound | Sosum

. Speak announcement using Alex

Testing starts || Show bezel alert

¥ Testing generates new issues
Testing generates output
Testing succeeds

| Bounce Xcode icon in Dock

Testing fails _|Show navigator = Debug Mavigator
™ [Show %] Debug Area
+ Run pauses
¥ Run generates output _|Show Tab

¥ Run completes

Run exits unexpectedly L Baromesol o Velos

Find initiates
Find completes with results
Find completes with no results Create snapshot

[(JRun | Choose Script

¥ Device restore completes

Unlack file

awakeFromNib

Note that your application is flawed: When the application starts, instead of anything interesting, the word Label appears in the text field. Let's fix that
problem. You will make the text field display the time and date that the application started.

As we discussed earlier, a NIB file is a collection of objects that have been archived. When the program is launched, the objects are brought back to life
before the application handles any events from the user. This mechanism is a bit unusual; most GUI builders generate source code that lays out the user
interface. Instead, Interface Builder allows the developer to edit the state of the objects in the interface and save that state to a file.

After being brought to life but before any events are handled, all objects are automatically sent the message awakeFromNib. You will add an awakeFromNib
method that will initialize the text field's value.

Add the awakeFromNib method {0 Randomcontroller.m. For now, just type it in. You will understand it later on. Briefly, you are creating an instance of
Nspate that represents the current time. Then you are telling the text field to set its value to the new calendar date object:

- (void)awakeFromNib

NSDate *now;
now = [NSDate date];
[textField setObjectValue:now];

}

The order in which the methods appear in the file is not important. Just make sure that you add them after eimp1ementation and before eend.

You will never have to call awakeFromNib; it gets called automatically. Simply run your application again. You should now see the date and time when the

app runs (Figure 2.23).

Figure 2.23. Completed Application

I YeYe Window

| Seed random number generator using time |
Generate random number

2007-09-11 17:04:58 -0400
2l

In Cocoa, a lot of things, such as awakeFromNib, get called automatically. Some of the confusion that you may experience as you read this book will come
from trying to figure out which methods you have to call and which will get called for you automatically. We'll try to make the distinction clear.

Documentation

Before this chapter wraps up, you should know where to find the documentation, as it may prove handy if you get stuck while doing an exercise later in the
book. The easiest way to get to the documentation is by choosing Documentation and API| Reference from Xcode's Help menu (Eigure 2.24).

Figure 2.24. Documentation and API Reference

[Nallel Organizer - Docummntat,

.
A8 " B8 i

)

< 8.0 | = 4 ¢ pwmeonx 1o Com Ly
= 0
B v ovever (IR teewred featng Fasterss
= Ressurce Types
i

Learn the basics about Mag 05 development by reading these documents.

* Mac % X Technalogy Overview
+» Cocoa Application Tatorial
s Lusrning Gbjective-C: A Prienar

= A Tour of Ncode

If you Option-click on a method, class, or function name, Xcode will show a quick-help pop-over from which you can go to the full documentation for that
term. Also, the Quick Help Inspector in the utility area displays quick help for the term under the cursor, or the selected object in Interface Builder.

What Have You Done?

You have now gone through the steps involved in creating a simple Cocoa application:
* Create a new project.
* Lay out aninterface.
* Create custom classes.
» Connect the interface to your custom class or classes.
» Add code to the custom classes.
» Compile.
* Test.

Chronology of an Application

Let's briefly discuss the chronology of an application: When the process is started, it runs the NsapplicationMain function, which creates an instance of
NSApplication. The application object reads the main NIB file and unarchives the objects inside. The objects are all sent the message awakeFromNib.
Then the application object checks for events. The timeline for these events appears in Figure 2.25.

Figure 2.25. A Timeline

Application starts —

NIB file is loaded |— For each object in the NIS file:
Class is sent alloc to create instance
New instance is sent init

- Instance variables are set

v

Every object from
the NIB filz is sent
awakeFromNib Code in your custom

e object is triggered
iews are redrawn
as necessary
1
1

Iain event loop starts —

An event is read from
the event queus

Application terminates — Evant coda in a view
{like the button) is

—— triggerad

When it receives an event from the keyboard mouse, the window server puts the event data into the event queue for the appropriate application, as shown
in Figure 2.26. The application object reads the event data from its queue and forwards it to a user interface object, such as a button, and your code gets

triggered. If your code changes the data in a view, the view is redisplayed. Then the application object checks its event queue for another event. This
process of checking for events and reacting to them constitutes the main event loop.

Figure 2.26. The Role of the Window Server

Input/Cutput Applications
events = RandomApp
Queus~ ™,
Screen pixels drawing i event loop
events [Event TextEdit
!Que ue
drawing __Jevert loop
Window events
Mouse g | Event MyOtherApp
mouse erver
events Queue Q
event loop
drawing
events Evant Clock
Queus
, _“avent loop
Kayboard keyboard drawing
avents

When the user chooses Quit from the menu, Nsapp is sent the terminate: message. This ends the process, and all your objects are destroyed.
Puzzled? Excited? Move on to the next chapter so we can fill in some blanks.

Chapter 3. Objective-C

Once upon a time, a man named Brad Cox decided that it was time for the world to move toward a more modular programming style. C was a popular
and powerful language. Smalltalk was an elegant untyped object-oriented language. Starting with C, Brad Cox added Smalltalk-like classes and
message-sending mechanisms. He called the result Objective-C. Objective-C is a very simple extension of the C language. In fact, it was originally just a
C preprocessor and a library.

Objective-C is not a proprietary language. Rather, it is an open standard that has been included in the Free Software Foundation's GNU C compiler (gcc)
for many years. More recently, Apple has become heavily involved in the clang/LLVM (Low Level Virtual Machine) open source compiler projects, which
are much faster and more versatile than gcc. In Xcode projects, LLVM is the default compiler.

Cocoa was developed using Objective-C, and most Cocoa programming is done in Objective-C. Teaching C and basic object-oriented concepts could
consume an entire book. This chapter assumes that you already know a little C and something about objects and introduces you to the basics of
Objective-C. If you fit the profile, you will find learning Objective-C to be easy. If you do not, our own Objective-C Programming: The Big Nerd Ranch
Guide or Apple’s The Objective-C Language offer more gentle introductions.

Creating and Using Instances

Chapter 1 mentioned that classes are used to create objects, that the objects have methods, and that you can send messages to the objects to trigger
these methods. In this section, you will learn how to create an object and send messages to it.

As an example, we will use the class NsMutablearray. You can create a new instance of NsMutablearray by sending the message alloc to the
NSMutableArray class like this:

[NSMutableArray alloc];

This method returns a pointer to the space that was allocated for the object. You could hold onto that pointer in a variable like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];

While working with Objective-C, it is important to remember that foo is just a pointer. In this case, it points to an object.

Before using the object that foo points to, you would need to make sure that it is fully initialized. The init method will handle this task, so you might write
code like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];
[foo init];

Take a long look at the last line; it sends the message init to the object that oo points to. We would say, “foo is the receiver of the message init.” Note
that a message send consists of a receiver (the object foo points to) and a message (init) wrapped in brackets. You can also send messages to
classes, as demonstrated by sending the message alioc to the class NsMutableArray.

The method init returns the newly initialized object. As a consequence, you will always nest the message sends like this:

NSMutableArray *foo;
foo = [[NSMutableArray alloc] init];

What about destroying the object when we no longer need it? We will talk about this in the next chapter.

Some methods take arguments. If a method takes an argument, the method name (called a selector) will end with a colon. For example, to add objects to
the end of the array, you use the addobject: method (assume that bar is a pointer to another object):

[foo addObject:bar];

If you have multiple arguments, the selector will have multiple parts. For example, to add an object at a particular index, you could use the following:

[foo insertObject:bar atIndex:5];

Note that insertobject:atIndex: is one selector, not two. It will trigger one method with two arguments. This outcome seems strange to most C and
Java programmers but should be familiar to Smalltalk programmers. The syntax also makes your code easier to read. For example, it is not uncommon to
see a C++ method call like this:

if (x.intersectsArc(35.0, 19.0, 23.0, 90.0, 120.0))

It is much easier to guess the meaning of the following code:

if ([x intersectsArcWithRadius:35.
centeredAtX:19.

Y:23.

fromAngle:90.

O O O o

toAngle:120.0])

If it seems odd right now, just use it for a while. Most programmers grow to appreciate the Objective-C messaging syntax.

You are now at a point where you can read simple Objective-C code, so it is time to write a program that will create an instance of NsMutablearray and fill
it with ten instances of NsNumber.

Using Existing Classes

If itisn't running, start Xcode. Close any projects that you were working on. Under the File menu, choose New -> New Project.... When the panel pops up,
choose to create a Command Line Tool (Eigure 3.1).

Figure 3.1. Choose Project Type

Choose a template for your new project:

aios
Application &\

.
- -
Framework & Library ; % v | &)
L J
Other
Cocoa Application Cocoa-Applescript Command Line Tool
& Mac OS5 X Application

Application Plug-in
System Plug-in
Other

|i Command Line Tool

This template builds a command-Hne tool.

Cancel reviol }__.m;n. {

A command-line tool has no graphical user interface and typically runs on the command line or in the background as a daemon. Unlike in an application
project, you will always alter the main function of a command-line tool.

Name the project lottery (Figure 3.2). Unlike the names of applications, most tool names are lowercase. Set the Type to Foundation.

Figure 3.2. Name Project

Choose options for your new project:

—

Product Name | lottery|
Cornpany Identifier com bignerdranch
Bundle identifier com.bigner
Type | Foundation

™ use auremaric Reference Counting

Cancel Previous | | iNext-

When the new project appears, select main.m in the lottery group. Edit main.n to look like this:
#import <Foundation/Foundation.h>

int main (int argc, const char * argv([])

@autoreleasepool {

NSMutableArray *array;
array = [[NSMutableArray alloc] init];
inti;

for (i=0;i<10; i++) {
NSNumber *newNumber =
[[NSNumber alloc] initWithint: (i * 3)];
[array addObject:newNumber];

}
for(i=0;i<10; i++){

NSNumber *numberToPrint = [array objectAtIndex:i];

NSLog (@"The number at index %d is %@", i, numberToPrint);
}

}

return 0;

}
Here is the play-by-play for the code:

#import <Foundation/Foundation.h>

You are including the headers for all the classes in the Foundation framework. The headers are precompiled, so this approach is not as computationally
intensive as it sounds.

int main (int argc, const char *argvl[])
The main function is declared just as it would be in any Unix C program.
@autoreleasepool {
This code defines an autorelease pool for the code enclosed by the braces. We will discuss the importance of autorelease pools in the next chapter.

NSMutableArray *array;

One variable is declared here: array is a pointer to an instance of NsMutablearray. Note that no array exists yet. You have simply declared a pointer that
will refer to the array once it is created.

array = [[NSMutableArray alloc] init];
Here, you are creating the instance of NsMutablearray and making the array variable point to it.

for (i = 0; i < 10; i++) {
NSNumber *newNumber = [[NSNumber alloc] initWithInt: (i*3)];
[array addObject:newNumber];

}

Inside the for loop, you have created a local variable called newnumber and set it to point to a new instance of Nsnumber. Then you have added that object
to the array.

The array does not make copies of the Nsnumber Objects. Instead, it simply keeps a list of pointers to the nsnumber objects. Objective-C programmers
make very few copies of objects, because it is seldom necessary.

for (i = 0; i < 10; i++) {
NSNumber *numberToPrint = [array objectAtIndex:i];
NSLog (@"The number at index %d is %@", i, numberToPrint);

}

Here, you are printing the contents of the array to the console. NsLog is a function much like the C function print£ () ; it takes a format string and a comma-
separated list of variables to be substituted into the format string. When displaying the string, NsLog prefixes the generated string with the name of the
application and a time stamp.

Inprints, for example, you would use %x to display an integer in hexadecimal form. With NsLog, we have all the tokens from print£ and the token se to
display an object. The object gets sent the message description, and the string it returns replaces e in the string. We will discuss the description
method in detail soon.

All the tokens recognized by NsLog () are listed in Table 3.1.

Table 3.1. Possible Tokens in Objective-C Format Strings

Symbaol Displays

S id

%d, %D, i long

%u, %HU unsigned long

%hi short

%hu unsigned short

g1 long long

%L unsigned long long

%, TX unsigned long printed as hexadecimal

%o, %0 unsigned long printed as octal

%F, %e, %E, %¥g, %C double

%c unsigned char as ASCIT character

%C unichar as Unicode character

%s char * {a null-terminated C string of ASCII characters)

%5 unichar * (a null-terminated C string of Unicode
characters)

%p void * (an address printed in hexadecimal with a leading Ox)

ok a "% character

Note

If the @ symbol before the quotes in @ “The number at index %d is %@ looks a little strange, remember that Objective-C is the C language with a
couple of extensions. One of the extensions is that strings are instances of the class Nsstring. In C, strings are just pointers to a buffer of
characters that ends in the null character. Both C strings and instances of nsstring can be used in the same file. To differentiate between
constant C strings and constant Nsstrings, you must put @ before the opening quote of a constant Nsstring.

// C string

char *foo;

// NSString

NSString *bar;

foo = "this is a C string";
bar = @"this is an NSString";

You will use mostly Nsstring in Cocoa programming. Wherever a string is needed, the classes in the frameworks expect an Nsstring. However,
if you already have a bunch of C functions that expect C strings, you will find yourself using char * frequently.

You can convert between C strings and Nsstrings:

const char *foo = "Blah blah";

NSString *bar;

// Create an NSString from a C string

bar = [NSString stringWithUTF8String:foo];

// Create a C string from an NSString
foo = [bar UTF8String];

Because nNsstring can hold Unicode strings, you will need to deal with the multibyte characters correctly in your C strings, and this can be quite

difficult and time consuming. (Besides the multibyte problem, you will have to wrestle with the fact that some languages read from right to left.)
Whenever possible, you should use Nsstring instead of C strings.

Ourmain () function ends by returning 0, indiciating that no error occurred:

return 0;

Run the completed command-line tool (Eigure 3.3). (If your console doesn’'t appear, use the View -> Show Debug Area menu item and ensure that the
console, the right half, is enabled.)

Figure 3.3. Completed Execution

- Yalal 1 lotrery - main.m

(o) (=il (=] | BoE @EEo) 5

Run iop Scheme Breakpoints e i . Editor Thew
Mn®a=w@ =« = Money | lomery | m manm maing
=, lottery MNEMutableArray sarray)
md 1 targes, Mac 0% X SOK 108 = [[NSMutablearray alloc] init]:
o 8 4 <103 dee) |
i b snewilusber = [[INSHuster mlloc] fmitWithImz:ii « 310:
3 kagkry. farray nddlbject: newiusberd;
| Supporting Files
Frameworks
Preducs pusberToPrint = larray sbjectAtIndex:i];
nusber a1 index % U %8, 1, nuaberToPrint): w3
3 v
- . = 3 % |HNoSelecion
All Dutpur Cear | {0 TR
GhU gdb 6.3, 58-2005081% [Apple version gdb—1518) [Thu Jan 27 BB:34:47 UTC 2011)
Copyright 2084 Free Softwars Foundation, Imc.
GOA is free sofvware, cowersd by the GNU General Public Licemse; and you are
welcome to chamge it andior distribute copies of if under certain conditions.
Trpn “show copying” Eo see the conditions,
There is absolutely no warranty for GOB. Type "show warranty” for details.
This GOB was configured as “xBb_S4-apple-darwin®,tty fdev/ttys@ds
[Switching to process &7174 thread @x8]
2811-83-84 23:26:51.676 lottery[67174:983] The musber at index ® iz @
2011=83=84 23:26:51.679 lottery[67174:983] The musber at index 1 is 3
t26:51.680 lottary 671 The susbar at Sndex 2 45 6
26:51.681 Lottary[671 The musbar At Dndex 3 is 9
F6:51.601 Lottery[671 The susber at index 4 is 12
i t26:51. 602 lottery 671 The susber ot index § is 15
2811-03-04 23:26:51.682 Lottery[67174:983] The susber at index 6 is 18
2011=83=84 23:26:51.683 lottery[E7174:983] The susber st index 7 is 21
2811-83-84 23:26:51.683 lotkery[ETIT4:983] The musber at index B is 24
2011-83-04 23:26:51.684 lottery[ETLT4:983] The susber at index ¥ is 27
Pragras aaded with exit code: @
+ DEG®

Sending Messages to nil

In most object-oriented languages, your program will crash if you send a message to nu11. In applications written in those languages, you will see many
checks for nu11 before sending a message. In Java, for example, you frequently see the following:

if (foo != null) {
foo.doThatThingYouDo () ;

In Objective-C, itis okay to send a message to ni1. The message is simply discarded, which eliminates the need for these sorts of checks. For example,
this code will build and run without an error:

id foo;
foo = nil;
int bar = [foo count];

This approach is different from how most languages work, but you will get used to it.

You may find yourself asking over and over, “Argg! Why isn’t this method getting called?” Chances are that the pointer you are using, convinced that it is
notniil,isinfactnii.

In the preceding example, what is bar set to? Zero. lfrar were a pointer, it would be set to ni1 (zero for pointers). For other types, the value is less
predictable.

NSObject, NSArray, NSMutableArray, and NSString
You have now used these standard Cocoa objects: Nsobject, NSMutableArray, and Nsstring. (All classes that come with Cocoa have names with the s

prefix. Classes that you will create will not start with ns.) These classes are all part of the Foundation framework. Figure 3.4 shows an inheritance diagram
for these classes.

Figure 3.4. Inheritance Diagram

l'
]
1
1
]
1
1
1
| ST
r

J Inherits from

CNSMutableArray
I

Let's go through a few of the commonly used methods on these classes. For a complete listing, you can access the online documentation in Xcode’s
Help Menu.

NSObject

NSobject is the root of the entire Objective-C class hierarchy. Some commonly used methods on Nsobject are described next.
- (id)init

Initializes the receiver after memory for it has been allocated. An init message is generally coupled with an al11oc message in the same line of
code:

TheClass *newObject = [[TheClass alloc] init];
- (NSString *)description

Returns an nsstring that describes the receiver. The debugger’s print object command (“po”) invokes this method. A good description method will
often make debugging easier. Also, if you use ¢ in a format string, the object that should be substituted in is sent the message description. The
value returned by the description method is putinto the log string. For example, the line in your main function

NSLog (@"The number at index %d is %@", i, numberToPrint);
is equivalent to

NSLog (@"The number at index %d is %@", i,
[numberToPrint description]);
- (BOOL)isEqual: (id)anObject

Returns vEs if the receiver and anobject are equal and no otherwise. You might use it like this:

if ([myObject isEqual:anotherObject]) ({
NSLog (@"They are equal.");
}

But what does equa1 really mean? In nsobject, this method is defined to return ves if and only if the receiver and anobject are the same object—that
is, if both are pointers to the same memory location.

Clearly, this is not always the “equal”’ that you would hope for, so this method is overridden by many classes to implement a more appropriate idea of
equality. For example, nsstring overrides the method to compare the characters in the receiver and anobject. If the two strings have the same
characters in the same order, they are considered equal.

Thus, if x and y are Nsstrings, there is a big difference between these two expressions:
X ==y

and

[x isEqual:y]

The first expression compares the two pointers. The second expression compares the characters in the strings. Note, however, that if x and y are
instances of a class that has not overridden Nsobject’s isEqual: method, the two expressions are equivalent.

NSArray

AnnNsarray is a list of pointers to other objects. It is indexed by integers. Thus, if there are n objects in the array, the objects are indexed by the integers 0
through n — 1. You cannot put a ni1 in anNsarray. (This means that there are no “holes” in an Nsarray, which may confuse some programmers who are
used to Java’s object [].) NSArray inherits from Nsobject.

AnnNsarray is created with all the objects that will ever be in it. You can neither add nor remove objects from an instance of Nsarray. We say that Nsarray
is immutable. (lts mutable subclass, NsMutablearray, Will be discussed next.) Immutability is nice in some cases. Because it is immutable, a horde of
objects can share one nNsarray without worrying that one object in the horde might change it. Nsstring and NsNumber are also immutable. Instead of
changing a string or number, you will simply create another one with the new value. (In the case of Nsstring, there is also the class NsMutablestring that
allows its instances to be altered.)

A single array can hold objects of many different classes. Arrays cannot, however, hold C primitive types, such as int or float.

Here are some commonly used methods implemented by Nsarray:
- (unsigned) count
Returns the number of objects currently in the array.
- (id)objectAtIndex: (unsigned) i
Returns the object located atindex i. If i is beyond the end of the array, you will get an error at runtime.

- (id)lastObject

Returns the object in the array with the highest index value. If the array is empty, ni1 is returned.
- (BOOL)containsObject: (id)anObject

Returns ves if anobject is present in the array. This method determines whether an object is present in the array by sending an isEqua1: message to
each of the array’s objects and passing anobject as the parameter.

- (unsigned) indexOfObject: (id)anObject

Searches the receiver for anobject and returns the lowest index whose corresponding array value is equal to anobject. Objects are considered
equal if isEqual: returns vEs. If none of the objects in the array are equal to anobject, index0fobject: returns NsNotFound.

NSMutableArray

NSMutableArray inherits from Nsarray but extends it with the ability to add and remove objects. To create a mutable array from an immutable one, use
NSArray'S mutableCopy Method.

Here are some commonly used methods implemented by NsMutableArray:
- (void)addObject: (id) anObject
Inserts anobject at the end of the receiver. You are not allowed to add ni1 to the array.
- (void)addObjectsFromArray: (NSArray *)otherArray
Adds the objects contained in otherarray to the end of the receiver’s array of objects.
- (void)insertObject: (id)anObject atIndex: (unsigned) index
Inserts anobject into the receiver at index, which cannot be greater than the number of elements in the array. If index is already occupied, the
objects at index and beyond are shifted up one slot to make room. You will get an error if anobject isni1 or if index is greater than the number of
elements in the array.
- (void) removeAllObjects
Empties the receiver of all its elements.
- (void) removeObject: (id)anObject
Removes all occurrences of anobject in the array. Matches are determined on the basis of anobject’s response to the isEqual: message.
- (void) removeObjectAtIndex: (unsigned) index

Removes the object at index and moves all elements beyond index down one slot to fill the gap. You will get an error if index is beyond the end of
the array.

As mentioned earlier, you cannot add ni1 to an array. Sometimes, you will want to put an object into an array to represent nothingness. The NsNul1 class
exists for exactly this purpose. There is exactly one instance of Nsnu11, so if you want to put a placeholder for nothing into an array, use Nsnu11 like this:

[myArray addObject: [NSNull null]];

NSString
Annsstring is a buffer of Unicode characters. In Cocoa, all manipulations involving character strings are done with Nsstring. As a convenience, the
Objective-C language also supports the e . . . construct to create a string object constant from a 7-bit ASCIl encoding:
NSString *temp = @"this is a constant string";
NSString inherits from Nsobject. Here are some commonly used methods implemented by Nsstring:
- (id)initWithFormat: (NSString *) format,
Works like sprint£. Here, format is a string containing tokens, such as s4. The additional arguments are substituted for the tokens:
int x = 5;
char *y = "abc";
id z = @"123";
NSString *aString = [[NSString alloc] initWithFormat:
@"The int %d, the C String %s, and the NSString %Q@",
X, Yy 2zl

- (NSUInteger) length

Returns the number of characters in the receiver.

- (NSString *)stringByAppendingString: (NSString *)aString

Returns a string object made by appending astring to the receiver. The following code snippet, for example, would produce the string “Error: unable

to read file.”

NSString *errorTag = Q@Q"Error: ";

NSString *errorString = @"unable to read file.";

NSString *errorMessage;

errorMessage = [errorTag stringByAppendingString:errorString];

- (NSComparisonResult)compare: (NSString *)otherString

Compares the receiver andotherstring and returns NsorderedAscending if the receiver is alphabetically prior to otherstring,
NSOrderedDescending if otherstring is comes before the receiver, or Nsorderedsane if the receiver and otherstring are equal.

- (NSComparisonResult)caseInsensitiveCompare: (NSString *)
otherString

Like compare:, except the comparison ignores letter case.

“Inherits from” versus “Uses” or “Knows About”

Beginning Cocoa programmers are often eager to create subclasses of Nsstring and NsMutablearray. Don't. Stylish Objective-C programmers almost
never do. Instead, they use Nsstring and NsMutableArray as parts of larger objects, a technique known as composition. For example, a BankAccount
class could be a subclass of NsMutablearray. After all, isn’t a bank account simply a collection of transactions? The beginner would follow this path. In
contrast, the old hand would create a class Bankaccount that inherited from nsobject and has an instance variable called transactions that would point
to an NsMutableArray.

It is important to keep track of the difference between “uses” and “is a subclass of.” The beginner would say, “Bankaccount inherits from NsMutablearray.”
The old hand would say, “BankAccount USES NSMutableArray.” In the common idioms of Objective-C, “uses” is much more common than “is a subclass
of.”

You will find it much easier to use a class than to subclass one. Subclassing involves more code and requires a deeper understanding of the superclass.
By using composition instead of inheritance, Cocoa developers can take advantage of very powerful classes without really understanding how they work.

In a strongly typed language, such as C++, inheritance is crucial. In an untyped language, such as Objective-C, inheritance is just a hack that saves the
developer some typing. There are only two inheritance diagrams in this entire book. All the other diagrams are object diagrams that indicate which
objects know about which other objects. This is much more important information to a Cocoa programmer.

Creating Your Own Classes

Where | live, the state government has decided that the uneducated have entirely too much money: You can play the lottery every week. Let's imagine that
a lottery entry has two numbers between 1 and 100, inclusive. You will write a program that will make up lottery entries for the next ten weeks. Each
LotteryEntry Object will have a date and two random integers (Eigure 3.5). Besides learning how to create classes, you will build a tool that will certainly
make you fabulously wealthy.

Figure 3.5. Completed Program

All Gutput Clear | (10 10 BB
[Switching to process E0828 thread ﬁxﬂ]

2011-03-05 14:25:27.997 lottery[E9829:903] Mar @5 20811 = 34 and 19
2011-83-05 14:25:28.801 lottery[G698259:983) Mar 12 2811 = 29 and 93
2011-03-085 14:25:28.002 lottery[69820:903] Mar 19 20811 = 72 and 78
2011-83-05 14:25:28.003 lottery[59829:983] Mar 26 2011 = 75 and 38
2011-83-85 14:25:28.803 lottery[69829:983) Apr 82 2811 = 54 and 188
2011-03-05 14:25:28.004 lottery[G69829:903] Apr 09 20811 = 92 and 97
2011-83-85 14:25:28.805 lottery[69829:9083) Apr 16 2811 = 65 and 23
2011-83-85 14:25:28.885 lottery[69@829:963) Apr 23 2011 = 74 and 26
2011-83-05 14:25:28.006 lottery[G69825:9083]) Apr 38 2811 = 13 and 41 s
2011-83-05 14:25:28.807 lottery[69829:983) May 07 2011 = 65 and 51 v

Program ended with exit code: B
Creating the LotteryEntry Class

In Xcode, create a new file. Select Objective-C class as the type. Name the class LotteryEntry, and set it to be a subclass of Nsobject (Eigure 3.6).

Figure 3.6. New LotteryEntry Class

all:] B lottery. xeodepro, m] main.m

Finish ng lottery © loen —
- | My M — inished manning lotery © loetery EI EEE i

Choose options for your new file:

lottery =
A et i

o latt

® I5up|
> [Framey
¥ Produt

Clasi | LaetervErr

Subclais of | MSObject v 0 m

Cancel Previous | [iexte|

L c | — — I —— - —

Note that you are also causing LotteryEntry.h to be created. Drag both files into the lottery group if they are not already there.

LotteryEntry.h

Edit the LotteryEntry.h file to look like this:
#import <Foundation/Foundation.h>

@interface LotteryEntry : NSObject ({
NSDate *entryDate;
int firstNumber;
int secondNumber;

}

- (void)prepareRandomNumbers;

- (void)setEntryDate:(NSDate *)date;

- (NSDate *)entryDate;

- (int)firstNumber;

- (int)secondNumber;

@end

You have created a header file for a new class called LotteryEntry that inherits from Nsobject. It has three instance variables:
® entryDate iS an Nspate.

* firstNumber and secondNumber are both ints.

You have declared five methods in the new class:
* prepareRandomNumbers Will set firstNumber and secondNumber to random values between 1 and 100. It takes no arguments and returns nothing.

* entryDate and setEntryDate: Will allow other objects to read and set the variable entrypate. The method entrypate will return the value stored in
the entryDpate variable. The method setEntrybate: Will allow the value of the entrypate variable to be set. Methods that allow variables to be read
and set are called accessor methods.

* You have also declared accessor methods for reading firstNumber and secondNumber. (You have not declared accessors for setting these
variables; you are going to set them directly in prepareRandomNumbers.)

LotteryEntry.m

Edit LotteryEntry.m to look like this:
#import "LotteryEntry.h"
@implementation LotteryEntry
- (void)prepareRandomNumbers

firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;

}
- (void)setEntryDate:(NSDate *)date

entryDate = date;

}

- (NSDate *)entryDate
{

}

- (int)firstNumber

return entryDate;

return firstNumber;

}
- (int)secondNumber

return secondNumber;

}

@end

Here is the play-by-play for each method:

prepareRandomNumbers USes the standard random function to generate a pseudorandom number. You use the mod operator (%) and add 1 to get the
number in the range 1-100.

setEntryDate: Sets the pointer entrypate t0 a new value.

entryDate, firstNumber, and secondNumber return the values of variables.

Changing main.m

Now let's look atmain.m. Many of the lines have stayed the same, but several have changed. The most important change is that we are using
LotteryEntry Objects instead of NsNumber Objects.

Here is the heavily commented code. (You don't have to type in the comments.)

#import <Foundation/Foundation.h>
#import "LotteryEntry.h"

int main (int argc, const char *argv([]) {
@autoreleasepool {

Il Create the date object

NSDate *now = [[NSDate alloc] init];

NSCalendar *cal = [NSCalendar currentCalendar];

NSDateComponents *weekComponents =
[[NSDateComponents alloc] init];

Il Seed the random number generator

srandom((unsigned)time(NULL));

NSMutableArray *array;

array = [[NSMutableArray alloc] init];

int 1i;
for (1 = 0; 1 < 10; i++) {

[weekComponents setWeek:i];

Il Create a date/time object that is 'i' weeks from now
NSDate *iWeeksFromNow;
iWeeksFromNow = [cal dateByAddingComponents:weekComponents
toDate:now
options:0];

Il Create a new instance of LotteryEntry
LotteryEntry *newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

[newEntry setEntryDate:iWeeksFromNow];

I/ Add the LotteryEntry object to the array
[array addObject:newEntry];

}
for (LotteryEntry *entryToPrint in array) {

/I Display its contents
NSLog (@"%$@", entryToPrint);

}

return 0;

Note the second loop. Here you are using Objective-C’s mechanism for enumerating over the members of a collection.

This program will create an array of Lot teryEntry objects, as shown in Figure 3.7.

Figure 3.7. Object Diagram

LotteryEntry |
NSMutableArray | ﬁ: S}z “m;—ﬁ:r_’;ﬂif&
- 584
| ; entryDate = Feb 9, 1975
firstiy LotteryEntry

SECOn
| entryDate = Feb 16, 1975

Sl firg LotteryEntry
entryDate = Feb 23, 1975
i :: LotteryEntry
I," entryDate = Mar 2, 1975
array firstNumber = 80
™ secondMumber = 51

Implementing a description Method

Build and run your application. You should see something like Figure 3.8.

Figure 3.8. Completed Execution

All Dutput * Clear | (0] 10 JEID

[Switching to process BBS4E thread @xB]

2011-83-05 14:17:15.347 lottery[68946:9083] <LotteryEntry: @xl@dlldeli>

2011-83-85 14:17:15.347 lottery[68946:903] <LotteryEntry: 8x1001110b8=

2811-83-85 14:17:15.348 lottery[GB946:983) <LotteryEntry: @x188111128>

2811-83-85 14:17:15.348 lottery[68946:583) <LotteryEntry: @x188111178>

2811-83-85 14:17:15.349 lottery[68946:983] <LotteryEntry: 8x10811llc@=

2011-83-85 14:17:15.349 lottery[G6B946:983] <LotteryEntry: 8x1881112108>

2011-83-85 14:17:15.349 lottery[68946:983] <LotteryEntry: @x188111180>

2011-83-85 14:17:15.350 lottery[68046:003) =LotteryEntry: @x1881112f0=

2811-83-85 14:17:15.350 lottery[6B8946:9083] <LotteryEntry: @xl88lll34es =
2011-83-85 14:17:15.350 lottery[68946:903] <LotteryEntry: ©x100111390= v
Program ended with exit code: @

Hmm. Not quite what we hoped for. After all, the program is supposed to reveal the dates and the numbers you should play on those dates, and you can’t
see either. (You are seeing the default description method as defined in Nsobject.) Next, you will make the LotteryEntry Objects display themselves in
a more meaningful manner.

Add a description method {0 LotteryEntry.m:
- (NSString *)description
{

NSDateFormatter *df = [[NSDateFormatter alloc] init];

[df setTimeStyle:NSDateFormatterNoStyle];

[df setDateStyle:NSDateFormatterMediumStyle];

NSString *result;

result = [[NSString alloc] initWithFormat:@"% @ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];

return result;

Build and run the application. Now you should see the dates and numbers:

Figure 3.9. Execution with Description

All Dutput & Clear | (] ER JEED
| This GDB was configured as “x8b_pd-apple-darwin®.tty /dev/ttys@oa
sharedlibrary apply-load-rules all
[Switching te process 42697 thread 8xo)
2011-93-16 20:45:21.063 lottery[42697:9863] Mar 16, 2011 = 98 and &7
2011-83-16 20:45:21.066 lottery[42697:9083] Mar 23, 2011 = 18 and 73
2011-03-16 208:45:21.068 lottery[42697:9083] Mar 38, 2011 = BO and 61
2011-03-16 208:45:21.071 lottery[42697:903] Apr &, 2011 = 49 and 50

20811-93-185 :21.876 lottery[42697:983] Apr 13, 2811 = 65 and 4
2011-23-16 :21.877 lottery[42697:983] Apr 20, 2811 = 6 and 46
2011-83-16 21,879 Llottery[42607:983] Apr 27, 2811 = 26 and 53
2811-83-16 :21.080 lottery[42697:903] May 4, 2011 = 28 and BN

2811-83-16 :21.081 lottery[42697:983] May 11, 2811 = 98 and 24 4
2011-83-16 221,082 lottery[42697:503] May 18, 2811 = 72 and BE ¥
Program ended with exit code: @ |

NSDate

Before moving on to any new ideas, let's examine Nspate in some depth. Instances of Nspate represent a single point in time and are basically
immutable: You can’'t change the day or time once it is created. Because Nspate is immutable, many objects often share a single date object. There is
seldom any need to create a copy of an Nspate Object.

Here are some of the commonly used methods implemented by Nspate:
+ (id)date

Creates and returns a date initialized to the current date and time.

This is a class method. In the interface file, implementation file, and documentation, class methods are recognizable because they start with +
instead of —. A class method is triggered by sending a message to the class instead of an instance. This one, for example, could be used as follows:

NSDate *now;
now = [NSDate date];

- (id)dateByAddingTimeInterval: (NSTimeInterval)interval
Creates and returns a date initialized to the date represented by the receiver plus the given interval.
- (NSTimeInterval)timeIntervalSinceDate: (NSDate *)anotherDate

Returns the interval in seconds between the receiver and anotherpate. If the receiver is earlier than anotherpate, the return value is negative.
NSTimeInterval iS the same as double.

+ (NSTimeInterval)timeIntervalSinceReferenceDate
Returns the interval in seconds between the first instant of January 1, 2001 GMT and the receiver’s time.
- (NSComparisonResult)compare: (NSDate *)otherDate

Returns NSOrderedAscending if the receiver is earlier than otherpate, NSOrderedDescending if otherpate is earlier, or Nsorderedsane if the receiver
and otherbate are equal.

Writing Initializers

Notice the following lines in your main function:

newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

You are creating a new instance and then immediately calling prepareRandomNumbers t0 initialize firstNumber and secondNumber. This is something that
should be handled by the initializer, so you are going to override the init method in your LotteryEntry class.

Inthe LotteryEntry.m file, change the method preparerRandomNumbers into an init method:

- (id)init
{
self = [super init];
if (self)
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) +1;
}
return self;
}

The init method calls the superclass’s initializer at the beginning, initializes its own variables, and then returns se1£, a pointer to the object itself (the
object that is running this method). (If you are a Java or C++ programmer, se1£ is the same as the this pointer.)

Now delete the following line inmain.m:

[newEntry prepareRandomNumbers];

In LotteryEntry.h, delete the following declaration:

- (void) prepareRandomNumbers;

Build and run your program to reassure yourself that it still works.

Take another look at our init method. Why do we bother to assign the return value of the superclass’s initializer to se1f and then test the value of se1£?
The answer is that the initializers of some Cocoa classes will return ni1 if initialization was impossible. In order to handle these cases gracefully, we must
both test the return value of [super init] and return the appropriate value for se1f from our initiailizer.

This pattern is debated among some Objective-C programmers. Some say that it is unnecessary, since most classes’ initializers don't fail, and most
classes’ initializers don't return a different value for se1£. We believe it best to be in the habit of assigning to se1r and testing that value. The effort
required is minimal compared to the debugging headaches that await you if you make an incorrect assumption about the superclass’s behavior.

Initializers with Arguments

Look at the same place inmain.m. It should now look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc] init]; [newEntry setEntryDate:iWeeksFromNow];

It might be nicer if you could supply the date as an argument to the initializer. Change those lines to look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc]
initWithEntryDate:iWeeksFromNow];

You may see a compiler error; ignore it, as we are about to fix the problem.

Next, declare the method in LotteryEntry.h:
- (id)initWithEntryDate:(NSDate *)theDate;
Now, change (and rename) the init method in LotteryEntry.m:

- (id)initWithEntryDate:(NSDate *)theDate
{
self = [super init];
if (self)
{
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;

o)

secondNumber = ((int)random() % 100) + 1;

}

return self;
}
Build and run your program. It should work correctly.

However, your class LotteryEntry has a problem. You are going to e-mail the class to your friend Rex. Rex plans to use the class LotteryEntry in his
program but might not realize that you have written initwithEntrybate:. If he made this mistake, he might write the following lines of code:

NSDate *today = [NSDate date];
LotteryEntry *bigWin = [[LotteryEntry alloc] init];
[bigWin setEntryDate:today];

This code will not create an error. Instead, it will simply go up the inheritance tree until it finds Nsobject’s init method. The problem is that firstNumber
and secondNumber Will not getinitialized properly—both will be zero.

To protect Rex from his own ignorance, you will override init to call your initializer with a default date:
- (id)init

return [self initWithEntryDate:[NSDate date]];
}

Add this method to your LotteryEntry.m file.

Note that initwithEntrypate: still does all the work. Because a class can have multiple initializers, we call the one that does the work the designated
initializer. If a class has several initializers, the designated initializer typically takes the most arguments. You should clearly document which of your
initializers is the designated initializer. Note that the designated initializer for Nsobject is init.

Conventions for Creating Initializers (rules that Cocoa programmers try to follow regarding initializers):

* You do not have to create any initializer in your class if the superclass’s initializers are sufficient.

* If you decide to create an initializer, you must override the superclass’s designated initializer.
* If you create multiple initializers, only one does the work—the designated initializer. All other initializers call the designated initializer.

» The designated initializer of your class will call its superclass’s designated initializer.

The day will come when you will create a class that must, must, must have some argument supplied. Override the superclass’s designated initializer to
throw an exception:

- (id)init
{
@throw [NSException exceptionWithName:@"BNRBadInitCall"
reason:@"Initialize Lawsuit with initWithDefendant:"
userInfo:nil];
return nil;

The Debugger

The Free Software Foundation developed the compiler (gcc) and the debugger (gdb) that come with Apple’s developer tools. Apple has made significant
improvements to both over the years. This section discusses the processes of setting breakpoints, invoking the debugger, and browsing the values of
variables.

While browsing code, you may have noticed a gray margin to the left of your code. If you click in that margin, a breakpoint will be added at the
corresponding line. Add a breakpoint in main.n at the following line (Figure 3.10):

[array addObject:newEntry];

Figure 3.10. Creating a Breakpoint

Enable
breakpoints

Click to create
breakpoint

When you run the program, Xcode will start the program in the debugger if you have any breakpoints. To test this, run it now. The debugger will take a few
seconds to get started, and then it will run your program until it hits the breakpoint.

When your application is running, the debugger bar will be shown below the editor area. The debugger bar contains a button to toggle visibility of the full
debugger area, including the variables view and console, as well as buttons to control the execution of your program and information about the current
thread and function.

Xcode’s default behavior is to show the full debugger area when a breakpoint is hit. If you do not see the debugger area at the bottom of the window, use
the debugger area view toggle in the debugger bar (or toolbar), or the View->Show Debugger Area menu item.

You should also see the Debug navigator on the left, which shows the threads in our application and frames on the stack for each thread. Because the
breakpoint is inmain (), the stack is not very deep. In the variables view on the left in the debugger area, you can see the variables and their values
(Eigure 3.11).

Figure 3.11. Stopped at a Breakpoint

Debug area toggle
Debug navigator

Mo =l @
- M

—

.......
.........

Debugger E:ar Click to show

the variables
view (left) and
the console (right)

Note that the variable i is currently O.

Return your attention to the debugger bar. Four of the buttons above the variables view are for pausing (or continuing) and stepping over, into, and out of
functions. Click the continue button to execute another iteration of the loop. Click the step-over button to walk through the code line by line.

The gdb debugger, being a Unix thing, was designed to be run from a terminal. When execution is paused, the gdb terminal will appear in the Console
panel.

In the debug console, you have full access to all of gdb’s capabilities. One very handy feature is “print-object” (vo). If a variable is a pointer to an object,
when you po it, the object is sent the message description, and the result is printed in the console. Try printing the newentry variable.

po newEntry

You should see the result of your description method (Figure 3.12).

Figure 3.12. Using the gdb Console

s e S

ublic License, and you are
welcome to change it and/or distribute copies of 1
t under certain conditions.

Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.
ow warranty" for details.

This GDB was configured as “xB6_64-apple-darwin".t
ty fdev/ttysBRQ

sharedlibrary apply-load-rules all

[Switching to process 42779 thread 8x@]

All Qutput 3 (Clear) (I JHEN (W) |

Type "sh

{gdb) po newEntry A
Mar 16, 2811 = 7@ and BY L 4
(gdb) | |

#4|

Exceptions are raised when something goes very wrong. To make the debugger stop whenever an exception is thrown, you will want to add an exception
breakpoint. Click the Add button at the bottom of the breakpoint navigator and select Add Exception Breakpoint.... Set the exception type to Objective-C

and click Done (Figure 3.13). Disable the existing breakpoint in main() by clicking on the blue breakpoint icon in the breakpoint navigator. The breakpoint
will be dimmed when it is disabled.

Figure 3.13. Adding an Exception Breakpoint

™ lotrery - main.m

Q.). e - [Finished nanning lottery | Bla= Eoio) (=)
Run Stop Scheme Breakpoints ol - Editor Whew Ovganszer
hod A== |: 4 = [T loenery BASETyY MR maing

=, Iottery

- i ™ Excepaion Breakpeint

m main.m Esception | Objective-C
i} maing kne 43 - Break (On Throw
- Action Click to add an action
Options] Autamatically cominue alter evaluating actions
Done
Create a ce of LotteryEntry
t try alloc] initWithEntryDate: dWesksFromioe]

WeaksF rosNow] :

= [areasy sddObiectinewBntryls
}
ar {LetteryEntry sentryToPrint in array) {

W, entryToPrint];

o= S

You can test this exception breakpoint by asking for an index that is not in an array. Imnmediately after the array is created, ask it what its first object is:

array = [[NSMutableArray alloc] init];
NSLog(@"first item =% @", [array objectAtindex:0]);

Rebuild and restart the program. It should stop when the exception is raised.

One of the challenging things about debugging Cocoa programs is that they will often limp along in a broken state for quite a while. Using the macro
NsAssert (), You can get the program to throw an exception as soon as the train leaves the track. For example, in setEntrybate:, you might want an
exception thrown if the argument is ni1. Add a call to Nsassert():

- (id)initWithEntryDate: (NSDate *)theDate

{
self = [super init];
if (self) {
NSAssert(theDate != nil, @"Argument must be non-nil");
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}
return self;
}

Build it and run it. Your code, being correct, will not throw an exception. So change the assertion to something incorrect:

NSAssert (theDate == nil, @"Argument must be non-nil");

Now build and run your application. Note that a message, including the name of the class and method, is logged and an exception is thrown. Wise use of
NsAssert () can help you hunt down bugs much more quickly.

You probably do not need your assert calls checked in your completed product. On most projects, there are two build configurations: Debug and Release.
In the Debug version, you will want all your asserts checked. In the Release configuration, you will not. You will typically block assertion checking in the
Release configuration (Eigure 3.14).

Figure 3.14. Disabling Assertion Checking

ann [lottery - lottery.xcodeproj —
¥ o T ™) Fimished runnang lottery | Eﬂ: = =2l0 =
Ren Siop Scheme M S Editoe Niew. Orgarizer

BEDQA=Ew=

= - PROJECT Bulid Settings Build Phages Build Rules

+ || lotbery il fotieny Bassc ‘::::3 Levels Q= preprocessor

b Loteryintre ; el B tosnry

m| LomeryEntry.m - ; ¥ Packaging

m| main.m = T Info.plist Ogher Preprocessos Flags

= lorvary, L Info.plist Preprocessor Definitions.

| Supporieg Files Info.plist Preprocessor Frefix File

Frameworks Preprocess Infe.plist File Mo

Frodutts ¥ Search Paths

Always Search User Paths Mo ¢
¥ LLVM compiter 2.0 - Preprecensing
¥ Preprocessor Macros <Mubtiphe values
Debug DEBUG
Release KS_BLOCK _ASSERTIONS
Preprocessor Macros Not Used bn Preca.

+ ERE = Add Target Add Build Serting

To do this, bring up the build settings by selecting the lottery project in the project navigator (ftopmost item). Then select the 1o0ttery target, change to the

Build Settings tab, and find the Preprocessor Macros item. A quick way to find it is to use the search field at the top of the Build Settings panel. The
Preprocessor Macros item will have one item beneath it for each build configuration: pebug and release. Set the Release item value to
NS_BLOCK_ASSERTIONS.

Now, if you build and run the Release configuration, you'll see that your assertion is not getting checked. (Before going on, fix your assertion: It should
ensure that dates are not nil.)

You can change your current build configuration to Release by opening the scheme editor (in the Product menu, click Edit Scheme...). Select the Run
action; on the 1nfo panel, change Build Configuration to Release. Now when you build and run your application, it will be built using the Release
configuration. Note that the default build configuration for the Archive action is Release. We will discuss build configurations in more detail in Chapter 37.

Nsassert () works only inside Objective-C methods. If you need to check an assertion in a C function, use Nscassert ().

That's enough to get you started with the debugger. For more in-depth information, refer to the documentation from the Free Software Foundation

(www.gnu.org/).

What Have You Done?

You have written a simple program in Objective-C, including a main () function that created several objects. Some of these objects were instances of
LotteryEntry, a class that you created. The program logged some information to the console.

At this point, you have a fairly complete understanding of Objective-C. Objective-C is not a complex language. The rest of the book is concerned with the
frameworks that make up Cocoa. From now on, you will be creating event-driven applications, not command-line tools.

Meet the Static Analyzer

One of the handiest tools in Xcode is the static analyzer. The static analyzer uses Apple’s LLVM compiler technology to analyze your code and find bugs.
Traditionally, developers have relied on compiler warnings for hints on potential trouble areas in their code. The static analyzer goes much deeper,
looking past syntax and tracing how values are used within your code.

Because of the default compiler settings and our careful typing, you should find, if you run the analyzer now, that our application has no issues as it stands.
Let's modify our project settings so that we can better see the static analyzer at work.

As we did before, open the project’s build settings by selecting the project in the project navigator on the left. Then select the lottery target. In the Build
Settings tab, find the setting for Objective-C Automatic Reference Counting. Change its value to No (Eigure 3.15).

Figure 3.15. Disable Automatic Reference Counting

ane 2 lotery - lottery.xcodepro) 'S
™ (Lo by i] m [Aialyze [cttery Succedded | Today at 3:57 PM | IE’! BB m =1l | =
Scheme Breaipoints Rl e Edirar View Orgarszer |
B ® A= @ (24 = Doy T
| PRIOJECT Bailld Sextings Buitd Phases Busdd Ruiles
o B lovtery tasic @00 | (00D Levels O+ automaic ref
h| Lotteryntry.h TARGETS Seming . oerery
B T e ¥ Apple LLVM compiler 1.0 - Astomatic Reference Counting - Code Migration
m main.m Migrate code fram MRR to ARC Do niot rum any phase of the migrabion ... =
loetery. L ¥ Appls LLVM compiler 1.0 - Code Gessration Yeg |
> supponing e | Objective- aunomatic nefersoce Commtiog i No
w [Framewosics ¥ Apple LLVM compiler 3.0 - Warnings
Oiter
¥ [Products Objectve-C++ Mubomatic Reference Counting AL £
W lonary
Asd Target Add Build Setting
L+ @@ F (™ G w2 A % |NoSeewion

Now analyze the lottery application. In the Product menu, click Analyze. In the issues navigator, you will see several issues found by the static analyzer;
select one and drill down in the tree to examine the analyzer’s thought process (Eigure 3.16).

Figure 3.16. The Static Analyzer at Work

Banon [lottery - LotteryEntry.m

':.E',L g~ [W g | Analyze otiery: Succeeded | Today at 357 PM ! E[E =l IEEI 7 | =

| Run zop Echeme Breskpoints A Editor Wiew Orgarizer
B o dlAIE = B |= 4 = Pylomery fottery - m| LomeryEncrym - [-descripcion - >
S By Type 3 & Method recurns an Objective-C object with @ + 1 retain count fownin.. + | 4 * Dane
- ey s Rk

2 isnes 3
¥ | LotteryCntry.m
¥ [3 Memary (Core Foundatian i0bjective-C}
Patential eak of an abject aliccated on lin
i Tt o Coblect.. 3
B Object slacated on ling 47 and stored |

¥ @ Mermany (Core Foundation FObctive-C1 = NSString =ldedcription
Potential leak of an object aliccated on in

= {inthsecondMuaber
i

= Hsbatefarnatter wdateformatter = S 1 Merhad et an Otectie=C e
—s- [[MEDateFormatter alloc] initl;
|dateFormatter se eStyleNSDateForsatteNoStylel

|dateFormatter setDateStyle:NSDateForsatterMedivnStyle];
NSString Treswlts

redult = [INSString allec] lnitWithFormat:@"w@ = %d and W",
[dateFormatter stringFrombate:
fir eT, secondiumber]y

= returs result:
1 1Bk 3. Objuct afiocared on lese 47 and 1iGred intn ‘Canefarmatinr ia not refsenced Lner s 1hia muecution pach 3ad has 3

tand

l=.l\- HOs E u 2= & E | MoSeecion

In this case, the static analyzer has found a number of memory-related problems in our program because we disabled a feature called automatic
reference counting, which we will discuss in the next chapter. This is one of the more useful aspects of the static analyzer: It knows the rules for retain-
count memory management in Objective-C, and it can also identify other dangerous patterns in your code.

Leave automatic reference counting disabled for now.

For the More Curious: How Does Messaging Work?

As mentioned earlier, an object is like a C struct. Nsobject declares an instance variable called isa. Because Nsobject is the root of the entire class
inheritance tree, every object has an isa pointer to the class structure that created the object (Figure 3.17). The class structure includes the names and
types of the instance variables for the class. It also has the implementation of the class’s methods. The class structure has a pointer to the class structure
for its superclass.

Figure 3.17. Each Object Has a Pointer to Its Class

L L A e ——
L E e R PR : !
isa: Glass ! mi;r‘;cd

superclass
[LotenyEnty | T lomeryEntry 1 e
a2 TR ekt e AR
secondNumber = 78 i secondNumber:int | PR S 3]

The methods are indexed by the selector. The selector is of type ser. Although se1. is defined to be char *, itis most useful to think of it as an int. Each
method name is mapped to a unique int. For example, the method name addobject: might map to the number 12. When you look up methods, you will
use the selector, not the string ¢"addobject: .

As part of the Objective-C data structures, a table maps the names of methods to their selectors. Figure 3.18 shows an example.

Figure 3.18. The Selector Table

selactors strings
12 -— addObjsct:
753 -— setEntryDate:
352 -— count
4547 -— insertCbject:atindex:
e e

At compile time, the compiler looks up the selectors wherever it sees a message send. Thus,
[myObject addObject:yourObject];
becomes (assuming that the selector for addobject: is 12)

objc msgSend (myObject, 12, yourObject);

Here, objc_msgsend() looks atmyobject’s isa pointer to get to its class structure and looks for the method associated with 12. If it does not find the
method, it follows the pointer to the superclass. If the superclass does not have a method for 12, it continues searching up the tree. If it reaches the top of
the tree without finding a method, the function throws an exception.

Clearly, this is a very dynamic way of handling messages. These class structures can be changed at runtime. In particular, using the NsBundie class
makes it relatively easy to add classes and methods to your program while it is running. This very powerful technique has been used to create
applications that can be extended by other developers.

Challenge

Use NspateFormatter’'S setDateFormat: {0 customize the format string on the date objects in your LotteryEntry class.

Chapter 4. Memory Management

Let's say that two instances of person each have a favoritecolor that is a pointer to a color object. If two people have the same favoritecolor, the
objects will have pointers to the same color object. As the people age, their favorite color might change. Eventually, the color object might be no one’s
favorite (Figure 4.1).

Figure 4.1. The Problem

important!
i
| NSColor worthless!
blue | "---.)l_ gl R
[SO I 1 NSColor | _NSColor
favariteColor = | | _NSColor |
_AvorPTOT favorteColor | |[oyan | [bwe] [ornge
Person
|Cersen _J { 28 1 favoriteColor favoriteColor
Before]] - | _Person | ‘ Person
| Adter

We do not want this orphaned color to be taking up room in the memory of our program. We want the memory deallocated so that we can put new objects
in that memory, but we must be sure that the color is not deallocated while any objects are pointing to it.

This is a relatively tricky problem. Apple has come up with three solutions:

1. The first is manual reference counting, or retain counts: Every object has a retain count, which should represent the number of other objects that
have pointers to it. If the color is the favorite of two people, the retain count of that color should be 2. When the retain count of an object goes to
zero, it is deallocated.

2. Then, in Mac OS 10.5, Apple introduced garbage collection for Objective-C. The garbage collector babysits the entire object graph, looking for
objects that can’t be reached from the variables that are in scope. The unreachable objects are automatically deallocated.

3. The new solution, introduced in Mac OS 10.7 and iOS 5, is automatic reference counting, more commonly known as ARC. ARC relies on the
original retain-count mechanism but with a twist: The compiler manages the bookkeeping of retain counts for you.

What are the trade-offs? Manual reference counting is, after all, manual and requires some work on your part: You need to explicitly retain objects that you
want to keep around and explicity release them when you are no longer interested in them. If not used carefully, the retain-count mechanism allows for a
dastardly problem: Object A retains Object B, B retains A. Together, they are an island of memory that will never go away, because they are retaining
each other. This is known as a retain cycle. Figure 4.2 is an example of a common form that retain cycles take.

Figure 4.2. An Island of Garbage

Person
retainCount=1
—r—j
children !
\
- / |
T 0 i
o= parent
5 £ l
5
o8 I~ \
R
=2 = \
58 - =\
= Person
=
retainCount=1

The garbage collector sounds good on the surface but has a performance cost: It requires CPU time to scan through the objects, looking for garbage.
This can sometimes result in poorer or uneven performance. For example, in an application that requires smooth performance, such as an action game,
or an application that plays back video being rendered in real time, the garbage collector can cause hiccups in the processing while it is doing a scan.
Additionally, the garbage collector cannot manage memory that you allocate manually, such as with ma110c (), without special treatment. Garbage-
collected code cannot run on versions of Mac OS X prior to 10.5, nor will it be portable to iOS, which does not support garbage collection (likely for the
performance reasons discussed earlier).

ARC provides the best of both worlds: You get the speed and efficiency of manual reference counting, along with the freedom from memory-management
concerns that garbage collection allows. ARC isn’t perfect, however. It doesn’t magically fix the problem of retain cycles and, like garbage collection,
doesn’'t manage manually allocated memory.

ARC is enabled by default in Xcode’s project templates. Although we’ll take advantage of ARC for the rest of this book, we’ll pretend for most of this
chapter that ARC doesn’t exist, so we can learn how retain counts work. It's important to have a firm grasp on the rules surrounding retain counts in order
to work effectively in the ARC environment. If you want to write code for versions of Mac OS X prior to 10.6 or iOS prior to 4.0, you'll need to know how to
use retain counts.

Living with Manual Reference Counting

Retain counts are a pretty simple concept. Everv obiect in Obiective-C has a retain count. The retain count is an integer. When an obiect is created bv the

alloc method, the retain count is set to 1. When the retain count becomes zero, the object is deallocated. You increment the retain count by sendiné the
message retain to the object. You decrement the retain count by sending the message release to the object.

An object’s retain count should represent how many other objects have references to it. When the retain count becomes zero, this indicates that no one
cares about it any more. It is deallocated so that the memory it was occupying can be reused.

A commonly used analogy is that of the dog and the leash. Each person who wants to ensure that the dog will stay around retains the dog by attaching a
leash to its collar. Many people can retain the dog; as long as at least one person is retaining the dog, the dog will not go free. When zero people are
retaining the dog, it will be deallocated. The retain count of an object, then, is the number of “leashes” on that object (Eigure 4.3).

Figure 4.3. Objects Retain Each Other

Trainer | [Owner | [Groom_

retainCount=3

The retain-count system gives the developer a lot of control over how and when objects are deallocated, but it requires that you meticulously retain and
release objects. If you release an object too many times, it will be deallocated prematurely, and your program will crash. If you retain an object too many
times, it will never get deallocated, and you will waste memory.

Fortunately, some simple rules govern when you should retain and release objects. These rules take the guesswork out of memory management with
retain counts. In fact, once you are clear on these rules, it will be very clear in most cases when to retain and when to release. We’ll cover the rules later in
this chapter.

Leak-Free Lottery

We didn’t give any thought to memory management in the lottery exercise we started in the previous chapter. Let's open that project and fix it. Note that if
you did not disable automatic reference counting at the end of the Chapter 3 be sure to make that build setting change now.

Open 1ottery.m. INmain (), we had created an instance of Nspate:

NSDate *now = [[NSDate alloc] init];

After this line, now has a retain count of 1 because it was just allocated. Whenever we create a new instance of an object, we are taking responsibility for
releasing it. Here’s how we would release now:

[now release];

We had also created instances of NsMutableArray and NSDateComponents. Openmain.m and release these objects once we are done with them:

}

// Done with 'now' and 'weekComponents'
[now release];

[weekComponents release];

for (LotteryEntry *entryToPrint in array) {
NSLog (@"%@", entryToPrint);
}
/l Done with "array’
[array release];
}
return O;

}

Now the objects will be properly deallocated before the process ends.

What about the LotteryEntry instances we added to the array?

// Create a new instance of LotteryEntry

LotteryEntry *newEntry = [[LotteryEntry alloc]
initWithEntryDate:iWeeksFromNow] ;

// Add the LotteryEntry object to the array

[array addObject:newEntry];

An array does not make a copy of an object when it is added. Instead, the array stores a pointer to the object and sends it the message retain. When the
array is deallocated, the objects in the array are sent the message release. (Also, if an object is removed from an array, it is sent release.)

Let's quickly go over the life of the LotteryEntry Object in your application:
1. When the entry object is created, it has a retain count of 1.
2. When the entry object is added to the array, its retain count is incremented to 2.
3. When the array is deallocated, it releases the entry. This decrements the retain count to 1.

So the LotteryEntry Object is being leaked (it is never deallocated). In this example, the process ends an instant later, and the operating system
reclaims all the memory. Thus, the lack of deallocation is not a big deal. However, in a program that ran a long time, such a memory leak would be a bad
thing. To practice being tidy Objective-C programmers, let’s fix the code by releasing the object after we add it to the array.

The revised loop should look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc]
initWithEntryDate:iWeeksFromNow] ;

[array addObject:newEntry];
[newEntry release];
}

We would say that “array now has ownership of newEntry.”

Perhaps you are beginning to think more critically about object ownership and lifetime. Consider LotteryEntry’'s instance variable, entrypate. What
guarantee does LotteryEntry have that the Nspate instance will not be deallocated out from under it?

Right now, it has no guarantee. That's why it's very common for objects to retain objects they hold references to. This is called a strong reference. In some
situations, a weak reference (nonretaining) is more appropriate; this is generally used to avoid creating a retain cycle. For example, a parent object
generally retains its children (perhaps indirectly via an array), but the child will not retain its parent.

Open totteryEntry.m and modify the initializer to retain entrypate:

- (id)initWithEntryDate: (NSDate *)theDate
{

self = [super init];
if (self) {
entryDate = [theDate retain];
firstNumber = ((int)random() % 100) + 1;

o)

secondNumber = ((int)random() % 100) + 1;

}

return self;

}

Now that it has a strong reference to entryDate, LotteryEntry must release it when it no longer needs it. The perfect place to relinquish ownership is
dealloc.

dealloc

When an object with a retain count of 1 is sent release, the deal1oc method will be called. An object's deai1oc method must release any objects that it
was retaining and then call the superclass’s deal1oc method. Add a dealloc method to LotteryEntry.m:

- (void)dealloc

NSLog(@"deallocating % @", self);
[entryDate release];
[super dealloc];

}

Note that we always call [super dealloc] atthe end of animplementation of dealioc.

Build and run your app. It should work fine, and you should see that the entries are being properly deallocated (Figure 4.4).

Figure 4.4. Running without the Garbage Collector

All Qutput + Ciear) (0 00 [EID
[Switching to process 42BER thread Bx@]
2011-@3-16 21:@7:44. 265 lottery[42880:903] Mar 16, 2011 = 85 and 91
2011-83-16 21:07:44.267 lottery[42880:903] Mar 23, 2811 = & and 51
2011-083-16 21:07:44.268 lottery[42880:903] Mar 38, 2011 = 15 and 20
2011-83-16 21:87:44 269 lottery[42888:983] Apr 6, 2811 = 73 and 16
2011-83-16 21:07:44.271 lottery[42880:9083] Apr 13, 20811 = 35 and 37
2011-83-16 21:@7:44.272 lottery[42880:983] Apr 28, 2011 = 60 and 79
2811-83-16 21:07:44.273 Llottery[428808:983] Apr 27, 2011 = 32 and 9
2011-03-16 21:07:44.274 lottery[42880:903] May 4, 2011 = E6 and 72
2011-083-16 21:87:44.275 lottery[42880:903] May 11, 2011 = 17 and &6
2011-83-16 21:07:44.276 lottery[42880:903] May 1B, 2011 = 90 and 91
2811~-83~16 21:07:44.277 lottery[42888:903] Deallocing Mar 16, 2811 = B5 and 91
2011-03-16 21:07:44.278 lottery[42880:903] Deallecing Mar 23, 2011 = 6 and 51
2011-83-16 21:07:44.279 lottery[42880:983] Deallecing Mar 38, 2811 = 15 and 20
2011-83-16 21:07:44 288 lottery[42880:9083] Deallecing Apr 6, 2011 = 73 and 16
2011-83-16 21:07:44.281 lottery[42880:903] Deallocing Apr 13, 2011 = 35 and 37
2011-83-16 21:07:44.283 lottery[42880:983] Deallecing Apr 28, 2011 = 60 and 79
2011-83-16 21:@7:44 288 lottery[42880:903] Deallecing Apr 27, 2811 = 32 and 9
2011-03-16 21:@87:44.290 lottery[42880:903] Deallecing May 4, 2011 = E6 and 72
2011-03-16 21:07:44.292 lottery[42880:903] Deallecing May 11, 2011 = 17 and &6
2011-83-16 21:07:44.2084 Lottery[42880:983] Deallocing May 18, 2811 = 96 and 91
Program ended with exit code: B

Y e |

There is, however, stilla memory leak.

Autoreleasing Objects

In the previous chapter, you created a description method that looks like this:

- (NSString *)description
{
NSDateFormatter *df = [[NSDateFormatter alloc] init];
[df setTimeStyle:NSDateFormatterNoStyle];
[df setDateStyle:NSDateFormatterMediumStyle];
NSString *result;
result = [[NSString alloc] initWithFormat:@"%@ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];
return result;

This code works perfectly well but results in an annoying memory leak. When the method returns, o and result both have a retain count of 1.

We might attempt to fix this leak with something like this:

- (NSString *)description
{
NSDateFormatter *df = [[NSDateFormatter alloc] init];
[df setTimeStyle:NSDateFormatterNoStylel;
[df setDateStyle:NSDateFormatterMediumStyle];
NSString *result;
result = [[NSString alloc] initWithFormat:@"%Q@ = %d and %d4d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];
[result release];
[df release];
return result;

This change handles the date formatter just fine, as it is no longer needed, but creates a different problem with the string. When sent the release
message, the string’s retain count would go to zero, and the string would be deallocated. The pointer returned by this method would be to the freed object,
now an invalid pointer, almost certainly leading to a crash.

The problem, then, is that you need to return a string, but you do not want to retain it. This is a common problem throughout the frameworks, which leads
us to the final piece of the retain-count puzzle: the autorelease pool.

Autorelease pools simplify releasing objects. You can add an object to the current autorelease pool simply by sending it the message autorelease.
Adding an object to an autorelease pool marks it to be sent a rel1ease message at some point in the future.

The release message is sent once the pool is drained. In a Cocoa application, an autorelease pool is created before every event is handled and is
drained after the event has been handled. Thus, unless the objects in the autorelease pool are being retained, they will be destroyed as soon as the event
has been handled.

In the case of the lottery project, a command-line tool, there is no event loop, and so the autorelease pool has been created explicitly. This hints at another
aspect of autorelease pools: They can be nested to reduce peak memory consumption, for example, in a large loop. The topmost pool is the pool to
which autoreleased objects will be sent.

Note that if you autorelease an object n times, it will be sent re1ease n times once the pool is drained.

Autoreleased Objects Are Useful

One correct solution to our problem is then to autorelease the string before we return it:

- (NSString *)description
{
NSDateFormatter *df = [[NSDateFormatter alloc] init];
[df setTimeStyle:NSDateFormatterNoStylel;
[df setDateStyle:NSDateFormatterMediumStyle];
NSString *result;
result = [[NSString alloc] initWithFormat:@"%$@ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];
[result autorelease];
[df releasel;
return result;

}

You can think of autoreleasing as an alternative to directly releasing an object. Sometimes, Objective-C programmers autorelease objects out of
necessity, such as in this case, when returning an object from a method; other times, it is more a matter of convenience.

Because you will frequently need objects that you are not retaining, many classes have class methods that return autoreleased objects. Nsstring, for
example, has stringWithFormat:. The simplest correct solution then would be:

- (NSString *)description
{
NSDateFormatter *df = [[NSDateFormatter alloc] init];
[df setTimeStyle:NSDateFormatterNoStyle];
[df setDateStyle:NSDateFormatterMediumStyle];
NSString *result;
result = [NSString stringWithFormat:@"% @ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];
[df releasel];
return result;

Autoreleased Objects Are Convenient

Recall that an autoreleased object won't be released until the pool is drained (usually when the current cycle of the event loop ends). This behavior makes
it perfect for providing an intermediate result. For example, if you had an array of Nsstring Objects, you could create a string with all the elements in
uppercase and concatenated together, like this:

- (NSString *)concatenatedAndAllCaps
{

int 1i;

NSString *sum = @"";

NSString *upper;

for (i=0; 1 < [myArray count]; 1i++) {
upper = [[myArray objectAtIndex:1i] uppercaseString];
sum = [NSString stringWithFormat:@"%@%Q@", sum, upper];
}
return sum;

}

With this method, if you have 13 strings in the array, 26 autoreleased strings will be created (13 by uppercasestring and 13 by stringWithFormat:; the
initial constant string is a special case and doesn’t count). One of the resulting strings is returned and may be retained by the object that asked for it. The
other 25 strings are deallocated automatically at the end of the event loop. (Note that you would probably get better performance in this example by
appending the uppercased string to an NsMutablestring instead of creating a new string and adding it to the autorelease pool each time through the
loop.)

The Retain-Count Rules

Now that you are familiar with retain, release, and autorelease, you are ready for the rules.

In these rules, we use the word “you” to mean “an instance of whatever class you are currently working on.” It is a useful form of empathy: You imagine that
you are the object you are writing. So, for example, “If you retain the string, it will not be deallocated” really means “If an instance of the class that you are
currently working on retains the string, it will not be deallocated.”

Here, then, are the rules. (Implementation details are in parentheses.)

« If you create an object by using a method whose name starts with al1oc Or new Or contains copy, you have taken ownership of it. (That is, assume
that the new object has a retain count of 1 and is not in the autorelease pool.) You have a responsibility to release the object when you no longer
need it. Some of the common methods that convey ownership are a11oc (which is always followed by an init method), copy, and mutablecopy.

* An object created through any other means, such as a convenience method, is not owned by you. (That is, assume that it has a retain count of 1 and
is already in the autorelease pool and thus doomed unless it is retained before the autorelease pool is drained.)

* If you don’'t own an object and want to ensure its continued existence, take ownership by sending it the message retain. (This increments the retain
count.)

» When you own an object and no longer need it, send it the message release Or autorelease. (The message release decrements the retain count
immediately; autorelease causes the message release to get sent when the autorelease pool is drained.)

* As long as it has at least one owner, an object will continue to exist. (When its retain count goes to zero, it is sent the message dealioc.)

One of the tricks to understanding memory management is to think locally. The LotteryEntry class does not need to know anything about other objects
that also care about its entrypate. As long as a LotteryEntry instance retains objects it wants to keep, you won’t have any problems. Programmers new
to the language sometimes make the mistake of trying to keep tabs on objects throughout an application. Don’t do this. If you follow these rules and
always think local to a class, you never have to worry what the rest of an application is doing with an object.

Accessor Methods

An object has instance variables. Other objects cannot access these variables directly. To enable other objects to read and set an instance variable, an
object will usually have a pair of accessor methods.

For example, if a class rex has an instance variable named fido, the class will probably have at least two other methods: £ido and setFido:. The fido
method enables other objects to read the fido variable; the setFido: method enables other objects to set the rido variable.

If you have a nonpointer type, the accessor methods are quite simple. For example, if your class has an instance variable called foo of type int, you
would create the following accessor methods:

- (int) foo
{

return foo;

}

- (void)setFoo: (int)x
{
foo = x;

}

These methods will allow other objects to get and set the value of foo.

Matters become more complicated if foo is a pointer to an object. In the “setter” method, you need to make sure that the new value is retained and the old
value released, as shown in Figure 4.5. If you assume that foo is a pointer to an nspate, there are three common idioms in setter methods. All three work
correctly, and you can probably find some experienced Cocoa programmers who will argue the superiority of any one of them. Each has trade-offs.

Figure 4.5. Before and After setFoo:

Before
new value

NSDate
retainCount=2
salf }\ %
o0
N e
B NSDate

retainCount=4

oid value

After
naw valye

_ NSDate |

retainCount=3
o

[nspate |

retainCount=3 ‘

oid vaive

The first idiom is “Retain, Then Release”:

- (void) setFoo: (NSDate *)x
{

[x retain];

[foo release];
foo = x;

}

Here, itis important to retain before releasing. Suppose that you reverse the order. If x and foo are both pointers to the same object that happens to have
a retain count of 1, the release would cause the object to be deallocated before it was retained. Trade-off: If they are the same value, this method
performs an unnecessary retain and release.

The second idiom is “Check Before Change:

- (void) setFoo: (NSDate *)x
{

if (foo !'= x) {
[foo release];
foo = [x retain];

}

Here, you are not setting the variable unless a different value is passed in. Trade-off: An extra i statement is necessary.

The final idiom is “Autorelease Old Value”:

- (void) setFoo: (NSDate *)x
{

[foo autorelease];

foo = [x retain];

}

Here, you autorelease the old value. Trade-off: An error in retain counts will result in a crash one event loop after the error. This behavior makes the bug
harder to track down. In the first two idioms, your crash will happen closer to your error. Also, autorelease carries some performance overhead.

You have read the trade-offs and can make your own decision on which to use. In this book, we will use “Retain, Then Release.”

The “getter” method for an object is the same as that for a nonpointer type:

- (NSDhate *)foo
{

return foo;

}

Most Java programmers would name this method getFoo. Don’t. Objective-C programmers call this method £oo. In the common idioms of Objective-C, a
method prefixed with get takes an address where data can be copied. For example, if you have an nsco1or Object and you want its red, green, blue, and
alpha components, you would call getRed:green:blue:alpha: as follows:

float r, g, b, a;
[myFavoriteColor getRed:&r green:&g blue:&b alpha:s&al;

(For readers who might be a bit rusty with their C, « returns the address where the variable holds its data.)

If you used your accessor methods to read the variables, your description method would look like this:

- (NSString *)description
{
return [NSString stringWithFormat:@"%@ = %d and %d4d",
[self entryDate], [self firstNumber], [self secondNumber]];

}

OO purists would argue that this is the most correct implementation of the description method.

Change setEntryDate: iN LotteryEntry.m {0 correctly retain the new value and release the old:

- (void) setEntryDate: (NSDate *)date
{

[date retain];

[entryDate release];

entryDate = date;
}

Congratulations! You have now completed converting the 10ttery project to a retain-counted application. Run the static analyzer on the application
(Product -> Analyze); you should have zero issues.

Living with ARC

Although manual reference counting is fairly simple, it can be difficult to execute perfectly. At best, this leads to minor leaks but more typically results in

crashes. At the end of Chapter 3, we saw that the static analyzer was able to find Objective-C memory errors in our code. Some clever engineers at
Apple asked, “If we can find memory errors, why don’t we go ahead and fix them?” ARC is the result.

ARC is a compiler feature, based on the same technology that powers the static analyzer. When you compile your application, your use of Objective-C
object pointers (references) is examined by the compiler, which then applies the same rules we described earlier in this chapter, retaining, releasing, and
autoreleasing to ensure that the objects live as long as necessary and are deallocated when they are no longer needed.

Essentially, this means that all the memory-related changes we made to the 1ottery project were unnecessary under ARC. In fact, when using ARC, it is
an error to call retain, release, Or autorelease. With ARC, you will think less about retain counts and focus more on object relationships. Relationships
are defined by references, which are simply object pointers. There are two types of references: strong and weak.

Strong References

By default, references are strong. If you assign an object to a strong reference, ARC assumes that you want that object to stick around and retains it
implicitly. If that reference is changed to a new value, the old object is released and the new object retained, just like the setEntrypate: setter we wrote in
the previous section. Thus, the same setter can be rewritten as follows, without any memory concerns:

- (void) setEntryDate: (NSDate *)date

{
entryDate = date;

}
ARC will take care of releasing any strong references in dea11oc for you. You can stillimplement dea11oc to take care of any other cleanup tasks.

Weak References

Weak references are similar to the old manual reference-counted pointers: There is no implicit retain; the pointer value is simply changed in memory.
Such references have long been an area ripe for causing crashes, however. If the pointer is not retained, the object can be deallocated, leaving a bad
pointer to cause a crash when it is used. ARC addresses this by automatically setting weak references to ni1 when the object they point to has been
deallocated. This is known as a “zeroing weak reference.”

When would you want to use a weak pointer? Recall the retain-cycle issue we touched on before, where two objects are retaining each other and thus are
never deallocated. In ARC, this is referred to as a strong reference cycle. By using weak references strategically, we can avoid these cycles altogether.
Consider the following class definition:

@interface Person : NSObject ({
Person *parent; // Bad! This causes a strong reference cycle!
NSMutableArray *children;

}
@end

Because references are strong by default, a class like this would quickly result in a strong reference cycle. person has a strong reference to both parent
and children; the children array has strong references to objects it contains. We can use the weax qualifier to fix this problem and make parent a
weak reference:

@interface Person : NSObject {
__weak Person *parent; // Good! No strong reference cycle.
NSMutableArray *children;

}

@end
This pattern is commonly used in Objective-C: The parent-to-child relationship is strong, whereas the child-to-parent relationship is weak.

Note that only classes compiled with ARC can have weak references made to them. An exception will be thrown if you try to make an assignment to a
__weak variable and the class does not support weak references. You can use the unsafe unretained qualifier in place of _weak in cases like this.
The object will not be retained, but this reference will not be set to ni1 when the object is deallocated.

ARC Odds and Ends

* ARC code is able to work with manually reference-counted code without modification. In fact, it is possible to use ARC on a per file basis. It is
important, however, that manually reference-counted code adhere to the rules discussed earlier in this chapter.

» Xcode provides a migration tool to convert existing projects to ARC. This tool can be found in the Edit menu, under Refactor -> Convert to
Objective-C Automatic Reference Counting.

* Although ARC code can run on Mac OS X 10.6 and iOS 4, weak references are not supported on those platforms.
* Although Objective-C can be intermixed with plain C in most cases, ARC does not allow C structures to contain object pointers.
* Property names may not begin with new.

* Under ARC it is an error to call retain, release, autorelease, OF dealloc (such as with [super dealloc]). Additionally, you cannot override

retain, release, Ol autorelease.

Chapter 5. Target/Action

Once upon a time, there was a company called Taligent. Taligent was created by IBM and Apple to develop a set of tools and libraries like Cocoa. About
the time Taligent reached the peak of its mindshare, Aaron met one of its engineers at a trade show and asked him to create a simple application: A
window would appear with a button, and when the button was clicked, the words “Hello, World!” would appear in a text field. The engineer created a
project and started subclassing madly, subclassing the window and the button and the event handler. Then he started generating code: dozens of lines to
get the button and the text field onto the window. After 45 minutes, Aaron had to leave. The app still did not work. That day, Aaron knew that the company
was doomed. A couple of years later, Taligent quietly closed its doors forever.

Most C++ and Java tools work on the same principles as the Taligent tools. The developer subclasses many of the standard classes and generates many
lines of code to get controls to appear on windows. Most of these tools work.

While writing an application that uses the AppKit framework, you will seldom subclass the classes that represent windows, buttons, or events. Instead, you
will create objects that will work with the existing classes. Also, you will not create code to get controls on windows. Instead, the XIB file will contain all this
information. The resulting application will have significantly fewer lines of code. At first, this outcome may be alarming. In the long run, most programmers
find it delightfully elegant.

To understand the AppKit framework, a good place to start is with the class Nscontrol. NSButton, NSSlider, NSTextView, and NSColorWell are all
subclasses of Nscontrol. A control has a target and an action. The target is simply a pointer to another object. The action is a message (a selector) to
send to the target. Recall that you set the target and action for two buttons in Chapter 2. There you set your Foo object to be the target of both buttons,
and you set the action onone to seed: (Figure 5.1) and the action onthe other to generate:.

Figure 5.1. A Button Has a Target and an Action

NSButton RandomController
target

action=seed:

- (void)seed:(id)sender

When the user interacts with the control, it sends the action message to its target. For example, when the button is clicked, the button sends the target
its action message (Eigure 5.2).

Figure 5.2. The Button Sends a Message

seed:
NSButton B RandomController
_ targat
action=seed: [

= - (void)seed:(id)sender

The action methods take one argument: the sender. This enables the receiver to know which control sent the message. Often, you will call back to the
sender to get more information. For example, a check box will send its action message when it is turned on and when it is turned off. After getting the
action message, the receiver might call back to the button to find out whether it is currently on or off:

- (IBAction)toggleFoo: (id) sender
{
BOOL isOn = [sender state];

}

To better understand Nscontrol, you should become acquainted with its ancestors: Nscontrol inherits from Nsview, which inherits from NsResponder,
which inherits from Nsobject. Each member of the family tree adds some capabilities (Figure 5.3).

Figure 5.3. Inheritance Diagram for NSControl

= -l:\l_S_dlii;a;:i_ ~) ls an object:

== --===-==-==-==-=tinil, retain, releass, dealloc, etc.
! 1

1 1

1 1

1 i

. A

T inherits from

NSFteslionEiér "7\ Handles events:
"""""""" === === mouseDown:, keyDown:, etc.

i
|
' 1
1 1
1 1
i
i 1
o i i a

f inherits from
1

i NSWindow : S NSView ' Appears in a window:
g e A A i ittt | drawRact:, window, etc.
! 3 :
1 1 i 1
2 e 1
inherits from
i """ "NSContrel 1 Has atarget and an action:
e 1 setTarget:, setAction:, ete.
1 1
i
inherits from
L NSButton i | NSTextField | [NSSlider |
: ! i
[state : BOOL E tringValue : NSString” E v floatvalue : float
' 1 1
I i |
1]

cmsssssssssssssse==sd sz sssssssmssms=d

At the top of the class hierachy is Nsobject. All classes inherit from nsobject, and this is where they get the basic methods: retain, release, dealloc,
and init. NSResponder iS a subclass of Nsobject. Responders have the ability to handle events with such methods as mousebown: and keybown:. NSView
is a subclass of Nsresponder and has a place on a window, where it draws itself. You can create subclasses of nsview to display graphs and allow the
user to drag and drop data. Nscontrol inherits from nsview and adds the target and the action.

Some Commonly Used Subclasses of NSControl

Before using some controls, let's take a brief look at the three most commonly used controls: NsButton, NSSlider, and NSTextField.

NSButton

Instances of NsButton can have appearances: oval, square, check box. They can also have various behaviors when clicked: toggle (like a check box) or

momentarily on (like most other buttons). Buttons can have icons and sounds associated with them. Figure 5.4 shows the Attributes Inspector for an
NSButton in Interface Builder.

Figure 5.4. Button Inspector

ano [Controls - MainMenu.xibs =
s T - : s
() (mclul=] e | BlaE) ([CoF (T
Run fiop Scheme. Breakpoints Editor iew 1=
= | 4 & [jControls | Controis | [l MainMen. . Mainder. . Window = 1 BZ View ‘.’.jqualtl DB B % <= & & =
Controls File Edit Format View Window Help ¥ Semon M
Sryle | Gradient =N
Type | Momenstary Pugh in _=’
wisual ¥ Bordered
[alle] Controls ! Transparent
Smte Om 4 ||
Ay, Moned
1 People = ’
Title People
Aliemare & e Tt |
w Agnirent | 55 L]]
Font| Lucida Grande 13.0 [
LS
A Iruge | WSUser -l
L Alpmane | Al -
- a8 0@
E *
Sound | Scuntt =l
Key Eqwvalent | Erter key Equrvalent
L5 * oo :

Here are three messages that you will frequently send to buttons.
- (void) setEnabled: (BOOL) yn

Enabled buttons can be clicked by the user. Disabled buttons are grayed out.

- (NSInteger)state

Returns nsonstate (whichis 1) if the button is on, or nsoffstate (which is 0) if the button is off. This method allows you to see whether a check box is
checked or unchecked.

- (void)setState: (NSInteger)aState

This method turns the button on or off. It allows you to check or uncheck a check box programmatically. Set the state to nsonstate to check the check
box and to nsoffstate to uncheck it.

NSSlider
Instances of Nss1ider can be vertical or horizontal. They can send the action to the target continuously while being changed, or they can wait to send the

action until the user releases the mouse button. A slider can have markers, and it can prevent users from choosing values between the markers (Figure
5.5). Circular sliders are also possible.

Figure 5.5. Slider Inspector

[Aals] 71 Controls - MainMenu.xib

(e)(mifc. i [m e = EIEE= =
Wur Step Scheme Erwshpoints tdiear W Crganins
g o | [Comrel Contreds [Maem [T Windo . o wiview ThHezenuiSider |) B B W2 & £ @
Controls File Edit Format View Window Help T Hider o

Sty | Lisvear &

T blarky | Positon dbove 'Y:I

off

(]
AN Cantrols] Only stop on tick marks
50 | /|
—t—— 0

N Ling Brask | Word Wrap =
_| Truncates Last Vivibie Line

= seaie 94 Enabled

M Continuoe

_| Bedunes First Responder 1

Continuous sliders send an action message
as the user moves the slider. Noncontinuous
sliders send an action message only when the
user releases the mouse button.

Here are two methods of Nss1ider that you will use frequently:
- (void)setFloatValue: (float)x
Moves the slider to x.
- (float) floatValue
Returns the current value of the slider.

NSTextField

An instance of NsTextField can allow a user to type a single line of text. Text fields may or may not be editable. Uneditable text fields are commonly used
as labels on a window. Compared to buttons and sliders, text fields are relatively complex. We will plumb the depths of the mysteries surrounding text
fields in later chapters. Figure 5.6 shows the Attributes information panel for an NsTextFie1d in Interface Builder.

Figure 5.6. Text Field Inspector

L Nkl 1 Controls - MainMen.xit =
NSO O | gt | Bolg) (ool (=)
= 4+ [controis [Comrois « [sunme, Maindbe.. oo Window .. | B View :':'um.eml DB B+ £ & & =2
Controls File Edit Format View Window Help i | Flaid "
Tie Tiv]
,-“'!"‘Nﬂﬂ'.ru Kame I
Aignment| W5 @ mmam pel :
o) Caatrols = —
Border el o =i =
e Dispiay ¥ Draws Background :
Full Name -
e Color | [oetuur 13 |
4 Ratkgrourd | 1 | Default =1
s Font Licida Grande 130 (1)) :
' Layeut | Seroils [} !
] Uses Single Line Mode :
_f-r)\ Action| Seat On End Editing _;l 1
= EPTH [}
- Alows] Rich Text ® Undo
e (] Dnby Raman Chasacters
* Contrsd
Text Direction | Natural]
Layout | Lefe To Right _‘-i
. Une@reak | Clip ?} i

Text fields have a placeholder string. When the text field is empty, the placeholder string is displayed in gray.

NSSecureTextField iS @ subclass of NsTextField and is used for such things as passwords. As the user types, bullets appear instead of the typed
characters. You cannot copy or cut from an NSSecureTextField.

Here are a few of the most commonly used NsTextFie1d methods:

- (NSString *)stringValue
- (void)setStringValue: (NSString *)aString

Allow you to get and set the string data being displayed in the text field.

- (NSObject *)objectValue
- (void) setObjectValue: (NSObject *)obj

Allow you to get and set the data being displayed in the text field as an arbitrary object type. This behavior is helpful if you are using a formatter.
NSFormatterS are responsible for converting a string into another type, and vice versa. If no formatter is present, these methods use the description
method.

For example, you might use a text field to allow the user to type in a date. As the programmer, you don’'t want the string that the user typed in; you want an
instance of Nspate. By attaching an NspateFormatter, you ensure that the text field’s objectvaliue method will return an~spate. Also, when you call
setObjectValue: With an Nspate, the NspateFormatter Will format it as a string for the user. (You will create a custom formatter class in Chapter 26.)

Figure 5.7 shows some other controls you might want to play with. Drag them out, inspect them, and see how they act when you compile and run the app.

Figure 5.7. Some Controls

ano B Coettle S VN L
(») (milc. i} [m] [Tos N = GIEEEE N
= 4 » [ycontrois | comrols I MamMenu. i MaimMenu,xb English) | - Window - Controls |+ E2 View

5 Pacsholdars © Conwols Flle Edit Format View Window Help

File's Owner
@) First Responder
iy Application
T Objects

Main Menu - Nala Ca

S Window - Controls

= ¥ IH "
» Textfiald Full Kame Q
¥ Semchbitld One =Two Three | | item 1
W Segenented Contral = Dme, Two,
= W Pop Up Betton
» ¥ Combobox
- Color Well
F Horizental ider

w W Havigation Bar Path Contral Widget =
» ¥ Circular Slider - — i
BE HOMZONLY Progress Indicato: g

S Asye Arrgws
¥ T Discrete Leve| Indicator
» 0 Disclosure
o nage Well
¥ Tokenfield - Token
B Controls App Delegate
W Fant Manager

a |

) [

Start the SpeakLine Example

As a simple example of using controls, you will build an application that enables users to type in a line of text and hear it spoken by the Mac OS X speech

synthesizer. The app will look like Figure 5.8 when you are done with this chapter.

Figure 5.8. Completed Application

amnm SpeakLine

Peter Piper picked a peck of pickled peppers.
= U o

£

Stop Speak

A

Figure 5.9 presents a diagram of the objects that you will create and their pointers to one another. Note that all the classes that start with ns are part of the
Cocoa frameworks and thus already exist. Your code will be in the speakLineAppDelegate Class, which Xcode creates as part of the project template.

Figure 5.9. Object Diagram

[NSTextField |
|
| - stingvalue
| NSButton ¥
| action=saylt: textField
— |
— “—={ SpeakLineAppDelegate
- saylt: ‘
_ e stoplt:
| NSButton _target” I
2 B speechsSynth
action =stoplt: *
B B [NSSpeechSynthesizer

| startSpaakingString:
| - stopSpeaking

In Xcode, create a new project. Name the project SpeakLine and set the Class Prefix to speakrine. A new project will appear.

Lay Out the XIB File

Click onmMainMenu.xib to open it in Interface Builder. Click the window icon in Interface Builder’s dock to open it. With the window selected, uncheck
Resize in the Attributes Inspector. We will still be able to resize the window in the editor, but the user will not.

Next, drag out a text field and two buttons from the Library panel. Double-click on the text field to change the text to read “Peter Piper picked a peck of
pickled peppers” (or some other text that will amuse you when it is spoken by the machine). Change the labels on the buttons to read Speak and Stop.
The result should look like Figure 5.8.

The speakLineAppDelegate class, which Xcode created as part of our project, will be the target of the two buttons. Each control will trigger a different
action method.

WithMainMenu.xib still selected, enable the Assistant Editor, using the toolbar button (Figure 5.10). The Assistant Editor shows a counterpart to the
currently selected file. The counterpart formMainMenu.xib is the application delegate header file, speakLineappbelegate.h. f you do not see
SpeakLineAppDelegate.h in the Assistant Editor, select Automatic in the leftmost segment of the jump bar at the top of the Assistant Editor.

Figure 5.10. Enable the Assistant Editor

Click for Assistant Editor

AN
()| W | speanting sy i) m]
un e e Rrwasarety

=4 & Fioakie Sa - " W e TRahEumen | T 4+) dutumalic o b SotekineApsOriegain b ¢ o SeiecBos
Speakiine File FEdn Format View Window Haelp

. "~
a’ Peter Piper picked & peck of pickled peppen

i ¥ Stop 7 spaai t SpraklineApsOn legate

In Chapter 2 we learned how to create outlets and actions and how to create connections between user interface objects by using Interface Builder. We
could type out all the outlets and actions for this project as before. Instead, we will use the Assistant Editor to make our task much easier.

Making Connections in Interface Builder

Making a connection is analogous to introducing people. You say, “Mrs. Robinson, this is Dr. Pepper.” If it is important that Dr. Pepper also know Mrs.
Robinson, you would continue, “Dr. Pepper, this is Mrs. Robinson.” With objects in Interface Builder, you will drag from the object that needs to knowto
the object that it needs to knowabout. You might also drag the other way to create a connection in the opposite direction, if necessary.

For example, when a user clicks the Stop button, the button needs to send a message to your speakLineAppDelegate, SO the button needs to know about
the speakLineAppDelegate. For this reason, you will Control-drag from the button to the speakLineappbelegate. However, instead of dragging to the blue
object in the Interface Builder dock as we did before, we will Control-drag from the button fo the interface definition area within the Assistant Editor, as
shown in Figure 5.11. In the pop-over that appears, set the Connection to Action, enter stopzt: for the Name, and click Connect. An 1eaction line will
appear at the insertion point.

Figure 5.11. Set Action for Stop Button

I Speailing - MaisMenu.xily

Pl W) iSpe oMy MecEd bh) | Aeode A (1 IR =He |
[" [— Sreakpoees [rm g
=4 * [ysonies 5 u o W EI View - TPuah Butten | = [m—p— perertace SoeaklneAcoleegRE | O O
Speakiine File Edit Format View Window Help
E [l) Sk |
A Peter Piper picked a peck of pickied peppers,
Ss0y Speak
E }
EpaTAY (utrany - v or Ao |
L]
B 18 ~ Maifh
1 code SRl 7 el
() (m) [Spe__ WyMacaba] [m ' =Blc) (0=.0 @

ran chrmm Wreakeminey [wes Orpamte
=4 = [5peakiiee &] ™ Wi o B ew | T Rablumen | 5 < I b SoessiireArpDesegane raestace SaeanLnedooleepan

SpeakLine File Edit Format Wiew Window Help

" o
Peter Piper picked a peck of pickied peppers
.Y
Sip Speak
B | | ——— Coneec Agno i
I 2

B saeak Line Apn Del

= =

Now Control-drag from the Speak button to the speakrineapppelegate.h interface again in order to create an action named sayzt:.

In order to synthesize the speech for the line of text, the speakLineAppDelegate Will need to ask the text field for the line of text. Thus, the
SpeakLineAppDelegate Needs to have a pointer to the text field. This time, Control-drag from the text field to just below the window outlet in
SpeakLineAppDelegate.h. Set the Connection to Outlet, name it textrield, and click Connect, as shown in Figure 5.12.

Figure 5.12. Control-drag to Create the textField Outlet

ST ™ Speaidine - MainMeru.xib
s (m ;spclklm! My Mac Ga-bit | |m
R Scheme Brrakgainin
=4 R B B2 | 5 Teo Fiad - Pater Piper pcied apeck of pecke.. = | 4 B[] Ausomanic
Speakline File Edit Formal View Window Help

'm 800 SpeakLine
i

Prer Piaar petkind & pach of pickle Deppdrs.

Saop Speak face Spesklinelpplelagete : WSIhjict MEhsmlicat icabelegates |

Xcode will create a new eproperty line. A property is like a setter and getter in one, however in this case there is no clear instance variable backing the
property. In fact, the complier will automatically create an instance variable named textrie1d. How do we know this? Look for the esynthesize line in
SpeakLineAppDelegate.m. WWe will learn more about properties in Chapter 7.

Note that if we were using the Connection panel instead of the Assistant Editor to create an outlet connection, we would be dragging from
SpeakLineAppDelegate {0 the text field.

SpeakLineAppDelegate.h should now look like this:
#import <Cocoa/Cocoa.h>
@interface SpeakLineAppDelegate : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;
@property (weak) IBOutlet NSTextField *textField;

- (IBAction)stopIt: (id)sender;
- (IBAction)sayIt: (id)sender;

@end

If you look at speakLineAppbelegate.m, you will find that Xcode has created stubs for the sayrt: and stop1t: actions.

At this point, you have set all but one of the connections shown in the object diagram in Figure 5.9. The missing connection, speechsynth, will be done
programmatically—not in Interface Builder.

NSWindow’s initialFirstResponder Outlet

When your application runs and the new window appears, users should not have to click on a text field before they type. You can tell the window which
view should be receiving keyboard events when the window appears. Control-click on the window icon in the Interface Builder dock to get its Connection
panel. Drag from initialFirstResponder t0 the text field.

Implementing the SpeakLineAppDelegate Class

Now you need to write some code, so select the speakLineappbDelegate.h file. Add an instance variable named speechsynth of type
NSSpeechSynthesizer:

#import <Cocoa/Cocoa.h>
@interface SpeakLineAppDelegate : NSObject <NSApplicationDelegate>

NSSpeechSynthesizer *_speechSynth;
}

@property (assign) IBOutlet NSWindow *window;
@property (weak) IBOutlet NSTextField *textField;

- (IBAction)sayIt: (id)sender;
- (IBAction)stopIt: (id)sender;

@end

Note that because we are not setting the speechsyntn variable in the XIB file, we don't flag it as 1Bout1et.
Open the speakLineAppDelegate.n file. This is where you will make the methods do something:
#import "SpeakLineAppDelegate.h"

@implementation SpeakLineAppDelegate

@synthesize window = window;
@synthesize textField = textField;
- (id)init

self = [super init];

if (self) {
Il Logs can help the beginner understand what
Il is happening and hunt down bugs.
NSLog(@"init");

Il Create a new instance of NSSpeechSynthesizer
Il with the default voice.

_speechSynth = [[NSSpeechSynthesizer alloc]
initWithVoice:nil];
}

return self;

}

- (IBAction)sayIt: (id)sender
{
NSString *string = [_textField stringValue];

Il'ls the string zero-length?

if ([string length] == 0) {
NSLog(@"string from % @ is of zero-length", _textField);
return;

}
[_speechSynth startSpeakingString:string];
NSLog(@"Have started to say: % @", string);

- (IBAction)stopIt: (id)sender
{
NSLog(@"stopping");
[_speechSynth stopSpeaking];
}
@end

Your application is done. Build it and run it. You should be able to start the recitation of the text in the text field and stop it in mid-sentence.

Final note: A menu item (an instance of NSMenuItem) also has a target and anaction. Everything we’ve talked about in this chapter applies to menu
items.

For the More Curious: Setting the Target Programmatically

Note that the action of a control is a selector. Nscontro1 includes the following method:

- (void) setAction: (SEL)aSelector

But how would you get a selector? The Objective-C compiler directive ese1ector will tell the compiler to look up the selector for you. For example, to set
the action of a button to the method drawMickey:, you could do the following:

SEL mySelector;
mySelector = @selector (drawMickey:);
[myButton setAction:mySelector];

At compile time, eselector (drawMickey:) Will be replaced by the selector for drawMickey:.

If you needed to find a selector for an Nsstring at runtime, you could use the function NsselectorFromstring():

SEL mySelector;

mySelector = NSSelectorFromString(@"drawMickey:");
[myButton setTarget:someObjectWithADrawMickeyMethod];
[myButton setAction:mySelector];

Challenge

This exercise is an important challenge you should do before moving on. Although it is easy to follow the instructions, you will eventually want to create
your own applications. Here is where you can start to develop some independence. Feel free to refer back to the earlier examples for guidance.

Create another application that will present the user with the window shown in Figure 5.13. This application can have only one window open, so itis not a
document-based application.

Figure 5.13. Before Input

(o NN Window

|. Count Characters

mn

When the user types in a string and clicks the button, change the message text to display the input string and the number of characters it has (Figure
5.14).

Figure 5.14. After Input

[o] Window

This is only a test

|_-_E0unt Characters |

"This is only a test' has 19 characters.

It is important to know how to use the Cocoa classes in your application. For this exercise, you should recognize that the NsTextField class has the
following methods:

- (NSString *)stringValue;
- (void)setStringValue: (NSString *)aString;

You will also find it useful to know about the following methods of the class Nsstring:

- (NSUInteger) length;
+ (NSString *)stringWithFormat: (NSString *),...;

You will create a controller object with two outlets and one action. (This is hard, and you are not stupid. Good luck!)

Debugging Hints

Now that you are writing code, not just copying it from the book, you are ready for some debugging hints.

Alvays watch the console. If a Cocoa object throws an exception, it will be logged to the console and the event loop will be restarted. If you aren’t
watching the console, you won’t know about the error at all.

Alvays use the Debug build configuration during development. The Release configuration has had its debugging symbols stripped. The debugger
will act a bit strangely when it is dealing with a program with no debugging symbols.

Here are some common problems and common fixes:
Nothing happens. You probably forgot to make a connection in Interface Builder. Thus, the pointer is ni1. Remember that messages sentto ni1 do
nothing.
Made connection, still nothing happens. You probably misspelled the name of a method. Objective-C is case sensitive, sO setFoo: is completely
different from setfoo: . Try putting in a log statement or putting a breakpoint on the method to see whether it is getting called.

Application crashes. If you send a message to an object that has been deallocated, it will crash your program. (This is difficult to do if you are using
ARC or the garbage collector.) Hunting these crashers can be difficult; after all, the problem object has already been deallocated. One way to hunt
them down is to ask the frameworks to turn your objects into “zombies” instead of deallocating them. When you send a message to a zombie, it
throws a descriptive exception that says something like, “vou tried to send the message -count to a freed instance of the class Fido.”
This will stop the debugger on that line.

To turn on zombies, open the Product menu and select Edit Scheme.... Select the Run (application name).app action and switch to the Diagnostics
tab. Check Enable Zombie Objects.

No objects are being freed, it still crashes. Check the type of your arguments. For example, this is a great way to crash your app:

int x = 5;
NSLog (@"x is %@", x);

See the problem? x is an int, but e specifies an object.

Interface Builder wont let me make a connection. A .n file is messed up. A missing semicolon? A variable declared to be NsTabview instead of
NSTableview? Look carefully.

Chapter 6. Helper Objects

Once upon a time, there was a man with no name. Knight Industries decided that if this man were given guns and wheels and booster rockets, he would
be the perfect crime-fighting tool. First, they thought, “Let's subclass him and override everything we need to add the guns and wheels and booster
rockets.” The problem was that to subclass Michael Knight, you would need to know an awful lot about his guts so that you could wire them to guns and
booster rockets. So instead, they created a helper object, the Knight Industries 2000, or “KITT the super car.”

Note how this is different from the RoboCop approach. RoboCop was a man subclassed and extended. The whole RoboCop project involved dozens of
surgeons who extended the man’s brain into a fighting machine. This is the approach taken with many object-oriented frameworks.

While approaching the perimeter of an arms dealer’s compound, Michael Knight would speak to KITT over his watch-radio. “KITT,” he would say, “l need
to get to the other side of that wall.” KITT would then blast a big hole in the wall with a small rocket. After destroying the wall, Kitt would return control to
Michael, who would stroll through the rubble.

Many objects in the Cocoa framework are extended in much the same way. That is, an existing object needs to be extended for your purpose. Instead of
subclassing the table view, you simply supply it with a helper object. For example, when a table view is about to display itself, it will turn to the helper
object to ask such things as, “How many rows of data am | displaying?” and “What should be displayed in the first column, second row?”

Thus, to extend an existing Cocoa class, you will frequently create a helper object. This chapter focuses on creating helper objects and connecting them to
the standard Cocoa objects.

Delegates

In the SpeakLine application, the use of your interface would be more obvious if the Stop button remained disabled unless the speech synthesizer were
speaking and if the Speak button were enabled only when the speech synthesizer was silent. Thus, the speakLineAppbelegate should enable the button
when it starts the speech synthesizer and then disable the button when the speech synthesizer stops.

Many classes in the Cocoa framework have an instance variable called delegate. You can set the delegate outlet to point to a helper object. In the
documentation for the class, the de1egate methods are clearly described. For example, the Nsspeechsynthesizer class has the following delegate
methods:

- (void) speechSynthesizer: (NSSpeechSynthesizer *)sender
didFinishSpeaking: (BOOL) finishedSpeaking;

- (void) speechSynthesizer: (NSSpeechSynthesizer *)sender
willSpeakWord: (NSRange)characterRange
ofString: (NSString *)string;

- (void) speechSynthesizer: (NSSpeechSynthesizer *)sender
willSpeakPhoneme: (short)phonemeOpcode;

The Apple programmer who wrote Nsspeechsynthesizer put these hooks in. He is Michael Knight. You are KITT.
Of the three messages that the speech synthesizer sends to its de1egate, you care about only the first one: speechSynthesizer:didFinishSpeaking:.

In your application, you will make the speakLineAppDelegate the delegate Of the speech synthesizer and implement speechsynthesizer:didFinish-
speaking:. The method will be called automatically when the utterance is complete. The new object diagram is shown in Figure 6.1.

Figure 6.1. New SpeakLine Object Diagram

| NSTextField
[NSButton | - stringValua
; - textCalor
action=saylt: . satTextColor:

target textField
___NSButton | N R
action =stopit: | SpeakUneAppDehgawi

| target ! - SAYIL
- stopit:

- changeTextColor:

- speechSynthasizer:
didFinishSpeaking:
R L L

i Y
speechSynth | \ delegate

[NSSpeechSynthesizer

- startSpeakingString:
| - stopSpeaking

Note that you do not have to implement any of the other deiegate methods. The implemented methods will be called; the unimplemented ones will be

ignored. Also note that the first argument is always the object that is sending the message—in this case, the speech synthesizer.

In speechLineAppDelegate.h, change the speechLineAppbelegate Class declaration:

@interface SpeakLineAppDelegate : NSObject
<NSApplicationDelegate, NSSpeechSynthesizerDelegate> {

This change tells the compiler that speakLineAppDelegate conforms to the NSSpeechsynthesizerDelegate protocol. We will cover protocols in Chapter
10.

Now, in speakLineAppDelegate.m, Set the delegate outlet of the speech synthesizer:

- (id)init
{
self = [super init];
if (self) {
// Logs can help the beginner understand what
// 1is happening and hunt down bugs.
NSLog (@"init");

// Create a new instance of NSSpeechSynthesizer

// with the default voice.

_speechSynth = [[NSSpeechSynthesizer alloc]
initWithVoice:nil];

[_speechSynth setDelegate:self];
}

return self;

}
Next, add the de1egate method. For now, just log a message:

- (void)speechSynthesizer:(NSSpeechSynthesizer *)sender
didFinishSpeaking:(BOOL)finishedSpeaking

NSLog(@"finishedSpeaking = % d", finishedSpeaking);

Build and run the application. Note that the de1egate method is called if you click the Stop button or if the utterance plays all the way to the end.
(finished-speaking is YEs only if the utterance plays to the end.)

To enable and disable the Stop and Start buttons, you will need outlets for them. We will use the Interface Builder editor and the Assistant Editor as we
did in Chapter 5 for the textrield outlet to create and connect startButton and stopButton Outlets in speaklLineAppbelegate.h.

OpenwainMenu.xib and enable the Assistant Editor. Control-drag from the Stop button to the speakLineappbelegate class interface to create a new
outlet. Name the outlet stopButton, as shown in Eigure 6.2. Also, Control-drag from the Speak button to create a speakButton outlet.

Figure 6.2. Set stopButton Outlet

.

¥ | [Amenaiic.

Petes Piper picked & peck of pickied peppers.

4
O | Seea | |

g e ¥ g2 3 -
O Speakiine file Eda Help R ———
u. 1 ;: Semsdl iaw
$B0.0 Sprablint | M £ Erpwriant NS Bg erd Rasehe AT ¢ighta rmsereed.
L4

fimpart «Coconstoces. b=

1] @imtertace Speaklirakppbelegate

[A L
WEMiAAGw =_windiut
METewtF jeid o
[FrETr

= MiOWject WRAgpicetienbelegata,
i

Aeroperay (NLrEng
roperiy (atro

Nmn WELao vl
HETwy

1 I
| Eidutint

= Timactianistopitz | L8 femnaers
= [ikactiombsayles i o) sesdur;

]

SaEnd

LANRAGISATRATE
Linm

=
P i A Semea
| o d %
" I A Ceestes by kiss Presie sn S71ILE.
® wana Speakiome i i/ comsbiy it e
1) i
' l
| . § W
| Patad Piper piciohd 5 Deck of pidlded pEAEETE. | U TP ST P P
pﬂ { e "
{ S0P, | Seeak i i) disterface Spaakiirekppbelegain 5 MIOhject <WEAaplicetienDelegate,
| — | WESpeechynisanirerbelegaies
ul MSuinds = windou;
Iy n WETeatField u_tentFieldy
=3 s * WiSperchBynitestier = sgeechiynih
=il Consacten | Gutim o b
vim: et M Spust Lina App Du || gpropesy (strong] DBtutisn WEwistow weirdou;
e Vam BRropsrty (etrong] DBSutist MSTesrFisld etewtPiele)
- * ‘ = [IBAction)utonltslid hienders
. e Al - crmscbianbisyle: faalinsdur;
Cangw Connact |
. 4l ged
™
B
@ w2 & & Nobsaten

The Stop button should be disabled when it first appears on screen, so select the button and disable it in the Attributes 1nspector as shownin Eigure 6.3.

Save the NIB file.

Figure 6.3. Disable Stop Button

I3 SpwakLine - Mainbler xib

fimethed runrng Spaskime

{Q
Jppiies,

Peter Piper picked a peck of pickled peppers.
« Siop Speak | | |

In Xcode, edit the speakLineAppbelegate.m file to properly enable and disable the button.

{

(IBAction)sayIt: (id) sender

NSString *string [textField stringValue];
// Is the string zero-length?
if ([string length] 0) {
NSLog (@"string from %@ is of zero-length"
return;

}
[speechSynth startSpeakingString:string];
NSLog (@"Have started to say: %@", string);

[_stopButton setEnabled: YES];
[_speakButton setEnabled:NO]J;

____Uncheck
Enabled

Push Bettan - ke e
| | EVERL and Seeds dn acTioe s Lige 18
' tarpen oagers whew i i ar...

Eraient Button - isierceptt mouie-

Ocrwes eventy asdd wendi an action

FRaRkie 42 4 bargel el whin 'L

Rounded Rect Butios - interoe
| et and wendy g

vty
It Ariqun mmass pma b st ahimrd
18 |

In say1t:, enable the button:

, _textField);

In speechsSynthesizer:didFinishSpeaking:, reset the buttons to their initial states:

- (void) speechSynthesizer: (NSSpeechSynthesizer *)sender
didFinishSpeaking: (BOOL) finishedSpeaking

NSLog (@"finishedSpeaking = %d", finishedSpeaking);
[_stopButton setEnabled:NOJ;

[_speakButton setEnabled:YES];
}

Build and run the application. You should see that the Stop button is enabled only when the synthesizer is generating speech. The Speak button should be
enabled only when the synthesizer is silent.

The NSTableView and lts dataSource

Next, you will add a table view that will enable the user to change the voice, as shown in Figure 6.4.

Figure 6.4. Completed Application

- HaNs] SpeakLine

Peter Piper picked a peck of pickled peppers. Voices
) = Agnes
Stop : Speak Albert
Alex
Bad News
Bahh
Bells

A table view is used for displaying columns of data. An nsTableview has a helper object called a datasource, as shown in Figure 6.5. The table view
expects its data source to have some methods. We say, “The data source must conform to the nsTablepatasource informal protocol.” This is a fancy way
of saying that it must implement these two methods:

- (NSInteger)numberOfRowsInTableView: (NSTableView *)aTableView;

The datasource will reply with the number of rows that will be displayed.

Figure 6.5. NSTableView's dataSource

SpeakLineAppDelegate

| NSTableView |

- numberCliRowsInTableView;

; . i
| h dataSource 1-
I - tableView:objectValueForTableColumnrow: |

I 1

- (id) tableView: (NSTableView *)aTableView
objectValueForTableColumn: (NSTableColumn *)aTableColumn
row: (NSInteger) rowIndex;

The datasource Will reply with the object that should be displayed in the row rowindex of the column aTablecolumn.

If you have editable cells in your table view and are using a cell-based table view (as we are in this exercise), you will need to implement one more
method:

- (void) tableView: (NSTableView *)aTableView
setObjectValue: (id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (NSInteger) rowIndex;

The datasource takes the input that the user put into row rowindex 0Of aTablecolumn. You do not have to implement this method if your table view is
not editable.

Note that you are taking a very passive position in getting data to appear. Your data source will wait until the table view asks for the data. When they first
work with NsTableview (Or NSBrowser OF NSOoutlineView, Which work in a very similar manner), most programmers want to boss the table view around and
tell it, “You will display 7 in the third row in the fifth column.” It doesn’t work that way. When it is ready to display the third row and the fifth column, the table
view will ask its datasource for the object to display. Your class is its servant.

How, then, will you get the table view to fetch updated information? You will tell the table view to reloadpata. It will then reload all the cells that the user can
see.

SpeakLineAppDelegate Interface File

You are going to make your instance of speakLineAppbDelegate become the datasource Of the table view. This involves two steps: implementing the two

methods listed earlier and setting the table view's datasource outlet to the instance of speakLineappDelegate. Figure 6.6 provides a diagram of where
you are going.

Figure 6.6. Object Diagram

NSTextField
- stingValug
- textColor [TeAmay]
- setToxiColor —— —
NSButton textFiesd voices
action = saylt: g .
[speakBulten [SpeakLineAppDetegate |
- selEnabled f | dhiisaania NSTableView
targel — | - saylt -]
- stoplt:
Ol [*— delegate —— - setEnabled
e 8 ——1 - changeTextColor: - selectAow:byExtendingSelection:
NSButton s stopBution - speechSynihesizer PR Bt
aciion=stoplt: didFinishSpeaking: M ableView
[~ target
selEnablad speechSynth

delegate

= startSpeakingString:
- stopSpeaking

First, add the declaration of a new instance variable t0 speaklLineappbDelegate.h:
#import <Cocoa/Cocoa.h>

@interface SpeakLineAppDelegate : NSObject
<NSApplicationDelegate, NSSpeechSynthesizerDelegate> {
NSArray *_voices;
NSSpeechSynthesizer * speechSynth;

Save the file. In speakLineappbelegate.m, change the init method to initialize voices:

- (id)init

{
self = [super init];
if (self) {

// Create a new instance of NSSpeechSynthesizer
// with the default voice.

_speechSynth = [[NSSpeechSynthesizer alloc]
initWithVoice:nil];
[speechSynth setDelegate:self];

_voices = [NSSpeechSynthesizer availableVoices];
}

return self;

Lay Out the User Interface

Open MainMenu.xib and select the window icon in the dock to show the window. You will edit the window to look like Figure 6.7.

Figure 6.7. Completed Interface

5]

(B.0.0 SpeakLine |
Peter Piper picked a peck of pickled peppers. Volces
Text Cell
Stop | | Speak

Make the window wider and drag an NsTableview onto the window (Eigure 6.8).

Figure 6.8. Drop a Table View on the Window

ano D SpeabiLine - MainMe

(0 () (S i) [m] [owswenin s T]
iin Schema Freakosing . bkl
B 4 | [oSpeakien | Spassies . [MscMemsn [Mznssenosm Engheh) | - Wndow - Spaakling - B Veew
SpeakLine File Edit Format View ‘Window Help
e Focus Ring | Delasn
I O Beaming || Hidden
[Maly Soeakline o mtoresaes Subvires
‘ Can Draw Concitrenty
Peter Piper picked a peck of pickled peppers
A Text Cell Text Cell
g’ Stop Fpeak ;a
- O {l&am
= Il OSject Lty i ui]
u= =» Tabti Vi - Dit i record oraatid
L - asa I a able ang alows the ustr 10
N L-‘, . adit walok 30d peslce bng reITERGE.
. image & Taxs Table Call View -
rwaw NSTableCeilvien s 20 NEVew ThaT 8
. w100 NS Taba o impEasend 10
Text Tabie Coll View -
e NSTRBECHIiew 5 0 NSView 1 3
. T Mt inapaa 2
| B O table

Select the table view so you can look at its attributes in the Inspector. (This may be a bit challenging. The table view is inside the scroll view, and the table

view column is inside the table view. Experiment with clicks and double-clicks. You will know that you have selected the table view when the title of the last
section of the jump bar is Table View.

In the Inspector, set the Content Type to Cell Based, make the table view have only one column, and disable column selection (Eigure 6.9).

Figure 6.9. Inspect the Table View

ann 3 SpeakLine - MainMenu xib o

(e} (m) [s ypacks.] [m] | b e MR | EEI =} [UEI (=]

am b icheme Weakpmets b b il d

g4 b Mispeaiine) | Spe. Wi BMai o o WAL) EVeew | I Scroll View - Table View | -mmku . ﬂp-.-|ﬁ D & =
|G _Speakline Flle Edit Format View Window Help. - ARC

Corars Mode | Coll Based 3
|

Colimas 1|
o Headers W Reorderning
z = 1 B Resizng |
Vo
% ERECHER BoRt Rpeticipiane HPH'I — ﬁ:tﬂchl Colame Sizing | Last Column Dmly
o | Swop Speak
' | Anernating Rews

Grid Siyle | None :
Grid Color | 1 | Defaun 2]
Ruckgrourd | 1 | Defaun ||
Setection (| Mg 9 Empry
Coburmn
o Tyoe Salest

D (jelm 1
ll Cpect ibrary 1] (Ei |

Hagtiight | Regtar i |
|
I

"

& Table View - Displays recerd -erented
=2 T data i tuble and aliow the uie 1
il SO VAl S AN NELEDE SR NEAITEAQE.

|y

image & Text Table Cell Wiew -
®rwas WETableCeltiew is an NEView thai
wnd s WETableView instisces 10

Text Takls Coll Wiew -
o e de WSTabRECERVIEN 15 48 NSViIEs that &
! e WA Lnct e B
EST.

Double-click on the header of the column to change the title to Voices.

Note that in this chapter’s exercise, we are using a cell-based table view, as it is much simpler to use for trivial tables like this one. We will use view-
based tables in Chapter 11.

Make Connections

First, you will set the datasource outlet of the NsTableview t0 be the speakLineappDelegate. Select the NsTableview. Control-click in the table view to
bring up the Connections panel. Drag from the datasource outlet to the speakLineAppbDelegate (Figure 6.10).

Figure 6.10. Set the NS tableView's dataSource Outlet

| Build SpeakLine: Succeeded | Todsy at 224 FM | I = - ==

) (H 5 MyMm

= 4 & | [Bspeakiine SpeakLine MaimMenu b MaiaMenu.xib Window - Spe.. | B3 Vew | B2 Scroll View - Table View - = Tabie View
Speakiime File Edit Format View ‘Window Help

@J ®-Nals: _SpeakLine

Y Peter Piper picked a peck of pickled peppers. Welcas
op=l/laSpent.

g

O]

If you do not see datasource in the Inspector, you have selected Nsscroliview, Not NsTableview inside it. The scroll view is the object that takes care of
scrolling and the scroll bars. You will learn more about scroll views in Chapter 17. For now, just click in the interior of the table view until the title of the
Connection panel says NSTableView.

Also, set the speakLineAppDelegate t0 be the delegate Of the table view.

Now use the Assistant Editor to create an outlet called tab1eview On speakLineAppDelegate and connect it to the table view. Make sure that you have the
table view selected and Control-drag to the class declaration in the header file, as done in Chapter 5.

Edit SpeakLineAppDelegate.m

Implement the data source methods in speaklLineAppDelegate.m:
- (NSinteger)numberOfRowsinTableView:(NSTableView *)tv

return (NSinteger)[_voices count];

}

- (id)tableView:(NSTableView *)tv
objectValueForTableColumn:(NSTableColumn *)tableColumn
row:(NSinteger)row

NSString *v =[_voices objectAtindex:row];
return v;

}

The identifer for a voice is a long string such as com.apple.speech.synthesis.voice.Fred. If you want just the name rredq, replace the last method with
this one:

- (id) tableView: (NSTableView *)tv
objectValueForTableColumn: (NSTableColumn *)tableColumn
row: (NSInteger) row

NSString *v = [voices objectAtIndex:row];
NSDictionary *dict = [NSSpeechSynthesizer attributesForVoice:v];
return [dict objectForKey:NSVoiceName];

}

(The screenshots in this chapter assume that you've done the pretty version.)
Next, build and run the application. Now you get a list of the possible voices, but selecting a voice doesn’t do anything yet.

Besides having adatasource outlet, a table view has adelegate outlet. The delegate is informed whenever the selection changes. In
SpeakLineAppDelegate.m, implement tableviewSelectionDidChange:. (The class NsNotification Will be introduced later in this book. For now, just note
that you are passed a notification object as an argument to this delegate method.)

- (void)tableViewSelectionDidChange: (NSNotification *)notification

NSinteger row =[_tableView selectedRow];
if (row ==-1) {

return;
}

NSString *selectedVoice = [_voices objectAtindex:row];
[_speechSynth setVoice:selectedVoice];
NSLog(@"new voice =% @", selectedVoice);

}

The speech synthesizer will not allow you to change the voice while it is speaking, so you should prevent the user from changing the selected row. The
table view should be enabled and disabled with speakButton:

- (IBAction)sayIt: (id)sender
{

NSString *string = [textField stringValue];
if ([string length] == 0) {
return;

}

[speechSynth startSpeakingString:string];
NSLog (@"Have started to say: %Q@", string);
[stopButton setEnabled:YES];
[startButton setEnabled:NO]J;
[_tableView setEnabled:NOJ;
}
- (void) speechSynthesizer: (NSSpeechSynthesizer *)sender
didFinishSpeaking: (BOOL) complete

NSLog (@"complete = %d", complete);
[stopButton setEnabled:NO];
[startButton setEnabled:YES];
[_tableView setEnabled:YES];

}

Your users will want to see that the default voice is selected in table view when the application starts. Create a new method, awakeFromNib, and within it
select the appropriate row and scroll to it, if necessary:

- (void)awakeFromNib

{
I/ When the table view appears on screen, the default voice
/I should be selected
NSString *defaultVoice = [NSSpeechSynthesizer defaultVoice];
NSinteger defaultRow =[_voices indexOfObject:defaultVoice];
NSindexSet *indices = [NSIndexSet indexSetWithindex:defaultRow];
[_tableView selectRowIndexes:indices byExtendingSelection:NO];
[_tableView scrollRowToVisible:defaultRow];

}

Build and run the application. If the speech synthesizer is speaking, you will not be able to change the voice, as the table view should be disabled. If the
speech synthesizer is not speaking, you should be able to change the voice.

Common Errors in Implementing a Delegate

There are two very common errors that people make when implementing a delegate:

* Misspelling the name of the method: The method will not be called, and you will not get any error or warning from the compiler. The best way to
avoid this problem is to copy and paste the declaration of the method from the documentation or the header file.

* Forgetting to set the delegate outlet. You will not get any error or warning from the compiler if you make this error.

Many Objects Have Delegates

Delegation is a commonly used design pattern in Cocoa. Here are some of the classes in the AppKit framework having delegate outlets:

NSAlert
NSAnimation
NSApplication
NSBrowser
NSDatePicker
NSDrawer
NSFontManager
NSIimage
NSLayoutManager
NSMatrix

NSMenu
NSPathControl
NSRuleEditor
NSSavePanel
NSSound
NSSpeechRecognizer
NSSpeechSynthesizer
NSSplitView
NSTabView
NSTableView

NSText

NSTextField
NSTextStorage
NSTextView
NSTokenField
NSToolbar
NSWindow

For the More Curious: How Delegates Work

The delegate doesn’'t have to implement all the methods, but if the object does implement a delegate method, it will get called. In many languages, this
sort of thing would be impossible. How is it achieved in Objective-C?

Nsobject has the the following method:

- (BOOL) respondsToSelector: (SEL)aSelector

Because every object inherits (directly or indirectly) from nsobject, every object has this method. It returns ves if the object has a method called
aselector. Note that aselector is a ser, notan NSString.

Imagine for a moment that you are the engineer who has to write NsTab1leview. You are writing the code that will change the selection from one row to
another. You think to yourself, “I should check with the delegate.” To do so, you add a snippet of code that looks like this:

// About to change to row "rowIndex"

// Set the default behavior
BOOL ok = YES;

// Check whether the delegate implements the method
if ([delegate respondsToSelector:
@selector (tableView:shouldSelectRow:)])
{
// Execute the method
ok = [delegate tableView:self shouldSelectRow:rowlIndex];
}

// Use the return value
if (ok)
{

..actually change the selection...

}

Note that the delegate is sent the message only if it has implemented the method. If the delegate doesn’t implement the message, the default behavior
happens. (In reality, the result from respondsToselector: is usually cached by the object with the de1egate outlet. This makes performance considerably
faster than would be implied by the code.)

After writing this method, you would carefully make note of its existence in the documentation for your class.

If you wanted to see the checks for the existence of the delegate methods, you could override respondsToselector: in your delegate object:

- (BOOL) respondsToSelector: (SEL)aSelector

{
NSString *methodName = NSStringFromSelector (aSelector);
NSLog (@"respondsToSelector:%@", methodName) ;
return [super respondsToSelector:aSelector];

}

You might want try adding this method to appcontroller.m now.

Challenge: Make a Delegate

Create a new application with one window. Make an object that is a delegate of the window. As the user resizes the window, make sure that the window
always remains twice as tall as itis wide.

Here is the signature of the delegate method you will implement:

- (NSSize)windowWillResize: (NSWindow *)sender
toSize: (NSSize) frameSize;

The first argument is the window being resized. The second argument is a C struct that contains the size that the user has asked for:
typedef struct NSSize {
float width;
float height;
} NSSize;

Here is how you create an nssize thatis 200 points wide and 100 points tall:

NSSize mySize = NSMakeSize (200.0, 100.0);
NSLog (@"mySize is %f wide and %f tall", mySize.width, mySize.height);

You can set the intial size of the window in the Size Inspector in Interface Builder.
Challenge: Make a Data Source

Make a to-do list application. The user will type tasks into the text field. When the user clicks the Add button, you will add the string to a mutable array, and
the new task will appear at the end of the list (Figure 6.11).

Figure 6.11. Diagram of Challenge

8No Window
! || Add
f
Mow lawn
Find a babysitter for Saturday night
Buly 2 rolls of packing tape Jorget
Oqder a cake
|
| ///
) toDoTableView (.’
| /

f
I
nawltemField e
|| dataSource
I - —

AppController [+ -

- createMewliem:

items \‘ = “Mow lawn"

= "Find a babysitter for Saturday night”

’:.-——- “Buy 2 rolls of packing lape"

—= "Order a cake”

Reuysiqeinysn

When a new string is added to the array, you will need to send the message reloadpata to the table view before you will see it.

You get extra points for making the table view editable. (Hint: NsMutableArray has a method replaceobjectAtIndex:withObject:)

Chapter 7. Key-Value Coding and Key-Value Observing

Key-value coding (or KVC) is a mechanism that allows you to set and get the value of a variable by its name. The name is just a string, but we refer to that
name as a key. So, for example, imagine that you have a class called student that has an instance variable called firstName Of type Nsstring:

@interface Student : NSObject

{
NSString *firstName;

}
@ends
If you had an instance of student, you could set its firstname like this:

Student *s = [[Student alloc] init];
[s setValue:@"Larry" forKey:@"firstName"];

You could read the value of its firstName like this:

NSString *x = [s valueForKey:@"firstName"];

The methods setvalue: forKey: and valueForKey: are defined in nsobject. We know: This doesn’t look like rocket science, but it turns out that the ability
to read and set a variable by its name is really powerful. The rest of this chapter will be a simple example that should illustrate some of that power.

Key-Value Coding

In Xcode, create a new project of type Cocoa Application. Name the project kvcrun and set the Class Prefix to kvcrun.

Open kvcFunAppbelegate.h, and add an instance variable called fido of type int:

@interface KvcFunAppDelegate : NSObject <NSApplicationDelegate> {
int fido;

}

@property (assign) IBOutlet NSWindow *window;

@end

In kvcFunAppDelegate.m, YOU are going to create an init method that sets and reads rido using key-value coding. This is a bit silly because it is going to
be a long-winded way to get a simple result. This is designed to be illustrative rather than practical.

What makes the method so long-winded is that the key-value coding methods work with objects, so instead of passing an int, you will need to create an
NsNumber. Add this method to KvcFunAppDelegate.m:

- (id)init

self = [super init];
if (self) {
[self setValue:[NSNumber numberWithint:5]
forKey:@"fido"];
NSNumber *n = [self valueForKey: @"fido"];
NSLog(@"fido =% @", n);

return self;

}

The key-value coding mechanism will automatically convert the Nsnumber to an int before using it to set the value of fido. Build and run the application,
but don’t expect much. When the blank window appears, fido = 5 will be logged to the console.

If you have accessor methods for getting and setting fido, they will be used. You must, however, give them the correct names. The getter must be called
fido and the setter must be called setFido:. Note that this is more than a just a convention; if you give your accessors nonstandard names, they will not
get called by the key-value coding methods. Add £ido and setFido: 0 KvcFunApp-Delegate.m:

- (int)fido

NSLog(@"-fido is returning %d", fido);
return fido;

}
- (void)setFido:(int)x
{

NSLog(@"-setFido: is called with %d", x);
fido = x;

Declare these methods in kvcFunAppbelegate.h:

- (int)fido;
- (void)setFido:(int)x;

Build and run the application. Note that your accessor methods are being called.

Bindings

Many graphical objects in Cocoa have bindings. When you bind a key, such as fido, to an attribute of a graphical object, such as its value or its font
color, the view will automatically keep those in sync. You are going to add a slider, bind its value to fido, and see how it uses key-value coding to keep

them in sync.
Open MainMenu.xib. Drop a slider on the window. In the Attributes Inspector, make the slider Continuous (Eigure 7.1).

Figure 7.1. Make Slider Continuous

a
QRO ITAT D Bog oe@l &
= b Bakpanmms bt iveen it Wew poo—
=i 8 v Hwcl o Mainbe MainMa. . Whenchow. View "'u..!w!lm--:ﬂ B W% <+ O &L B
KveFun File Edit Format View Window Help v Shdar
Snyle | Linear

Tich Warks | Posivion Beiow
ann KveFun ;
Cimby st an Sk marks

Nt .00 | ipa.0gf!
Maimam [resrse

w 50,00}
Currmrn

¥ Cadiiol

B

Tiewt Diretrion | Wasturad
Lapeen | Lat Ta Right

i Bl | Word g [l

Toureana Lo v Lme o~ CONtINUOUS
was 4 Enablsg /

i Conrusus
Pefuses Firas Reagaonde:

O e =

. M cejecs Lbrary
| RS-

Yertical Sliger - Ditalays 4 range of
valies for somasking in Phe AR

Cieculier Sider - Diyplays & r
skt B ATHIEAG I Tt APplL e

In the Bindings Inspector, bind the value of the slider to the fido key of the instance of kvcFunappbelegate (Figure 7.2).

Figure 7.2. Bind Value of Slider to fido

a g ™4 KweFum - ShainMamu. il d
Y r 1 [——— ez = -
() (M) [e | (= il ElooodE =
Bam Scheme ek bl : Egans Wiew Coganrer
= 4 » [kwkon KacFun Wbl WianBAn Wirsiow. EVew ®Twrcalider [B = 4 & 0|68
|l S *‘cﬂ"‘ — 2 -E-q'_.(T —— Hulg Shirein S b sl e “\i‘\‘ y .
B B Vaer Bmdings

ke Vo
[aNs] Eyckun ¥ Waioe Xw Fum Apo Deiegair b fido)

o Wend 1o | Wt Fun Ang Ovivgasr

Cantreles Kiy

Conditionatly St bddan
F B For mon ApESCANE il

Vabdabey Imrmediasely

p
sogicanca

Vartical Sicer - Dinplivy & range o
ale3 450 BTG IR A JDEITN

Circudar Slider - Dicalays & ringe of
Sl Ao VTG T (e OO

W o2 & L | bbSdemen

Build and run the application. Note that the slider uses valueForkey: to get its initial value (which triggers your £ido method). As you move the slider, it
calls setvalue: forkey: t0 update the value of fido (which triggers your setFido: method).

Key-Value Observing

What happens if fido is changed by something other than the slider? How would the slider know that it has a new value?

When the slider is created, it tells the kveFunappbDelegate that it is observing its fido key. Whenever the value of fido is changed by the accessor
methods or by key-value coding, the kvcFunappDelegate Sends a message to the slider notifying it that £ido has changed.

In MainMenu.xib again, add a Label text field to the window, and bind its value t0 kvcFunappDelegate’s fido key (Figure 7.3).

Figure 7.3. Bind Value of Label to fido

ana 53 EwcFun - MainMenu.xib .’

o e | Finished rienning KegFun | : o

() (M) [k Mym, | |m . IEIIEI) [:IE] =]

ur, Scheme Breakpaints Edirar View Organizer |
| = A s P ecun KweFun Mainl Maln®. Whndo.. | BE View | Satic Text La.bell DB B ® 2 (&6l 2
KveFun File Edit Formar View Window Help Walug
? ¥ Value (Kve Fun App Delegate seit fids)
o Bind 1o | Kc Fun App Deiegate
B0 EwcFun

Comtroller Key

Medel Key Path

@ sell fide|

Value Transfaormer

o Aficws Ediiting Multiple Values Selection
Mbways Presents Application Modal Alerts
Canditionally Sets Editable
] Label Conditipnally Sets Enabled
Canditionally Sets Hidden
O illeim

4 Obyect Library

Label - Disglays text than the user cas
Label yiper

e
lime
Label

Wrapping Label - Displays est tsar
U BbE A B

E i @ & % |MNoSeecion 0, labe

Build and run the app. Note that when you move the slider, setFido: is called. This notifies the text field that rido has changed. The text field uses
valueForKey: to get the new value of rido. Thus, you see the £ido method getting called.

Making Keys Observable

The previous section mentioned that when you use accessors or key-value coding to change the value for a key, the observers are automatically notified
of the change. What happens if you change the variable directly?

Open kvcFunAppbelegate.h and declare a new action method:
- (IBAction)incrementFido:(id)sender;
INn kvcFunAppbDelegate.m, implement the method:
- (IBAction)incrementFido:(id)sender
fido++;
NSLog(@"fido is now %d", fido);
}

OpenmMainMenu.xib. Add a button to the window, label it Increment Fido, and Control-drag from the button to the instance xvcFunapppelegate. The button
should trigger the incrementFido: action (Figure 7.4).

Figure 7.4. Set Target and Action of Button

- Rela ‘_- KveFun - MainMeni.xib

— SR Sl Tkl ErcFa . - =
(p) (m) [Romyn.] (= flolhak penig Kk BEoE oSOl (@
o e . -

| fun ane Scheme Wreakpaints e Editow view ranizer

=i &+ Tysvcun) | Kecfun) - MainMemuib | SaieMenao [English) | - Window - Xvchun | 83 View . % Push Button

KwcFun File Edit Format View Window Help

[NaNe) KweFun

> @

ib - Mindserxid (English) | - Window - Kvefian -

View Window Help

fanNnn WwcFun
./ Label Inezzment Fido

\\ z Label | ingremant Fido

You would hope that when the button is clicked, the slider would move and the text field would update itself. Sadly, neither happens. Try building and
running the application.

If you are going to change the variable directly, you will need to explicitly trigger the notification of the observers. Change the incrementFido: method:

- (IBAction)incrementFido: (id) sender

{
[self willChangeValueForKey:@"fido"];
fido++;
NSLog (@"fido is now %d", fido);
[self didChangeValueForKey: @"fido"];

}

Build and run the application now; the Increment Fido button should work correctly.

There are two other solutions that would work. First, you could use key-value coding:

- (IBAction)incrementFido: (id) sender

{
NSNumber *n = [self valueForKey:@"fido"];
NSNumber *npp = [NSNumber numberWithInt:[n intValue] + 1];
[self setValue:npp forKey:@"fido"];

}

Or you could use the accessor method to change fido:
- (IBAction)incrementFido: (id) sender
{ [self setFido:[self fidol]l + 11;
}

Type this version in. Then build and run it.

Figure 7.5 is an object diagram of what you have done. Note that we are going to be using half-arrows to represent bindings.

Figure 7.5. Object Diagram

NSSlider NSTextField |

X, A
value: fido '.falu-z:I ficio
A\ i/
: .} L4 z
KVCFunAppDelegate

int fido
- incramentFido:

v

farget

NSButton

action=incremantFoo:

Properties

As you can guess, we spend a lot of time calling accessor methods, so much so that Objective-C gives programmers the option of calling accessors by
using dot notation. If you have a pointer rover to an object with a getter method rex, you can call it like this:

NSLog (@"Rover's rex 1s %Q@", rover.rex);

To call setrex:, you could do this:

rover.rex = [NSDate date];

Objective-C programmers have varying opinions about whether dot notation is a good addition to the language. Some consider it syntactic sugar, a
feature that can (dangerously) disguise message sends, which do not behave the same as, say, assigning values in a structure. Others think that those
dangers are outweighed by the brevity it brings to the language. For clarity, we won't be using it in this book.

What about writing the accessor methods? If your object has 12 instance variables, do you need to write 12 setters and 12 getters?

Properties provide a very elegant way to eliminate a lot of this code. In the xvcrunappbelegate.h file, replace the declaration of the fido and setFido:
methods with the declaration of a property:

@interface KvcFunAppDelegate : NSObject <NSApplicationDelegate> {
int fido;

}

@property (assign) IBOutlet NSWindow *window;

@property (readwrite, assign) int fido;
- (IBAction)incrementFido: (id) sender;
@end
This one line is equivalent to declaring setFido: and £ido methods.

| NKvcFunAppDelegate.m, YOU Can USe @synthesize t0 implement the accessor methods. Delete your fido and setFido: methods from
KvcFunAppDelegate.m, and replace them with this line:

@synthesize fido;

Note that everything still works. (Naturally, you won't see the log statements anymore.) The esynthesize directive implements the accessor methods for
fido as they are described in kvcFunAppbelegate.h.

Attributes of a Property

In general, the declaration of a property looks like this:

@property (attributes) type name;

The attributes caninclude readwrite OrF readonly. The defaultis readwrite. A property marked readonly gets no setter method.
To describe how the setter method should work, the attributes can also include one of the following: assign, strong, weak, copy. Let's look at each in turn:

* assign (the default) makes a simple assignment happen. This attribute is most commonly used for scalar, nonpointer types, such as integers and
floating-point values.

* strong says that this property is a strong reference. It keeps the object being pointed to from being deallocated while this pointer is set. It is specific
to ARC code; if you are not using ARC, the retain attribute is equivalent.

* weak denotes a weak reference. It is similar to assign, except that once the object being pointed to is deallocated, this property will be setto ni1. It
is supported only by code compiled with ARC.

* copy makes a copy of the new value and assigns the variable to the copy. This attribute is often used for properties that are strings and other
classes with mutable subclasses.

Attributes can also include nonatomic. If your application is multithreaded, it is sometimes important that your setter methods be atomic. That is, the
execution of the setter method from one thread will not conflict with the execution of the same setter method on another thread. By default, the
esynthesize call will generate accessors with this property. This involves using a lock to ensure that only one thread at a time is executing the setter.
Creating and using the locks introduces some overhead. If you know that the accessors for a property don't need to be atomic, you can eliminate the
overhead by adding nonatomic to the attributes.

If a property name exactly matches the corresponding instance variable name, you can simply esynthesize that name:

@synthesize fido;

If, however, you prefer to use a prefix with your instance variables (Xcode likes to use an underscore prefix), you can specify the instance variable name
by using this technique:

@synthesize fido = fido;

For the More Curious: Key Paths

Objects are often arranged in a network. For example, a person might have a spouse who has a scooter that has a model name (Figure 7.6).

Figure 7.6. Objects Are a Directed Graph

selectedPerson | Person
\ il
II |
\ T e
' Spouss scooter
1 ~ N
| Person Scooter

" modelName = @ "BV250"

To get the selected person’s spouse’s scooter's model name, you can use a key path:

NSString *mn;
mn = [selectedPerson valueForKeyPath:@"spouse.scooter.modelName"];

We'd say that spouse and scooter are relationships of the person class and that mode1name is an attribute of the scooter class.

There are also operators that you can include in key paths. For example, if you have an array of rerson oObjects, you could get their average
expectedRaise by using key paths:

NSNumber *theAverage;
theAverage = [employees valueForKeyPath:Q@"(@avg.expectedRaise"];

Here are some commonly used operators:

Qavg
@count
@max
@min
@sum

Now that you know about key paths, we can discuss how to create bindings programmatically. If you had a text field in which you wanted to show the
average expected raise of the arranged objects of an array controller, you could create a binding like this:

[textField bind:QR"value"
toObject:employeeController
withKeyPath:@"arrangedObjects.l@avg.expectedRaise"
options:nil];
Of course, itis usually easier to create a binding in Interface Builder.
Use the unbind: method to remove the binding:

[textField unbind:@"value"];

For the More Curious: Key-Value Observing

How did the text field become an observer of the fido key in the kvcFunappbelegate 0Object? When it wakes up from being on the NIB, it adds itself as an
observer. If you wanted to become an observer of this key, your line of code might look something like this:

[theAppDelegate addObserver:self
forKeyPath:@"fido"
options:NSKeyValueChangeOldKey
context:somePointer];

This method is defined in Nsobject. It is how you say, “Hey! Send me a message whenever rido changes.” The options and context determine what extra
data is sent along with that message when fido changes. The method that is triggered looks like this:

- (void)observeValueForKeyPath: (NSString *)keyPath
ofObject: (id)object
change: (NSDictionary *)change
context: (void *)context

{
}

The keyPath, in this case, would be e"fido"; the object would be the KvcFunAppbDelegate; context would be the pointer somerointer that was supplied
as the context when you became an observer; change is a dictionary (a collection of key-value pairs) that can hold the old value of fido and/or the new
value.

Chapter 8. NSArrayController

In the object-oriented programming community, a very common design pattern is Model-View-Controller. This design pattern says that each class you
write should fall into exactly one of the following groups.

1. Model classes describe your data. For example, if you write banking systems, you would probably create a model class called savingsAccount
that would have a list of transactions and a current balance. The best model classes include nothing about the user interface and can be used in

several applications.
2. Viewclasses are part of the GUI. For example, Nss1ider is a view class. The best views are general-purpose classes and can be used in several
applications.

3. Controller classes are usually application-specific and are responsible for controlling the flow of the application. The user needs to see the data,
so a controller object reads the model from a file or a database and then displays the model by using view classes. When the user makes
changes, the view objects inform the controller, which subsequently updates the model objects. The controller also saves the data to the filesystem

or database.

Until Mac OS X 10.3, Cocoa programmers wrote in their controller objects a lot of code that simply moved data from the model objects into the view
objects and back again. To make common sorts of controller classes easier to write, Apple introduced Nscontroller and bindings.

NSController iS an abstract class (Figure 8.1). NsobjectController, a subclass of Nscontroller, displays the information, or content of an object.
NSArrayController iS a controller that has an array of data objects as its content. In this exercise, we will use an Nsarraycontroller.

Figure 8.1. Controller Classes

NSController An abstract class
: inherits fram
|
NSObjectController Has a content object

| inherits from
|

| The content is an array that

NSArayController | . ndles selection and sorting

Starting the RaiseMan Application

Over the next few chapters, you will create a full-featured application for keeping track of employees and the raise that each person will receive this year.
As this book progresses, you will add file saving, undo, user preferences, and printing capabilities. After this chapter, the application will look like Figure

8.2.
Figure 8.2. Completed Application

D
)
D

Untitled

rame Bk Aidd Einiloune
Chap Jones 15% - ko e

Curtis Lovejoy 1% Remove

(Yes, experienced Cocoa programmers, you could create an application like this using Core Data, but we want you to see how it is done manually. Then,
Core Data will not seem so magical.)

Create a new project in Xcode. Choose Cocoa Application for the type. Name the project RaiseMan, set the Class Prefix to rv, and enable Create
Document-Based Application. Set the document extension to rsmn, and disable Use Core Data and Include Unit Tests (Eigure 8.3).

Figure 8.3. New Document-Based Project

* - = Laatieg | = E =

Schemw

Choose options for your new profect:
—

Product bame [RaisaMan
Compary Idemtifier com.bignerdranch
Bandle identitier
Clazs Prefix AM
App Store Category | None
o Creare Document-Based Application
Document Extension | rsma

Use Core Dara
o Use Autormatic Reference Counting
Include LU Tasts

Cancel Previous | Nem |

What is a document-based application? It is an application in which several documents can be open simultaneously. TextEdit, for example, is a

document-based application. System Preferences, on the other hand, is not a document-based application. You will learn more about document
architecture in Chapter 10.

The object diagram for this application is shown in Figure 8.4. The table columns are connected to the Nsarraycontroller by bindings rather than by
outlets. This is a cell-based table view; we will discuss view-based table views in Chapter 11.

Figure 8.4. Object Diagram

& on Perzon
NSTableColumn | NSTableColumn | : rmorName | [NEStng “person
Y | fioat expectedRaise tioat expactedHaise
} % \ 4
| "\ : //
value = arangedObjects. personName \ |_MSMutableArray |
\
value = arangedObjects expeciedRaise L
e /-/ employeas
; Fialior] AMBocument |
l{. —WSAmayControlier ... consentArray = employees —(—Pmoocument |
! e]
—
- f/‘ \
-
enabled = canRemove farget tanget

—
ﬁi?ﬁun}; | NSBution |

[action = remove: | [action = add |

Note that the class rRMpocument has already been created for you. RMDocument is a subclass of Nsbocument. The document object is responsible for

reading and writing files. In this exercise, we will use an Nsarraycontroller and bindings to construct our simple interface, so we won't be adding any
code to RMDocument just yet.

To create a new person class, choose the File -> New -> New File... menu item. When presented with the possibilities, choose Objective-C class. Name
the class rerson and set it to be a subclass of Nsobject, as shown in Figure 8.5.

Figure 8.5. Creating a Person Class

8 B RalseMan verit
m) R, Mym [e = m EX

EE_C8 -
« By Raisela Choose options for your new file:
B argct

Raised

5
m AME

RME

Mai

» L Sup

* Framey
Pradut

Class |Persan

Subiclazs of | NSObject ¥

Cancel Previous I kewt |

Edit the person.h file to declare two properties:
#import <Foundation/Foundation.h>

@interface Person : NSObject {
NSString *personName;
float expectedRaise;
}
@property (readwrite, copy) NSString *personName;
@property (readwrite) float expectedRaise;
@end

Now edit rerson.n to synthesize these properties and to modify the overriding init:
#import "Person.h"
@implementation Person

@synthesize personName;
@synthesize expectedRaise;

- (id)init
{
self = [super init];
if (self) {
expectedRaise = 0.05;
personName = @"New Person";
}
return self;
}

@end

Note that person is a model class—it has no information about the user interface. As such, this class doesn't need to know about all the Cocoa
frameworks. Thus, instead of importing cocoa/cocoa.h, we are importing Foundation/Foundation.h. Either would work, but importing the smaller
framework is more stylish. It indicates, for example, that this class could be reused in a command-line tool or aniOS application.

Declare the emp1oyees array (which will contain instances of the person class) in RMbocument . h:

@interface RMDocument : NSDocument {
NSMutableArray *employees;

}
- (void)setEmployees:(NSMutableArray *)a;
@end

Now in RMDocument .m, modify init to instantiate the emp1oyees array. Create the setEmployees: method. Leave the rest of the template methods in place
for now.

- (id)init
{
self = [super init];
if (self) {
employees = [[NSMutableArray alloc] init];

}

return self;
}
- (void)setEmployees:(NSMutableArray *)a

/I This is an unusual setter method. We are going to add a lot
Il of smarts to it in the next chapter.
if (@ == employees)

return;

employees = a;

}

RMDocument.xib

Click on rRMDocument . xib to open it in the Interface Builder editor.

Delete the text field that says Your document contents here. Drop a table view and two buttons onto the window. Relabel and arrange them as shown in
Figure 8.6. Use the Attributes Inspector to make sure that the table view's Content Mode is set to Cell Based.

Figure 8.6. Document Window

806 Window
e Falsn [Add Employee |
| Text Cell Text Cell

Remove

Drag out anNsarraycontroller (from Cocoa->Objects & Controllers) and drop it into the editor area. An NsarrayController icon will appear in the
Interface Builder dock.

Ensure that the array controller is selected in the dock. Openthe attributes Inspector for the Nsarraycontroller instance; under Object Controller, set
the Class Name to person. Add the keys personName and expectedRaise @S shownin Figure 8.7.

Figure 8.7. Configure NSArrayController's Class Name and Keys

ana B RaiseMan - RMDocument.xib
(o) (m) (R py - Elos CcolFE =
fan Sinp Schome Breakpaiss : Ednr view Organizer
= By Raiseban | [RaiseMan M Docume RMDocument xib (Engéish) (@ ArrayComrolier |) B H (% < O & =2
e R e o e e e ———
ooy B Avoid Emoty Selection
o Preserve Selection
L a Warstd oo W et indemed Objects
o Ciear Nilter Precicare On
Mame Raise A Employes Aiito. Rearrange Costent
¢I Taxt Call Text Cell Abwarys Use Mults Valus M
Remaove ¥ Object Contralier

O o0& =

NSArrayController icon in the dock Object Class Name and Keys

With the array controller still selected, change to the Bindings Inspector (its icon resembles a knot). Find the Content Array binding in the list and expand

it. Check Bind to; in the pop-up; select File’s Owner. Leave the Controller Key blank and enter emp1oyees for the Model Key Path (Eigure 8.8). Cocoa
programmers would say that they are binding the Content Array of the array controller to the empioyees array of File’s Owner (which is the instance of
RMDocument).

Figure 8.8. Bind the Array Controller’'s Content Array

Bindings Inspector

ana B RaiseMan -~ RMDocument.xib
i Xeod —
() (m) [mosesi] [=] | - Eoe ocofE
Run Stop Sthere Berakgnings e fititee
= 4 | PRaisestan BaiseMan AMTocame EMfocument.sit Enghshl © G Aray Cwﬂruller; DB 3 % & O
Anaiabeity
» Idmabie
Contrgser Lantent
- - Wiidow w Conert Array (Fle'y Qmner emgioyees
o mingto | File's Oweer
Kame Raise Add Employes Controfier Key
@J Text Cell Text Cell
Remove
Magel Koy Path
A employees
Value Trasr former
E: Always Presents Application Modal Alerty

‘.‘“ Condiionaly Sets Editable
e Oeletes Cibjects On Remove
L = Hangies Content Ay Cormpound Yalue

o Raises For Not Apolicabie Keyi

Selecti All When Sefting Content

Validates Immgdistely

O 1} =

Now that we have configured the array controller, we will bind the table-view columns to display the contents of the array controller. In Chapter 6, we
implemented the NsTableviewDataSource protocol to populate the table view; bindings will allow us to skip that code.

The first column of the table view will display each employee’s name. Click and double-click the column to select it. (At no time in this book will you bind a
scroll view or cell; doing so is a common mistake, so keep an eye on the jump bar above the editor.) In the Bindings Inspector, find the Value binding.
Check Bind to and select the Array Controller in the pop-up. Set the Controller Key to arrangedobjects and the Model Key Path to personname (Eigure
8.9). Again, Cocoa programmers would say that they are binding the column’s value to the personName of the arrangedobjects of the array controller.

Figure 8.9. Bind the First Column to the Array Controller

ana By RaiseMan - RMDocument.xlb

i \ B R My M - Keode E =]
() (=) v e Bo s (odFE (=
Run Sop Scheme Breabpoints - Editor, ot Orgarizer |

= 4 = [yRaissan R <R R acWi BSV 0BS5S Tatieview BTtk Coima-tame |0 B B 9 £ 2 | Hl 2

Valua
¥ Valur (rray Comrelles LerangrdOtjest
: W mind 1o | Asray Controter
WAoo Window X Crntreder Key

arrangeaObmets

Model Key Parh
persoakame

g — [| Add Employes
w Text Cell Text Cell P
| Remove

Value Transformer

o Asiows Eediting Multiple Values Seiection
Mgy Presents Application Modal Alens
o Conditionally Sets Editable
! Conditionally Sets Enabled
Cantinuesily Updates Vilue
i Craates Sort Descriptor
o Raises For Noa Appacable Kiys
Validanes Irmadiately
Mhshiple Values Placeholdes

O (e -

G H

The second column of the table view displays each employee’s expected raise. Find the Number Formatter in the Library (in Library->Cocoa->Controls)
and drag it onto the second column’s cell (Figure 8.10).

Figure 8.10. Add a Number Formatter

ara B RaiseMan - RMDocument.xib o
(») (m) (Romin] (=] Xods] Bloc oo =
Run hﬂ s-” - ? W lisuan m m.w
= 4 ¢ [PyRaiseMan | RaiseMan - - AMDSCumentib o RMOStument.sis (Englishy « Ko Selection ||3| B B2 e &£ 0| Hia
3 B8 SRS, ., PRSI
) Mo Selection
N Kare [T Add Employes
' Text Cell Te,
.-’% 1
5 1 O i@ = |
il ovvect Ubrary s (S|

Tast Fishd with Number Formarer
- Displarys. numibers that the user can
select or edit and than semds &3 action..

1214

Kurmsber Formatver - Formaes the
lextual regresentation of cely that
contain MSNUmber obsects and.

= numiber g |

In the Inspector, with the number formatter selected, set the formatter (a 10.4+ formatter) to display the number as a percentage and enable Lenient,

which will make it less picky about input, as shown in Figure 8.11.

Figure 8.11. Number Formatter Attributes

5 RalseMan - RMDocument.xil

.

ana

(>) (=) (o] (=] jate | Blae com @
R Swp fcheme Breskpoints — Orgarizer
=« » Bl W os vz ez T Peld Gl - Tew el NmanrIml{ln E u|'1fﬁﬂ a2

T Mumibed Farmalls
Bebanior | Mac Q5 X 10.4+ Dafault =

']
|
7 = Sayle | Percent |
[V oo IO ... S o vl C M|
| Narme " Ralse '| Add Emploves | o Mol f3 e |
Text Cell 12,346% b o Lotatize o Lenient
Remove | |
l S Q.45
Unformatted |
|
|
|
.
o i@ m |

Reselect the second column. In the Bindings Inspector, bind vaiue to the expectedraise of the arrangedobjects of the Array Controller, just as you did

with the first column (Figure 8.12).

Figure 8.12. Bind the Second Column to arrangedObjects.expectedRaise

RalseMan - RMDocument.xib

.

ana
Ran

Finished runting Raiseblan

¥ Hinas

] aﬂzl.num =

Mew Ovganizer

=) (Bowm.] [=] [
oo Scheme Breapoints
=14 = Eyfaisean) R <R <R

=W B2V, 825 0 ¥ Tabie View) [Tabie Column - Raise | O E B9 # 0|6l B

Text Cell

LT
12.346%

Nalug |
* Max Valoe

* Min Value

¥ Walue sy Controlier Jranged oo
o Bind o | Array Controtier
Conreiar Key

avangaeOBECTE

Mhcdel Key Path

expectedaise

Walue Transfonmer

o Msiows Editing Multiple Values S¢lection
| Mhways Presents Application Modal Alerts
o Conditionally Sets Editable
Conditioaally 5e15 Enabled
Continugasly Updases Valia
& Coeates Sort Descripter
™ Raises For Kot Applcable Keys

o ille = |

Control-drag from the Add Employee button to the array controller to set the target of the button. Set the action to add:.

Control-drag to make the array controller become the target of the Remove button. Set the action t0 remove:

. Also, in the Bindings Inspector, bind the

button’s enabled binding to the canremove attribute of the Nsarraycontrolier, as shownin Figure 8.13.

Figure 8.13. Binding the Enabled Attribute of the Remove Button

ana B RaiseMan - RMDocument.xib

—_ ! 9
(il m sy - Xeode = r -
(») (R My . EBlo= ooFE =
Run Stop Scheme Breakpotmes et Editor Vitw Orgarirer

= 4 » [3Raisestan RaiseMan o [l AMDocu AMDoCw ..« u= Window - BT View | "% Push Buttos | DE B ¥ < 0| & 2

Action invocatios

¥ Targst

ann Window Availabiliy
¥ Enabled (Aray Controfler. canfemovel

Mare Raise Add Employes o Bind toc | Array Controlier
Text Cell 12,346%
i Remaove

™ Mol Ky Path

Value Transformer

o Ralves For Not Appicable Keys
e Maltiple Values Plageholder
Unspecified
No Selection Placahalder
Unspecified
ot Applicable Placeholcer
Lingnacifisd

O (&

The user will also want to remove the selected employees by pressing the delete key on his or her keyboard. Select the Remove button; in the Attributes

Inspector, set the keyboard equivalent to the Delete key (Figure 8.14). To set the key equivalent, click in the text field and then type the key you wish to
associate with this button. Xcode will record the keystroke used and display it in the text field. To remove a key equivalent, click the x button at the right-

hand side of the text field.

Figure 8.14. Make Delete Key Trigger Delete Button

D B B |®|(s © 6 =

Button

Style | Push ; m
Type | Momentary Push In a

Visual E Bordered
] Transparent

state | OFf r

] Allows Mixed

Title | Remove
Alternate | Alternate Title
Alignment'-- =3k
Font | Lucida Grande 13,0

T

Image | lma
Key Equivalent Alternate | Alternate Image
Position Lw—ﬁ oo--08 0

Scaling | Proportionally Down

b ”J_.L:Jl:U =

Sound | Sound

Key Equivalent | <=

Build and run your application. You should be able to create and delete person 0bjects. You should also be able to edit the attributes of the person objects
using the table view. Finally, you should be able to open multiple untitled documents. (No, you can’t save those documents to a file. Soon, Grasshopper.)

Key-Value Coding and nil

Note that our example contains very little code. You described what should be displayed in each of the columns in Interface Builder, but there is no code
that calls the accessor methods of your person class. How does this work? Key-value coding. Key-value coding makes generic, reusable classes like

NSArrayController possible.

The key-value coding methods will automatically coerce the type for you. For example, when the user types in a new expected raise, the formatter creates
aninstance of NsNumber. The key-value coding method setvalue: forkey: automatically converts thatinto a f10at before calling setExpectedraise:. This

behavior is extremely convenient.

There is, however, a problem with converting an nspecimalNumber * into a float: Pointers canbe ni1, but f1oats cannot. If setvalue: forkey: is passed
a nil value that needs to be converted into a nonpointer type, it will call its own method:

- (void)setNilValueForKey: (NSString *)s

This method, as defined inNsobject, throws an exception. Thus, if the user left the Expected Raise field empty, your object would throw an exception.
Typically, you will override setNilvalueForkey: SO that it sets the instance variable to a default value. In this case, you are going to override this method in

your Person class and set expectedraise to 0.0. Add the following method to person.m:
- (void)setNilValueForKey:(NSString *)key

if ([key isEqual:@"expectedRaise"]) {
[self setExpectedRaise:0.0];
}else {
[super setNilValueForKey:key];
}

Add Sorting

While the application is running, click on the column headers and note that sorting works (badly). In particular, the compare: method is ordering the names.
This compare : method is very strongly case sensitive. For example, z will come before a. Let's change the method used for sorting.

Open rupocument . xib. You can set the sorting criteria in the Atiributes Inspector for each column. Users will be able to choose on which attribute the data
will be sorted, by clicking on the header of the column containing that attribute.

Select the column that displays personname. In the Inspector, set the sort key to be personvame and the selector to be caseinsensitiveCompare:, as
shown in Figure 8.15.

Figure 8.15. Sorting on personName

ana B RalseMan - RMDocument.xib
= = Finished running Raisehan =
(») R, My M - F-ﬂ!lﬂ) 0CoE =
Rur Scheme Hrealpoints Lt Editor orw Ovgarizer
=1 3 Raisestan R R PR =W B2V B25 ¥ Table view o B Table Columa e | D) B B S 2 6 B
T Table Columa
Titke Marme
Agnment RS 3 OEm
ann
Jodiow Ticle Font Systemn Small 11
Mare Raise Add Employes | Son ey personName
q,-l | Text Cell 12,346% | 5 =3
" Remowve
-\ | ¥ Resizing | Boeh
| | Stare o Editable Hidden
=
D i}/ & =

The caselInsensitiveCompare: method is part of Nsstring. For example, you might do this:
NSString *x = @"Piaggio";
NSString *y = @"Italjet";

NSComparisonResult result = [x caselnsensitiveCompare:y];

// Would x come first in the dictionary?
if (result == NSOrderedAscending) {

}

NSComparisonResult iSjUSt an integer. NSOrderedAscending IS —1. NSOrderedSame iS 0. NSOrderedDescending iS 1.

Build and run your application. Click on the header of the column to sort the data. Click again to see the data in reverse order.

For the More Curious: Sorting without NSArrayController

In Chapter 6, you populated a table view by implementing the datasource methods explicitly. You might have wondered then how you could implement this
sorting behavior in your own application.

The information that you added to the columns of the table is packed into an array of Nssortpescriptor Objects. A sort descriptor includes the key, a
selector, and an indicator of whether data should be sorted into ascending or descending order. If you have an NsMutableaArray Of Objects, you can use
the following method to sort it:

- (void)sortUsingDescriptors: (NSArray *)sortDescriptors

An optional table-view datasource method is triggered when the user clicks on the header of a column with a sort descriptor:

- (void) tableView: (NSTableView *)tableView
sortDescriptorsDidChange: (NSArray *)oldDescriptors

Thus, if you have a mutable array that holds the information for a table view, you can implement the method like this:

- (void) tableView: (NSTableView *)tableView
sortDescriptorsDidChange: (NSArray *)oldDescriptors

NSArray *newDescriptors = [tableView sortDescriptors];
[myArray sortUsingDescriptors:newDescriptors];
[tableView reloadDatal];

And voila!, sorting in your application.

Challenge 1

Make the application sort people based on the number of characters in their names. You can complete this challenge using only Interface Builder—the
trick is to use a key path. (Hint: Strings have a 1ength method.)

Challenge 2

In the first edition of this book, readers created the RaiseMan application without using NsArraycontrolier or the bindings mechanism. (These features
were added in Mac OS X 10.3.) To do so, readers used the ideas from previous chapters. The challege, then, is to rewrite the RaiseMan application
without using Nsarraycontroller or the bindings mechanism. Bindings often seem rather magical, and it is good to know how to do things without
resorting to magic.

Be sure to start afresh with a new project—in the next chapter, we will build on your existing project.

The person class will stay exactly the same. In rupocument . xib, you will set the identifier of each column to be the name of the variable that you would like
displayed (use the attributes Inspector in Interface Builder). Then, the RMDocument class will be the datasource Of the table view and the target of the
Create New Employee and Delete buttons. RMpocument will have an array of rerson objects that it displays. To get you started, here is rRubocument . h:

#import <Cocoa/Cocoa.h>
@class Person;

@interface RMDocument : NSDocument
{
NSMutableArray *employees;
IBOutlet NSTableView *tableView;
}
- (IBAction)createEmployee: (id) sender;
- (IBAction)deleteSelectedEmployees: (id) sender;
@end

Here are the interesting parts of RMDocument . m:

- (id)init
{
self = [super init];
if (self) {
employees = [NSMutableArray arrayl];

}

return self;

}
#pragma mark Action methods

- (IBAction)deleteSelectedEmployees: (id) sender
{
// Which row is selected?
NSIndexSet *rows = [tableView selectedRowIndexes];

// Is the selection empty?
if ([rows count] == 0) {
NSBeep () ;
return;
}
[employees removeObjectsAtIndexes:rows];
[tableView reloadData];

- (IBAction)createEmployee: (id) sender

{
Person *newEmployee = [[Person alloc] init];
[employees addObject:newEmployee];
[tableView reloadData];

}
#pragma mark Table view dataSource methods

- (NSInteger)numberOfRowsInTableView: (NSTableView *)aTableView
{

return [employees count];

}

- (id) tableView: (NSTableView *)aTableView
objectValueForTableColumn: (NSTableColumn *)aTableColumn
row: (NSInteger)rowIndex

// What is the identifier for the column?
NSString *identifier = [aTableColumn identifier];

// What person?
Person *person = [employees objectAtIndex:rowlIndex];

// What is the value of the attribute named identifier?
return [person valueForKey:identifier];

- (void) tableView: (NSTableView *)aTableView
setObjectValue: (id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (NSInteger) rowIndex

NSString *identifier = [aTableColumn identifier];
Person *person = [employees objectAtIndex:rowIndex];

// Set the value for the attribute named identifier
[person setValue:anObject forKey:identifier];

Once you have it working, be sure to add sorting!

Chapter 9. NSUndoManager

Using NsundoManager, you can add undo capabilities to your applications in a very elegant manner. As objects are added, deleted, and edited, the undo
manager keeps track of all messages that must be sent to undo these changes. As you invoke the undo mechanism, the undo manager keeps track of all
messages that must be sent to redo those changes. This mechanism works by utilizing two stacks of NsInvocation objects.

This is a pretty heavy topic to cover so early in a book. (Sometimes when we think about undo, our heads start to swim a bit.) However, undo interacts
with the document architecture. If we tackle this work now, you will see in the next chapter how the document architecture is supposed to work.

NSInvocation

As you might imagine, it is handy to be able to package up a message (including the selector, the receiver, and all arguments) as an object that can be
invoked at your leisure. Such an object is an instance of NsInvocation.

One exceedingly convenient use for invocations is in message forwarding. When an object is sent a message that it does not understand, before raising
an exception, the message-sending system checks whether the object has implemented the following method:

- (void) forwardInvocation: (NSInvocation *)x

If the object has such a method, the message sent is packed up as an NsInvocation and forwardInvocation: iS called.

How the NSUndoManager Works

Suppose that the user opens a new RaiseMan document and makes three edits:
1. Inserts a new record
2. Changes the name from New Employee t0 Rex Fido
3. Changes the raise from 0 to 20

As each edit is performed, your controller will add an invocation that would undo that edit to the undo stack. For the sake of simplifying the prose, let's say,
“The inverse of the edit gets added to the undo stack.”

Figure 9.1 shows what the undo stack would look like after these three edits.
Figure 9.1. The Undo Stack

| Undo stack Redo stack

MSImvocation
Setraise to 0

NSInvocation
Set name to "Mew Employee”

MSInvocation
Delete first record

If the user now chooses the Undo menu item, the first invocation is taken off the stack and invoked. This would change the person’s raise back to zero. If
the user chooses the Undo menu item again, the person’s name would change back t0 New Employee.

Each time an item is popped off the undo stack and invoked, the inverse of the undo operation must be added to the redo stack. Thus, after undoing the
two operations described, the undo and redo stacks should look like Figure 9.2.

Figure 9.2. The Revised Undo Stack

Undo stack | Redo stack

NSInvocation
Set name to "Rex Fido”

NSInvocation : NSInvocation
Delete record | Set raise to 20

The undo manager is quite clever: When the user is doing edits, the undo invocations go onto the undo stack. When the user is undoing edits, the undo
invocations go onto the redo stack. When the user is redoing edits, the undo invocations go onto the undo stack. These tasks are handled automatically
for you; your only job is to give the undo manager the inverse invocations that need to be added.

Now suppose that you are writing a method called makeItHotter and that the inverse of this method is called makertcolder. Here is how you would
enable the undo:

- (void)makeItHotter

{
temperature = temperature + 10;
[[lundoManager prepareWithInvocationTarget:self] makeItColder];
[self showTheChangesToTheTemperature];

}

As you might guess, the preparewithInvocationTarget: method notes the target and returns the undo manager itself. Then, the undo manager cleverly
overrides forwardInvocation: such thatit adds the invocation for makertcolder: to the undo stack.

To complete the example, you would implement makeItColder:

- (void)makeItColder

{
temperature = temperature - 10;
[[undoManager prepareWithInvocationTarget:self] makeItHotter];
[self showTheChangesToTheTemperature];

}

Note that we have again registered the inverse with the undo manager. If makeItcolder is invoked as a result of an undo, this inverse will go onto the redo
stack.

The invocations on either stack are grouped. By default, all invocations added to a stack during a single event are grouped together. Thus, if one user
action causes changes in several objects, all the changes are undone by a single click of the Undo menu item.

The undo manager can also change the label on the undo and redo menu items. For example, “Undo Insert” is more descriptive than just “Undo.” To set
the label, use the following code:

[undoManager setActionName:@"Insert"];

How do you get an undo manager? You can create one explicitly, but note that each instance of Nspocument already has its own undo manager.

Adding Undo to RaiseMan

Let’'s give users the ability to undo the effects of clicking the Add New Employee and Delete buttons, as well as the ability to undo the changes they make
to person Objects in the table. The necessary code will go into your RMDocument class.

Key-Value Coding and To-Many Relationships

When designing a class, think of your instance variables as having one of four possible purposes:
1. Simple attributes. Example: Each student has a first name. Simple attributes are typically numbers or instances of Nsstring, NSDate, OF NSData.

2. To-one relationships. Example: Each student has a school. It is like a simple attribute, but the type is a complex object, not a simple one. To-one
relationships are implemented using pointers: An instance of student has a pointer to an instance of schoo1.

3. Ordered to-many relationships. Example: Each playlist has a list of songs. The songs are in a particular order. This is typically implemented using
adN NSMutableArray.

4. Unordered to-many relationships. Example: Each department has a bunch of employees. You can display the employees in a particular order
(such as sorted by last name), but that ordering is not inherent in the relationship. This is typically implemented using an NsMutableset.

Earlier, we discussed how we could set simple attributes and to-one relationships using key-value coding. Remember that when setting or getting a value
for rido, KVC will use the accessors if they exist. Similarly, we can create accessors for ordered and unordered to-many relationships.

Let's say, for example, that an instance of p1aylist has an NsMutablearray Of song Objects. If you want to use key-value coding to manipulate that array
you will ask the playlist for its mutableArrayvalueForkey:. You will get back a proxy object.

That proxy object knows that it represents the array that holds the songs.

id arrayProxy = [playlist mutableArrayValueForKey:@"songs"];
int songCount = [arrayProxy count];

In this example, when asked for the count, the proxy object will ask the p1ay1ist object if it has a countofsongs method. If P1ay1ist does, it will call the
method and return the result. If there is no such method, p1ay1ist will get the array of songs and ask the array for its count (Eigure 9.3). Note, then, that
naming the method countofsongs is not just a convention; rather, the key-value coding mechanism goes looking for a method with the right name.

Figure 9.3. Key-Value Coding for Ordered Relationships

]
count (1)

| key="songs”

=T Song

f =
countOfSongs (2) @ [
s £ | S
b g E—1 Song |
1 " & B I
Playlist e > |
T o
~
= countOfSongs
There are several cases, so here is a list:
id arrayProxy = [playlist mutableArrayValueForKey:@"songs"];
int x = [arrayProxy count]; // is the same as
int x = [playlist countOfSongs]l; // if countOfSongs exists
id y = [arrayProxy objectAtIndex:5] // is the same as
id y = [playlist objectInSongsAtIndex:5]; // if the method exists

[arrayProxy insertObject:p atIndex:4] // is the same as
[playlist insertObject:p inSongsAtIndex:4]; // if the method exists

[arrayProxy removeObjectAtIndex:3] // is the same as
[playlist removeObjectFromSongsAtIndex:3] // if the method exists

There is a similar set of calls for unordered to-many relationships (Eigure 9.4).

Figure 9.4. Key-Value Coding for Unordered Relationships

i
count (1)
o) Set Proxy
key="studants”

i~ i
countOfStudents (2) /

=z
n
S =
\ g
L] // " =
Teacher e &
g
| countOfStudents
id setProxy = [teacher mutableSetValueForKey:@ students"];
int x = [setProxy count]; // is the same as
int x = [teacher countOfStudents]; // if countOfStudents exists

[setProxy addObject:newStudent]; // is the same as
[teacher addStudentsObject:newStudent]; // if the method exists

[setProxy removeObject:expelledStudent]; // is the same as
[teacher removeStudentsObject:expelledStudent]; // if the method exists

Because we have bound the contentarray of the array controller to the empioyees array of the rRMpocument Object, the array controller will use key-value
coding to add and remove person Objects. You will take advantage of this to add undo invocations to the undo stack when people are added and
removed.

Before we declare these methods in the header file, we must tell the compiler that the person class exists. In RMbocument . h, add:

#import <Cocoa/Cocoa.h>
@class Person;

Now declare the methods in RMDocument . h:

- (void)insertObject:(Person *)p inEmployeesAtindex:(NSUInteger)index;
- (void)removeObjectFromEmployeesAtindex:(NSUInteger)index;

As we will be referencing the person class in the methods we add to rRMDocument .m, import person’s header file near the top:

#import "RMDocument.h"
#import "Person.h"

Now add the method implementations to rRMbocument . m:
- (void)insertObject:(Person *)p inEmployeesAtindex:(NSUInteger)index

NSLog(@"adding % @ to % @", p, employees);
Il Add the inverse of this operation to the undo stack
NSUndoManager *undo = [self undoManager];
[[undo prepareWithinvocationTarget:self]
removeObjectFromEmployeesAtindex:index];
if (lundo isUndoing]) {
[undo setActionName:@"Add Person"];
}

I/ Add the Person to the array
[employees insertObject:p atindex:index];

}

- (void)removeObjectFromEmployeesAtindex: (NSUInteger)index

Person *p = [employees objectAtindex:index];
NSLog(@"removing % @ from % @", p, employees);
Il Add the inverse of this operation to the undo stack
NSUndoManager *undo = [self undoManager];
[[undo prepareWithinvocationTarget:self] insertObject:p
inEmployeesAtindex:index];
if (lundo isUndoing]) {
[undo setActionName:@"Remove Person"];
}

[employees removeObjectAtindex:index];

}

These methods will be called automatically when the Nsarraycontroller wishes to insert or remove person oObjects (for example, when the Add
Employee and Remove buttons send it insert: and remove: messages).

At this point, you have made it possible to undo deletions and insertions. Undoing edits will be a little trickier. Before tackling this task, build and run your
application. Test the undo capabilities that you have at this point. Note that redo also works.

Key-Value Observing

In Chapter 7, we discussed key-value coding. To review, key-value coding is a way to read and change a value by name. Key-value observing allows you
to be informed when these sorts of changes occur.

To enable undo capabilities for edits, you will want your document object to be informed of changes to the keys expectedraise and personName for all its
Person Objects.

A method in Nsobject allows you to register to be informed of these changes:

- (void)addObserver: (NSObject *)observer
forKeyPath: (NSString *)keyPath
options: (NSKeyValueObservingOptions)options
context: (void *)context;

You supply the object that should be informed as observer and the xeyrath for which you wish to be informed about changes. The options variable
defines what you would like to have included when you are informed about the changes. For example, you can be told about the old value (before the
change) and the new value (after the change). The context variable is a pointer to data that you would like sent with the rest of the information.

When a change occurs, the observer is sent the following message:

- (void)observeValueForKeyPath: (NSString *)keyPath
ofObject: (id) object
change: (NSDictionary *)change
context: (void *)context;

The observer is told which key path changed in which object. Here, change is a dictionary that (depending on the options you asked for when you
registered as an observer) may contain the old value and/or the new value. Of course, this method is sent the context pointer supplied when the method
was registered as an observer.

Using the Context Pointer Defensively

Because any object observing key-value changes must implement a method with this specific selector
(observevalueForKeyPath:ofObject:change:context:), it iS possible to mistakenly intercept notifications intended for another class.

Consider the case of a fictional class Maple, which is a subclass of a fictional class Tree. Both classes observe the key path season independently.
Unless the developer takes precautions, maple will receive its key-value-observing (KVO) messages and those intended for Tree, because Map1e has
effectively overridden the KVO method. To fix this, Map1e must correctly identify observation messages intended for itself versus those intended for its
superclass. If the message is not intended for that specific class, map1e should pass the message on to its superclass.

The solution to this problem is to use a class-specific pointer value as the context argument. We will use this approach in the following steps of this
exercise as a demonstration, although it is not necessary within the conditions of this specific exercise.

Undo for Edits

The first step is to register your document object to observe changes to its person objects. Add the following static variable and methods near the top of

RMDocument .m.

I RMDocumentKVOContext enables this class to differentiate
Il between its KVO messages and those intended for a superclass.
static void *RMDocumentKVOContext;

- (void)startObservingPerson:(Person *)person

[person addObserver:self
forKeyPath:@"personName"
options:NSKeyValueObservingOptionOld
context:&RMDocumentKVOContext];

[person addObserver:self
forKeyPath:@"expectedRaise™
options:NSKeyValueObservingOptionOld
context: &RMDocumentKVOContext];
}

- (void)stopObservingPerson:(Person *)person

[person removeObserver:self
forKeyPath:@"personName"
context:&RMDocumentKVOContext];
[person removeObserver:self
forKeyPath:@"expectedRaise"
context: &RMDocumentKVOContext];
}

Call these methods every time a person enters or leaves the document:

- (void) insertObject: (Person *)p inEmployeesAtIndex: (NSUInteger) index
{
// Add the inverse of this operation to the undo stack
NSUndoManager *undo = [self undoManager];
[[undo prepareWithInvocationTarget:self]
removeObjectFromEmployeesAtIndex:index];
if (![undo 1isUndoing]) {
[undo setActionName:@"Add Person"];

}

// Add the Person to the array

[self startObservingPerson:p];
[employees insertObject:p atIndex:index];

- (void) removeObjectFromEmployeesAtIndex: (NSUInteger) index
{

Person *p = [employees objectAtIndex:index];
// Add the inverse of this operation to the undo stack
NSUndoManager *undo = [self undoManager];

[[undo prepareWithInvocationTarget:self] insertObject:p
inEmployeesAtIndex:index];
if (![undo isUndoing]) {
[undo setActionName:@"Remove Person"];
}
[self stopObservingPerson:p];
[employees removeObjectAtIndex:index];

- (void) setEmployees: (NSMutableArray *)a
{
for (Person *person in employees) {
[self stopObservingPerson:person];
}

employees = a;

for (Person *person in employees) {
[self startObservingPerson:person];
}

}

Now, implement the method that does edits and is its own inverse:

- (void)changeKeyPath:(NSString *)keyPath
ofObject:(id)obj
toValue:(id)newValue

Il setValue:forKeyPath: will cause the key-value observing method
/I to be called, which takes care of the undo stuff
[obj setValue:newValue forKeyPath:keyPath];

}

Implement the method that will be called whenever a person Object is edited by either the user or the changekeyPath:ofobject: tovalue: method. Note
that this method puts a call to changekeyPath:ofObject: tovalue: ONn the undo stack with the old value for the changed key:

- (void)observeValueForKeyPath:(NSString *)keyPath
ofObject:(id)object
change:(NSDictionary *)change
context:(void *)context

if (context = &RMDocumentKVOContext)

I If the context does not match, this message
/l must be intended for our superclass.
[super observeValueForKeyPath:keyPath
ofObject:object
change:change
context:context];
return;

}

NSUndoManager *undo = [self undoManager];
id oldValue = [change objectForKey:NSKeyValueChangeOldKey];

/I NSNull objects are used to represent nil in a dictionary
if (oldValue == [NSNull null]) {
oldValue = nil;

}
NSLog(@"oldValue = % @", oldValue);
[[undo prepareWithinvocationTarget:self] changeKeyPath:keyPath
ofObject:object
toValue:oldValue];
[undo setActionName: @"Edit"];

That should do it. Once you build and run your application, undo and redo should work flawlessly.

In testing your application, you may encounter an error: The document could not be autosaved. Now that you are interacting with the undo system,
AppKit is noticing that your document has unsaved changes and is trying to autosave the document. You will learn how to save your document to a file in
the next chapter.

Begin Editing on Insert

Your app is coming along nicely, but your users will complain, “Why do | have to double-click to start editing after an insert? It is obvious that | am going to
immediately change the name of the new person. Can’t you start the editing as part of the insert?”

Oddly, this is a little tricky to do. So, here is the code snippet you need. First, RMbocument . h is going to need an action and two instance variables:

@interface RMDocument : NSDocument

{
NSMutableArray *employees;

IBOutlet NSTableView *tableView;

IBOutlet NSArrayController *employeeController;
}
- (IBAction)createEmployee:(id)sender;

Save that file. Open rupocument . xib and Control-drag from the Add Employee button to the File’s Owner (which is the instance of RMDocument). Set its

action to createEmployee:

Control-click on the File’s Owner. Drag to connect the tableview outlet to the table view and the employeecontrolier outlet to the array controller (Eigure
9.5).

Figure 9.5. Setting the tableView Outlets

RMD:

{ b) (m R My M - ',mnnm’..-nn.nq lt-. () (m R My M Finishes

A ™ RaiseMan RaiseMan BN et il EMDocumentxit | B2 | 4 = [Raiseban PaigeMan EMDocumertai [T RMD.

ol - Window
File's Ownaer

e AddEmp | o
Table View Cell |
Remc

Now, in RMDocument .m, add the createEmployee: method:

- (IBAction)createEmployee:(id)sender

{

NSWindow *w = [tableView window];

I/l Try to end any editing that is taking place
BOOL editingEnded = [w makeFirstResponder:w];
if (leditingEnded) {

NSLog(@"Unable to end editing");

return;

NSUndoManager *undo = [self undoManager];

/l Has an edit occurred already in this event?
if (flundo groupingLevel] > 0) {

Il Close the last group

[undo endUndoGrouping];

I/ Open a new group

[undo beginUndoGrouping];

}
Il Create the object
Person *p = [employeeController newObject];

Il Add it to the content array of 'employeeController’
[employeeController addObject:p];

/I Re-sort (in case the user has sorted a column)
[employeeController rearrangeObjects];

Il Get the sorted array
NSArray *a = [employeeController arrangedObjects];

Il Find the object just added
NSUinteger row = [a indexOfObjectldenticalTo:p];
NSLog(@"starting edit of % @ in row %lu”, p, row);

I/ Begin the edit in the first column
[tableView editColumn:0
row:row
withEvent:nil
select:YES];
}

We don't really expect you to understand every line of that code now, but browse through the method and try to get the gist. Build and run the application.

For the More Curious: Windows and the Undo Manager

A view can add edits to the undo manager. nsTextview, for example, can put each edit that a person makes to the text onto the undo manager. How does
the text view know which undo manager to use? First, it asks its de1egate. NsTextview delegates can implement this method:

- (NSUndoManager *)undoManagerForTextView: (NSTextView *)tv;

Next, it asks its window. Nswindow has a method for this purpose:
- (NSUndoManager *)undoManager;

The window’s delegate can supply an undo manager for the window by implementing the following method:
- (NSUndoManager *)windowWillReturnUndoManager: (NSWindow *) window;

The undo/redo menu items reflect the state of the undo manager for the key window (Eigure 9.6). (The key window is what most users call the “active
window.” Cocoa developers call it key because it is the one that will get the keyboard events if the user types.)

Figure 9.6. NSTextView Inspector

" Yal:] 53 Textiindo - MalnMenu.xib

i1 ;]| [=] | = FIEIEIE O SiE)
e et o

. ":m-.un-ﬁo T M Mo W G = Scroil Weew - Tent View 85 Text Wiew D. 8 a ';' (-] Euﬂ_
TextUndo File Edit Format View Window Help

|on Textundo.

To add edits to the window's undo manager

Chapter 10. Archiving

While an object-oriented program is running, a complex graph of objects is being created. It is often necessary to represent this graph of objects as a
stream of bytes, a process called archiving (Figure 10.1). This stream of bytes can then be sent across a network connection or written into a file. For
example, when creating a NIB from the XIB file you edited in the Interface Builder editor, the compiler is archiving objects into a file. (Instead of “archiving,”
a Java programmer would call this process “serialization.”)

Figure 10.1. Archiving

NSString | Person

e | NSMutableArray
& " I asxpactedRaise=2 —
B *Rax Yow" | Xpecte IGE =2 -'—'""‘*h-.._
-
_NSString | Person | | 01001010011110101...
@"Lenny Tri" 1 expactedRaise =30 | P—

el | .
: = £ Unarchiving
NSSiring Person |

@ “May Wort" expectedRaize =12 ,.4

When you need to recreate the graph of objects from the stream of bytes, you will unarchive it. When your application starts up, it unarchives the objects
from the NIB file that was created by the compiler.

Although objects have both instance variables and methods, only the instance variables and the name of the class go into the archive. In other words, only
data, not code, goes into the archive. As a result, if one application archives an object and another application unarchives the same object, both
applications must have the code for the class as linked in. In the NIB file, for example, you have used classes like Nswindow and NsButton from the AppKit
framework. If you do not link your application against the AppKit framework, it will be unable to create the instances of Nswindow and NsButton that it finds
in the NIB file.

There was once a shampoo ad that said, “l told two friends, and they told two friends, and they told two friends, and so on, and so on, and so on.” The
implication was that as long as you told your friends about the shampoo, everyone who matters would eventually wind up using the shampoo. Object
archiving works in much the same way. You archive a root object, it archives the objects to which it is attached, they archive the objects to which they are
attached, and so on, and so on, and so on. Eventually, every object that matters will be in the archive.

Archiving involves two steps. First, you need to teach your objects how to archive themselves. Second, you need to cause the archiving to occur.

The Objective-C language has a construct called a protocol, which is identical to the Java construct called an inferface. That is, a protocol is a list of
method declarations. When you create a class that implements a protocol, it promises to implement all the methods declared in the protocol.

NSCoder and NSCoding

One protocol is called Nscoding. If your class implements Nscoding, it promises to implement the following methods:

- (id)initWithCoder: (NSCoder *)coder;
- (void)encodeWithCoder: (NSCoder *)coder;

AnNscoder is an abstraction of a stream of bytes. You can write your data to a coder or read your data from a coder. The initwithCoder: method in your
object will read data from the coder and save that data to its instance variables. The encodewithcoder: method in your object will read its instance
variables and write those values to the coder. In this chapter, you will implement both methods in your person class.

NSCoder iS an abstract class. You won't ever create instances of an abstract class. Instead, an abstract class has some capabilities that are intended to
be inherited by subclasses. You will create instances of the concrete subclasses. Namely, you will use Nskeyedunarchiver to read objects from a stream
of data, and you will use Nskeyedarchiver to write objects to the stream of data.

Encoding
NScoder has many methods, but most programmers find themselves using just a few of them repeatedly. Here are the methods most commonly used
when you are encoding data onto the coder:

- (void)encodeObject: (id)anObject forKey: (NSString *)aKey

This method writes anobject to the coder and associates it with the key akey. This will cause anobject’s encodewithcoder: method to be called (and
they told two friends, and they told two friends...).

For each of the common C primitive types (such as int and f1oat), Nscoder has an encode method:

- (void)encodeBool: (BOOL)boolv forKey: (NSString *)key
- (void)encodeDouble: (double)realv forKey: (NSString *)key

- (void)encodeFloat: (float)realv forKey: (NSString *)key
- (void)encodelInt: (int)intv forKey: (NSString *)key

To add encoding to your person class, add the following method to person.m:
- (void)encodeWithCoder:(NSCoder *)coder

[coder encodeObject:personName forKey:@"personName"];
[coder encodeFloat:expectedRaise forKey:@"expectedRaise"];

}

If you looked at the documentation for Nsstring, you would see that it implements the Nscoding protocol. Thus, the personname knows how to encode
itself.

All the commonly used AppKit and Foundation classes implement the Nscoding protocol, with the notable exception of Nsobject. Because it inherits from
NSObject, Person doesn’t call [super encodeWithCoder:coder]. If Person’s superclass had implemented the Nscoding protocol, the method would have
looked like this:

- (void)encodeWithCoder: (NSCoder *)coder

{
[super encodeWithCoder:coder];
[coder encodeObject:personName forKey:@"personName"];
[coder encodeFloat:expectedRaise forKey:@"expectedRaise"];

}

The call to the superclass’s encodewithcoder: method would give the superclass a chance to write its variables onto the coder. Thus, each class in the
hierarchy writes only its instance variables (and not its superclass’s instance variables) onto the coder.

Decoding

When decoding data from the coder, you will use the analogous decoding methods:

- (id)decodeObjectForKey: (NSString *)aKey

- (BOOL)decodeBoolForKey: (NSString *)key

- (double)decodeDoubleForKey: (NSString *)key
- (float)decodeFloatForKey: (NSString *)key

- (int)decodeIntForKey: (NSString *)key

If, for some reason, the stream does not include the data for a key, you will get zero for the result. For example, if the object did not write out data for the
key foo when the stream was first written, the coder will return 0.0 if it is later asked to decode a r1o0at for the key foo. If asked to decode an object for the
key foo, the coder will return ni1.

To add decoding to your person class, add the following method to your person . file:
- (id)initWithCoder:(NSCoder *)coder
{

self = [super init];

if (self) {
personName = [coder decodeObjectForKey:@"personName"];
expectedRaise = [coder decodeFloatForKey:@"expectedRaise"];

return self;

}

Once again, you did not call the superclass’s implementation of initwithCoder:, because Nsobject doesn’t have one. If rerson’s superclass had
implemented the Nscoding protocol, the method would have looked like this:

- (id)initWithCoder: (NSCoder *)coder
{

self = [super initWithCoder:coder];

if (self) {
personName = [coder decodeObjectForKey:@"personName"];
expectedRaise = [coder decodeFloatForKey:@"expectedRaise"];

}

return self;

}

The attentive reader may now be saying, “Chapter 3 said that the designated initializer does all the work and calls the superclass’s designated initializer.
It said that all other initializers call the designated initializer. But rerson has an init method, which is its designated initializer, and this new initializer
doesn't callit.” You are right: initwithCoder: iS an exception to initializer rules.

You have now implemented the methods in the Nscoding protocol. To declare your person class as implementing the nscoding protocol, you will edit the
rerson.h file. Change the declaration of your class to look like this:

@interface Person : NSObject <NSCoding> {

Now try to compile the project. Fix any errors. You could run the application at this point, if you like. However, although you have taught person oObjects to
encode themselves, you haven't asked them to do so. Thus, you will see no change in the behavior of your application.

The Document Architecture

Applications that deal with multiple documents have a lot in common. All can create new documents, open existing documents, save or print open
documents, and remind the user to save edited documents when he or she tries to close a window or quit the application. Apple supplies three classes
that take care of most of the details for you: NSDocumentController, NSDocument, and NSWindowController. Together, these three classes constitute the
document architecture.

The purpose of the document architecture relates to the Model-View-Controller design pattern discussed in Chapter 8. In RaiseMan, your subclass of
NsSDocument (With the help of Nsarraycontroller) acts as the controller. It will have a pointer to the model objects, and will be responsible for the following
duties:

» Saving the model data to a file
* Loading the model data from a file
* Displaying the model data in the views

» Taking user input from the views and updating the model

Info.plist and NSDocumentController

When it builds an application, xcode includes a file called 1nfo.p1ist. (Later in this chapter, you will change 1nfo.p1ist.) When the application is
launched, it reads from 1nfo.plist, which tells it what type of files it works with. If it finds that it is a document-based application, it creates an instance of
NSDocumentController (Figure 10.2). You will seldom have to deal with the document controller; it lurks in the background and takes care of a bunch of
details for you. For example, when you choose the New or Save All menu item, the document controller handles the request. If you need to send
messages to the document controller, you could get to it like this:

NSDocumentController *dc;
dc = [NSDocumentController sharedDocumentController];

Figure 10.2. Document Controller

RMDeocument

NSMutableArray

“__‘EJ_"‘"—-..___
RMDocument NSDocumentController
-— (locumenis —|

1
RMDocument T

2

The document controller has an array of document objects—one for each open document.

NSDocument

The document objects are instances of a subclass of Nspocument. In your RaiseMan application, for example, the document objects are instances of
RMDocument. FOr many applications, you can simply extend Nspocument to do what you want; you don’t have to worry about NSDocumentController Or
NSWindowController atall.

Saving

The menuitems Save, Save As..., Save All, and Close are all different, but all deal with the same problem: getting the model into a file or file wrapper. (A
file wrapper is a directory that looks like a file to the user.) To handle these menu items, your Nsbocument subclass must implement one of three methods:

- (NSDhata *)dataOfType: (NSString *)aType
error: (NSError **)e

Your document object supplies the model to go into the file as an Nspata object. Nspata, essentially a buffer of bytes, is the easiest and most popular way
to implement saving in a document-based application. Return ni1 if you are unable to create the data object, and the user will get an alert sheet indicating
that the save attempt failed. Note that you are passed the type, which allows you to save the document in one of several possible formats. For example, if
you wrote a graphics program, you might allow the user to save the image as a gif or a jpg file. When you are creating the data object, arype indicates the
format that the user has requested for saving the document. If you are dealing with only one type of data, you may simply ignore atype. To signal that you

were unable to save the data, return ni1 and create an nserror object that describes what went wrong.

- (NSFileWrapper *)fileWrapperOfType: (NSString *)aType
error: (NSError **)e

Your document object returns the model as an NsFilewrapper Object. It will be written to the filesystem in the location chosen by the user. To signal that
you were unable to create the file wrapper, return ni1 and create an NsError object that describes what went wrong.

- (BOOL)writeToURL: (NSURL *)absoluteURL
ofType: (NSString *)typeName
error: (NSError **)outError;

Your document object is given the URL and the type and is responsible for storing the data into the URL. (The URL is typically just a file on the filesystem.)
Return ves if the save is successful and vo if the save fails. Return no signal that you were unable to write the data to the URL, and create an Nsgrror
object that describes what went wrong.

NSError can be a bit confusing. The idea is that if the method is unable for some reason, to do its job, the method creates an Nserror and puts a pointer
to that error in the supplied address. For example, to read annspata from a file, you would supply an address where the pointer to the error would be
placed:

NSError *e;
NSData *d = [NSData dataWithContentsOfFile:@"/tmp/x.txt"
options:0
error:&error];
// Did the read fail-?
if (d == nil) {
NSLog (@"Read failed: %Q@", [error localizedDescription];

}

Thus, Nspata Will either return a data object or create an error object.
In these save and load methods, you will be responsible for creating an Nsezror if the methods fail.

Loading

The Open..., Open Recent, and Revert To Saved menu items, although different, all deal with the same basic problem: getting the model from a file or file
wrapper. To handle these menu items, your Nspocument subclass must implement one of three methods:

- (BOOL) readFromData: (NSData *)data
ofType: (NSString *)typeName
error: (NSError **)outError

Your document is passed an Nspata object that holds the contents of the file that the user is trying to open. Return ves if you successfully create a
model from the data. If you return no, the user will get an Alert panel that should explain why it was unable to parse the file. The contents of the Alert
panel will be determined by the Nsexrror Object you give it.

- (BOOL) readFromFileWrapper: (NSFileWrapper *)fileWrapper
ofType: (NSString *)typeName
error: (NSError **)outError;

Your document reads the data from an NsFilewrapper Object.

- (BOOL) readFromURL: (NSURL *)absoluteURL
ofType: (NSString *)typeName
error: (NSError **)outError;

Your document object is passed a URL (usually just a path to a file on the filesystem). The document reads the data from the file.

After implementing one save method and one load method, your document will know how to read from and write to files. When opening a file, the
document will read the document file before reading the NIB file. As a consequence, you will not be able to send messages to the user interface objects

immediately after loading the file (because they won’t exist yet). To solve this problem, after the NIB file is read, your document object is sent the following
method:

- (void)windowControllerDidLoadNib: (NSWindowController *)x;

In your Nspocument subclass, you will implement this method to update the user interface objects.

If the user chooses Revert To Saved from the menu, the model is loaded, but windowControllerbidLoadNib: iS not called. You will, therefore, also have
to update the user interface objects in the method that loads the data, just in case it was a revert operation. One common way to deal with this possibility
is to check one of the outlets setin the NIB file. Ifitis ni1, the NIB file has not been loaded, and there is no need to update the user interface.

NSWindowController

The final class in the document architecture that we might discuss would be NswindowController, but you will not initially need to worry about it. For each

window that a document opens, it will typically create an instance of NswindowController. As most applications have only one window per document, the
default behavior of the window controller is usually perfect. Nevertheless, you might want to create a custom subclass of NswindowController in the
following situations:

* You need to have more than one window on the same document. For example, in a CAD program you might have a window of text that describes
the solid and another window that shows a rendering of the solid.

* You want to put the user interface controller logic and model controller logic into separate classes.

* You want to create a window without a corresponding Nsbocument oObject. You will do this in Chapter 12.

Saving and NSKeyedArchiver

Now that you have taught your object to encode and decode itself, you will use it to add saving and loading to your application. When it is time to save
your people to a file, your RMpocument class will be asked to create an instance of Nspata. Once your object has created and returned an nspata object, it
will be automatically written to a file.

To create an Nspata object, you will use the NSKeyedarchiver Class. NSkeyedarchiver has the following class method:

+ (NSData *)archivedDataWithRootObject: (id)rootObject

This method archives the objects into the Nspata object’s buffer of bytes.

Once again, we return to the idea of “l told two friends, and they told two friends.” When you encode an object, it will encode its objects, and they will
encode their objects, and so on, and so on, and so on. What you will encode, then, is the empiloyees array. It will encode the person oObjects to which it has
references. Each rerson object (because you implemented encodewithcoder:) will, in turn, encode the personname string and the expectedraise float.

To add saving capabilities to your application, edit the method dataofType:error: in RMDocument .m SO that it looks like this:

- (NSDhata *)dataOfType: (NSString *)aType
error: (NSError **)outError

Il End editing
[[tableView window] endEditingFor:nil];

Il Create an NSData object from the employees array
return [NSKeyedArchiver archivedDataWithRootObject:employees];
}

Note that we just ignored the error argument. There will be no errors.

Loading and NSKeyedUnarchiver

Now you will add the ability to load files to your application. Once again, Nspocument has taken care of most of the details for you.

To do the unarchiving, you will use NSkeyedUnarchiver, which has the following handy method:
+ (id)unarchiveObjectWithData: (NSData *)data

In RMDocument .m, €dit yOur readFrombata:ofType:error: method to look like this:

- (BOOL) readFromData: (NSData *)data
ofType: (NSString *)typeName
error: (NSError **)outError

NSLog(@"About to read data of type % @", typeName);
NSMutableArray *newArray = nil;
@try {

newArray = [NSKeyedUnarchiver unarchiveObjectWithData:data];

}
@catch (NSException *e) {
NSLog(@"exception =% @", e);
if (outError) {
NSDictionary *d = [NSDictionary
dictionaryWithObject: @"The data is corrupted.”
forKey:NSLocalizedFailureReasonErrorKey];
*outError = [NSError errorWithDomain:NSOSStatusErrorDomain
code:unimpErr
userinfo:d];
}
return NO;

}

[self setEmployees:newArray];

return YES;
}

You could update the user interface after the XIB file is loaded, but Nsarraycontroller will handle it for you: the windowControllerDidLoadNib: method
doesn’'t need to do anything. Leave it here for now because you will add to it in Chapter 13:

- (void)windowControllerDidLoadNib: (NSWindowController *)aController
{

[super windowControllerDidLoadNib:aController];

Note that your document is asked which XIB file to load when a document is opened or created. This method also needs no changing:

- (NSString *)windowNibName
{

return Q@"RMDocument";

}

The window is automatically marked as edited when you make an edit, because you have properly enabled the undo mechanism. When you register your
changes with the undo manager for this document, it will automatically mark the document as edited.

At this point, your application can read and write to files. Compile your application and try it out. Everything should work correctly, but all your files will
show up as pocument Type files and have a generic documenticon. Let’s look at how to define our application’s document type more fully.

Setting the Extension and Icon for the File Type

RaiseMan files already have the extension . rsmn, which we configured when we created the project. But . rsmn files need anicon. Find an . icns file and
copy it into your project. A fine icon is found at /peveloper/Examples/TextEdit/txt. icns.Drag itfrom the Finderinto the Supporting Files group inside
the Project Navigator view of Xcode (Figure 10.3).

Figure 10.3. Drag Icon into Project

aiseMan = RaiseMan xcodepra]

Finished sunning Raiselan | N r —

B ® 4 == 8 |4 ™ Raisebtan
¢ Summary e Build Sectings Buid Phases uiid Rules
| RadseMan s £ RaiyeMan bac 5 X Application Target
b Person.h Ta 800 [l TestEdit
m Persen.m =< = = - |
h: AMDacument.h "‘ < B E.D - Lo |l# - F
m RMBacument.m P Name ODateModifed |
RMDacument, i Bl s e |
P L1 Al My Flles & riflicns Feb 9, 2001 9:45 PM
(¥ Gupporing fies = 9] Desktop = nfdicns Feb 9, 2001 9:45 PM |L
Raiseban- bt plist - B dom h! ScalingScrolView.h Feb 3, 20103 26PM B
InfaPlist.strings (%] . w SeulirgSeral View.m Jan 3, 2011 7:58 PM
W main.m 4 Applications « TextEdit Test Document.mf ART 29, 2008 731 PM
i Rklssatar-Fraficpon Dotuments TextEdinscanerioad May 13, 2009 6:07 FM B
Bt DRophe TextEdit.seriptuie Jan 17,2002 G4 pu [
rameworis : TextEdit.scriptTerminology Feb 7, 2002 5:15 FM
» [| Produrts Projects ~ |
1 B TextEditxcodeprnl Yesterday 1:09 AM |
| sharED h TewtEditDefaultskeys.n Feb 22, 2011 F40 PM
deteeth & h TextEditErrors.h Oct 29, 2008 728 P
: B! TextEditMisc.h Feob 24, 2011 508 PM |
4 D@D ™ '1_‘1 st Trbiens Dec 31, 1999 2:32 AM

1 iod #4 selrcred, 23,12 CR availabie

Xcode will bring up a sheet. Make sure that you check Copy items into destination group’s folder (Eigure 10.4). This will copy the icon file into your
project directory.

Figure 10.4. Make a Copy

Choose options for adding thesa files:

e

’_—-—_——"__,__- Destination ¥ Copy items into destination group's folder (If needed)
Make a copy

Folders) Create groups for any added folders

_) Create folder references for any added folders

Add to targets M A RaiseMan

Cancel L Pk

To set the document type information, select the raiseman target in the Project Navigator. Under the Info tab, find the Document Types heading and
expand the existing document type. Set the name to be raiseman Dpoc, the Icon to txt, and the identifier to com.bignerdranch.raisemandoc.

Next, configure an exported UTI for RaiseMan documents. A UTI describes the type of data contained in the file; we will cover UTls in more detail later in
this chapter.

Exported UTls are found immediately below the Document Types heading in the target info. If there is not already a blank exported UTI, add one by
using the Add button. Set the Description, Identifier, Icon, and Extensions to be identical to the settings you made in the Document Type. For Conforms

To, type public. data (Eigure 10.5).

Figure 10.5. Configuring the Document Type and Exported UTI

ana [RaiseMan - RaiseMan xcodepraj
o Build Raiseban: Succeeded | 6714/10 81 431 P =1
) LB LR My W - IE!EEI [nfy=is | E]
Run oz Scheme Breakpoints N Edirar Ve Ovgarazer |
| : a2 |
= [Raisenan
PROJECT Sumtenany Infa Huild Sertings Build Phases Busid Rules
B Ratseman ¥ Decument Types (1)
TARCETS. ¥ | RaiseMan Doc
- Name RaiseMan Doc estifier <o, Bugnerdranch, rasseman-doc
lets | AMDecumment - Rete | Edinor
EXUEREHINE - 15M0 Mieme Types |
teon | bt . Bundie | Documest i ditributed as 3 bundie
B Aadinonal SOCUMEREL TypE properies (1)
¥ Exported UTis (1)
¥ | RaiseMan Doc
Description RaizeMan Doc Extensions rsmn
idemifier comm bignardranch.raipemus - dos M Typer ¢
seon | bt » | Pboard Types »
Coaforms To putlicdaa 05 Types

Redprence LAY

& Additional exiporied UT] propemies (0)

F Imporied UTI ()
b URL Types {0}

o © Q.

Add Target Modeifise Project Add

Build and run your application. You should be able to save data to a file and read it in again. In Finder, the txt.icns icon will be used as the icon for your
.rsmn files.

An application is a directory. The directory contains the NIB files, images, sounds, and executable code for the application. In Terminal, try the following:

> cd /Applications/TextEdit.app/Contents
> 1s
You will see three interesting things.
1. The 1nfo.p1list file, which includes the information about the application, its file types, and associated icons. Finder uses this information.
2. The macos/ directory, which contains the executable code.
3. The resources/ directory, which has the images, sounds, and NIB files that the application uses. You will see localized resources for several

different languages.

For the More Curious: Preventing Infinite Loops

The astute reader may be wondering: “If object A causes object B to be encoded, and object B causes object C to be encoded, and then object C causes

object A to be encoded again, couldn’t it just go around and around in an infinite loop?” It would, but Nskeyedarchiver was designed with this possibility in
mind.

When an object is encoded, a unique token is also put onto the stream. Once archived, the object is added to the table of encoded objects under that
token. When told to encode the same object again Nskeyedarchiver Simply puts a token in the stream.

When it decodes an object from the stream Nskeyedunarchiver puts both the object and its token in a table. If it finds a token with no associated data, the
unarchiver knows to look up the object in the table instead of creating a new instance.

This idea led to the method in Nscoder that often confuses developers when they read the documentation:

- (void)encodeConditionalObject: (id)anObject forKey: (NSString *)aKey

This method is used when object A has a pointer to object B, but object A doesn’t really care if B is archived. However, if another object has archived B,
A would like the token for B put into the stream. If no other object has archived B, it will be treated like ni1.

For example, if you were writing an encodeWithcoder: method for an Engine object (Figure 10.6), it might have an instance variable called car thatis a
pointer to the car object that it is part of. If you are archiving only the Engine, you wouldn’'t want the entire car archived. But if you were archiving the entire
car, you would want the car pointer set. In this case, you would make the Engine object encode the car pointer conditionally.

Figure 10.6. Conditional Encoding Example

car

- Car Na— ——_| Transmission
I | EEEEEEEEE—— | 1
- —— !
: | transmission [__________________J
| engine
2 - - - ——— . :
! engine _

e Piston

Engine
— piston
R

car

!

angineg \

Encoded if engine is root object

p

|

I
e
|

|

|

|

I

|

Encoded If car is root object

For the More Curious: Creating a Protocol

Creating your own protocol is very simple. Here is a protocol with two methods. The protocol would typically be in a file called Foo . n:

@protocol Foo

- (void) fido: (int) x;
- (float) rex;

@end

With Objective-C 2.0, eoptional was added to the protocol grammar. Now you can indicate which methods in a protocol are required and which are
optional:

@protocol Foo

- (void) fido: (int)x;
- (float) rex;
@optional

- (int)rover;

- (void)spot: (int) x;
@end

In this example, £ido: and rex are required; rover and spot: are optional.

If you had a class that wanted to implement the Foo protocol and the Nscoding protocol, the class would look like this:

#import "Spunky.h"
#import "Foo.h"

@interface ZsaZsa : Spunky <Foo, NSCoding>
..etc...
@end

A class doesn’t have to redeclare any method it inherits from its superclass, nor does it have to redeclare any of the methods from the protocols it
implements. Thus, in our example, the interface file for the class zsazsa is not required to list any of the methods in spunky Or Foo Or NsCoding.

For the More Curious: Automatic Document Saving

In Mac OS X Lion Apple introduced automatic document-saving support to Cocoa. With automatic document saving, your users will no longer need to be
concerned with manually saving their documents. By monitoring the change count (described later), Cocoa will cue your document to archive itself at
appropriate times. When the user does manually save the document, a new version will be created. The user can then browse past versions by using an
interface similar to Time Machine. Untitled documents (documents not explicitly saved by the user) will even be preserved between runs of your
application.

In order to support automatic document saving, your Nsbocument subclass must opt in by overriding the class method autosavesInpPlace to return yes:

+ (BOOL)autosavesInPlace {
return YES;

}

If your document saves its data quickly, opting in is probably an easy choice. Otherwise, autosaving in place may not be appropriate for your application,
as it will cause the interface to block until the save is completed. Refer to Apple’s Mac OS X Application Programming Guide for a more in-depth
discussion.

The Cocoa application template in Xcode enables this feature; Nspocument’s implementation of this method returns ~o.

For the More Curious: Document-Based Applications without Undo

The NsundoManager for your application knows when unsaved edits have occurred. Also, the window is automatically marked as edited. But what if you've
written an application and are not registering your changes with the undo manager?

NsDocument keeps track of how many changes have been made. It has a method for this purpose:

- (void)updateChangeCount: (NSDocumentChangeType) change;

The NSDocumentChangeType Can be one of the foIIowing: NSChangeDone, NSChangeUndone, Ol NSChangeCleared. NSChangeDone increments the Change
count, NschangeUndone decrements the change count, and NschangeCleared sets the change count to 0. The window is marked as dirty unless the change
countis 0.

Universal Type Identifiers

One of the enduring problems in working with computers is embodied in the question: What does this data represent? On the Mac, this question gets
asked in several places: when a file is opened from the Finder, when data is copied off the pasteboard, when a file is indexed by Spotlight, and when a
file is viewed through Quicklook. Thus far, there have been several anwers: file extensions, creator codes, MIME types.

Apple has decided that the long-term solution to the problem is universal type identifiers (UTIs). A UTl is a string that identifies the type of data. This data
may be in a file or in a memory buffer. UTls are organized hierarchically. For example, the UTl public. image conforms to public.data.

Your application tells Mac OS X what UTIs your application can read and write, including new, custom UTI, by setting values in its 1nfo.plist. The
Info.plist is an XML file that has a dictionary of key-value pairs. Exported UTls are stored in the key uTExportedTypeDeclarations. The steps you
followed earlier to add an exported UTI created this key. The pasteboard, which we will cover in Chapter 21, also uses UTls to identify data types.

There is a large set of system-defined UTls. You can find the entire listin Apple’s documentation.

Chapter 11. Basic Core Data

At this point, you've implemented an application that keeps track of an array of objects, takes care of undo, and handles saving and loading from a file. As
you can imagine, there are an awful lot of applications like the one you just wrote.

Apple decided to make this type of application extremely easy to write:
* NSArrayController Will hold on to an array of objects.
* Bindings will eliminate much of the glue code that would be necessary to keep the model objects in sync with the views.

* NSManagedObjectContext Will observe the instance variables of your data objects and will take care of undo for you and loading and saving the
data.

So, the punchline is: Using Core Data and bindings, the RaiseMan application that you have written can be created with no code at all. In this section, you
are going to write a simple Core Data application (not unlike RaiseMan) that has no code.

NSManagedObjectModel

In order to know how to save and load the data in your objects, the system needs to know something about that data: What are the names of the attributes
of your object? What are their types? To supply this information, you will create a managed object model. Xcode has an editor that will make it easy for
you to describe your data-bearing objects in a .xcdatamode1d file. At runtime, this file will be read in, and an instance of NsManagedobjectModel Will be
created.

The model uses terminology that is a little different from what we are used to. Instead of “class,” the model uses the term entity. Instead of “instance
variable,” the model uses the word property.

In the model are two kinds of properties: aftributes and relationships. An attribute holds a simple data type: a string, a date, or a number. We will talk
about relationships in Chapter 32.

The RaiseMan application used a subclass of NsDbocument named RMDocument. In this application, you will have a subclass of NsPersistentDocument
called MyDocument. NSPersistentDocument, @ Subclass Of NsDocument, automatically reads in the model and creates anNsManagedObjectContext.
NSPersistentDocument Will eliminate the need for many lines of code.

Start Xcode and create a new project of type Cocoa Application. Name the project CarlLot, set the Class Prefix to my, and the Document Extension to
carlot. Enable both Create Document-Based Application and Use Core Data. Imagine that you own several used-car lots. This application will enable
you to keep track of the cars that you wish to sell. When the application is done, it will look like Figure 11.1.

Figure 11.1. Completed Application

S MO | | Garage o’ Cars
Make /Model - Price " Special
$10,499.00
Dodge Dart $1,299.00 il
Chewy Maverick $500.00 =

Add) [Remove)

Details for Mercury Meteor

=]

Date Purchased: 3/18/2011 |.

Condition: %%

In the new project, open MyDocument . xcdatamode1d. Click the Add Entity button at the bottom left of the editor to create a new entity. Name the entity Car.

With the car entity still selected, click the button at the bottom of the Attributes editor. Add six attributes and give them the following names and types:

Mame

Type

condition
datePurchased
makeModel
onSpecial
photo

price

Int 16

Date

String
Boalean
Transformahle

Decimal

Figure 11.2 shows what car looks like in the modeler. We could put a lot of other things in the model, but that is enough for this exercise.

Figure 11.2. Completed Model

P Carlot - MyDocument.scdatamodel

i sudnlieg Cirl 4 oo Eaal o
] fdaor ekl Ceganiter

To add
attributes

- Cutine Uryle

To add entities e

Interface

MyDocument weaamooed | g MyDecement sciaamodsl 1 Car

- Predicare

L+ © M-

A3d Laney Add Atritte Gator Styie

Openmybocument . xib. Delete the text field that says Your document contents here. Drag an array controller onto the Interface Builder dock. The array
controller will be using the document object's NsManagedobjectcontext to fetch and store data. Use the Bindings Inspector to bind the array controller’s
managedObjectContext 10 the File’s Owner’s managedObjectContext (Figure 1 1.3).

Figure 11.3. Give the Array Controller a Managed Object Context

AN] % Carlot - MyDocument.xib —
P') = [Xode | lamg EGE' =
=4 » | [Bcaex Carlen - [l MyDorument.xie [MyDocurerxds (Engliskl + §@ Asray Contradies | D B B » +« © & 82

Lo R Window

¥ SHRETOH TR
¥ Sort Deseriptors
Paramatars

v Mansged Object Context (Tile's Owner.ma

® Bind toc | File's Owner

Comrodar Key
Mset Kay Path
managecOojecIConexs 1]
Value Transfarmer
.
® Ralses For Not Applicabie Keys ¥
o)& m
il Object Uibrary [

Arvay Controlber - A Cotaa binding |
compasibie clies thas maniges &
enilection of chieats

Q, arrayeontroll

With the array controller still selected, in the Attributes Inspector under the Object Controller section, set Mode to Entity Name and the entity name to caxr.
Also, turn on the Prepares Content option, so that the array controller will fetch immediately after it is created.

Each object in the Interface Builder editor can have a label. With the nsarraycontroller still selected, change to the Identity Inspector and set its Label
to cars. Once you have several array controllers in a XIB, the labels will eliminate a lot of confusion (Eigure 11.4).

Figure 11.4. Inspect the Attributes of the Cars Array Controller

ann 2 Carbot - MyDotument.xib =)
—) . — 3 T e .
(0] (mifc_:] 0 [m] Knts BEog oSl @
|54 v Cicalw Colol ihOocomerixs | Mybocimenoh gt @himConoe [0 B M #i# 0 6 &
¥ Asrwy Contralae
Opiicen (1§ Avoid gty Seection
AR Winden o Preserve Selection
o Satect imueroes Obgasty

B Coaar Finer Presicate Oe |
| A Anarrange Contenr
Alwarrs Lite Wit i

¥ Dty Contraben

& Entity Name
- B L o ——
@ [mode

o Presares Cormeen
A Lnas Liry Fatching
o A Emain
fs Predesie

1 | il Dtert Linearw e
u Arsay Comroier - A (3ca badsgs

DD CAL TR SaRige §
colecsion of sbpecis

LR

View-Based Table Views

In Mac OS X 10.7, Apple introduced view-based table views, which are similar to iOS table views. Prior to 10.7, Cocoa developers used cell-based table
views, which are very fast and lightweight, but customization tends to be very involved. View-based table views, on the other hand, make customizing the
appearance of your table view cells rather simple: You can use Xcode’s Interface Builder for this purpose.

Drag out a table view (from Cocoa->Data Views). In the Attributes Inspector, set the Content Mode to be View Based and give it three columns. Name
the columns Make/Model, Price, and Special.

Use the object hierarchy view (expanded dock view) to select the Table Cell View in the first column and delete it—it is a child of the Table Column. Now
drag an Image & Text Table Cell View from the Library onto the first column. Each column should now contain a Table Cell View (NsTablecellview), and
within it a Static Text (nsTextFie1d). The first column’s cell view contains an image view as well (Figure 11.5).

Figure 11.5. Drop an Image & Text Table Cell View

ana £ CarLot - MyDocument.xib

() (m) [eown] (=) | = | 5 e @
_n.m’r feam Scheme Breabpoines e fefer Py —
=4 b EyCaton T <) l-_\l-I:h-ﬂs-f‘lfmm-.Tﬂnmnm-mqmln B Biw s & & 2

T Tabie Column |

Title | Make /Model |
- Xals] Window Wignment [(ME = wm wm

Tieie Fant | Lucica Grance 11.0 i3]
Make fModel Price Spacial 5 =

=——— Table View Cell Table View Call o
Selenior 5o Des

@ Table Jiew Cell

Order| Ascending

Resizing | Both
swre 3 Edinable Hideen |

o ile| m |
o Ml Obyect Library 2 (m=)|
[Jmage & Text Table Cell View -

#rers NSTableCeliew B an KSView that i
used in NSTableView instances fo..

Taxt Tabla Call View -
oo v e NS i Bl i1 a0 NS View that
used in MiTableView instances to

L= . S, vable cell

Now drop a number formatter (from Cocoa->Controls) onto the NsTextFie1d in the Price column (Eigure 11.6). In the Attributes Inspector, use the 10.4+
formatter, and set the style to Currency.

Figure 11.6. Configure Formatter

“Bebavior | Mac 05 X 10,4+ Dafaull__:
o —
(e Menirmr (2]] iniemism

CET. S
M ocalize [Lesient

singhe [)
(1 123475 512347500

,:Q - O.J. -

The third column will be populated by check boxes, so select the NsTextField in the third column’s cell view and delete it. Make sure that you have
selected and deleted the Static Text - Table View Cell, and not the Table Cell View itself. This will take two clicks directly on the cell.

Now drop a Check Box (from Cocoa->Data Views)—not the Check Box Cell—in place of the text field in the third column. Select the check box and

clear its title (Figure 11.7).

Figure 11.7. Drop Check Box Control

LIt
an
T

(Mobsstiy ¢ (25

Ty

o Check Box Cell - Used 12 implemens
= - e b intavtace of Chidh Boxek

(2 check box [}

Below the table view, drop an NspatePicker, two buttons, an NsImageview (Which is called Image Well in the Library), and an NsLevelindicator onto the
window. Label the buttons Add and Remove. Put label text fields next to the date picker and the level indicator. The labels should be Date Purchased

and Condition. Make the NsImageview editable by using the Attributes Inspector (Eigure 11.8).
Figure 11.8. Attributes of the NSLevellndicator

ana B4 Carlot - MyDocument.xib u"
xtode l Bloio .:Eln o =)
e dunusan E I AT !
— E— — =
o i Window Bivew TRamglviindcrr [B B (%2 © 6 2
L7 Ll beticator
o] Stvle | Rating
n-Xals] Window | sune & Ecinatie

| | Make fModel Price special | !
| | | W Table View Cell Table View Cell ™ '
| |
<
 Add || Remove 1| [

7 Teax Dérection NINI;“
Date Purchased 2/12/1982 |1 =

O (1 |&| m
[T E—
| — Push Buthon - Insercests mt-dw\l

|| wventy and sendh an sction message b a
| T tanget objeet when it's chcked or... l

Condition &

. Gradinmt Butven - iocepts moute- |
diwen events and sends an actn
message o a target object when It's

|
Rounded Rect Bultin - nlenepts |
| mose-down gvents snd Mnds a0 |

* Vnivead shiass 1

ot s wma

3] |), button

In the Attributes Inspector of the NsLevelIndicator, setits maxto 5 and its min to 0. Set its style to Rating mode (to get the stars). Also, make the level
indicator editable (Figure 11.8).

Select the date picker, the image view, the two labels, and the level indicator. Using the Editor -> Embed -> Box menu item, wrap them in a box (Eigure
11.9).

Figure 11.9. Embed in a Box

‘Q Tl
800 ; Window
Makeitodel lee Speclal
1 Table View Cell Table View Cell)
| Add | | Remove |
Box

Date Purchased 2/12/1982 [3| |

Condition # #

Connections and Bindings

Now you are going to do a bunch of bindings. We will walk you through it step-by-step. Figure 11.10 is a diagram of the bindings that you are going to
create between your views and the array controller.

Figure 11.10. Summary of Bindings

Value:
objectValue price

Value: Font Bold: Value:
objectValue.makeModel objectValue.onSpecial objectValue.onSpecial
Value: C
objectValue.photo L5, Ao
\ iMagel Price Sorcal
¥ Table View Cel Table Wiew Cell E4
Enabled:
canRemove
Title With Pattern: \
selection.makeModel —__ - —
Date Purchased 2121982 - Value:
Value: Condition ## < selection.photo

selection.datePurchased
Value:

selection.condition

If you have used cell-based table views in the past, you will find the bindings on view-based table views to be much more straightforward. With view-
based tables, you will bind the table’s contents to the array controller; then the values of the controls you place within the cell views, not the table column,
will be bound to the object value for that row. A reminder: In this book, you will never bind a scroll view or a cell.

Start by binding the table view's Content binding to Cars’ arrangedobjects. Leave the Model Key Path empty. Remember, Cars is the
NSArrayController. Next, bind the Selection Indexes to Cars’ selectionIndexes. See Figure 11.11.

Figure 11.11. Table View Bindings

ann 4 Carlot - MyDocument. xib - o
E"} [] Fintshed Casl 14 1
») (m) [Cmyu (=] | inished nsnning CarLot | EE =100 =] DEI (@
Bum oo Setrm Breakpaints et et Eifitue View Qrganizes
B4 o Patot) [€} <M M - W BV e SoolView-Tableview . FTabevien | B B ® &£ 08 =

(JobleCoobem,
&) v Comtent [Cars armanped Objects)
oo Wedew & tind to: [Cars
Cantralie -t?u-
Maice/Model Price Special arfangea0BE
W Table View Cell Table View Cell o Model Key Path

Valuz Transformer

& Raises For Not Applicable Seys

' ¥ Sclection Indexes {Can selectionindexes)

A B Bind to: [Can

P Add | Remove | ComeEns
Bax selectionindexes
B — Model Key Path

=l Date Purchased 2/12/1982 3|

@ Condition + * B 0, g

(il oogect Library +] (sa =]

Push Button - Intercepts mouse-down
EVES and sends &N JCNON MELSIgE 10 &
warger ckjert when it's clicked ar.

Cradient Buttom - Intercepts moute-
down evenls and sends an action
EESEQE T3 A Targen ohject when in's.

Rounded Rect Bttan - Interepts
maouse-down events and sends an
i A =

= O butzon

Now bind the va1ue of each column’s cell view control(s), as shown in the following table.

Binding Bind to Controller Key Key Path

value of Col 0 Image View Table Cell View Empty object¥alue. photo
value of Col 0 Text Field Table Cell View Empty objectValue, makeMode]
value of Col 1 Text Field Table Cell View Empty objectValue.price
value of Col 2 Check Box Table Cell View Empty objectValue.onSpecial

Note the pattern in the bindings. Each control's value is bound to a particular property of the table cell view's objectvalue. Recall that the table’s content
is bound to the Nsarraycontroller’s arranged objects. Each of those objects is an instance of our car entity. When the table view's contents are bound,
the objectvalue property of the table cell view (NsTablecellview) is populated with the entity instance for that row. Once we understand this, we can
configure very straightforward bindings, such as those in the table.

Before continuing, use the Attributes Inspector to set the Behavior of each Static Text Field to Editable.

Make the Add button trigger the ada: method of the array controller (Eigure 11.12).
Figure 11.12. Set Target and Action of Add Button

aon B Carle - MyBorumans st ao0 Bt Cartos - Nyocumam u
() 1 | s Honde
| () () fE wha. - (P} (@) c mu | e
5 e fjp=e e
s = Dicsngm | Camen - WyOusma WyCuma W e S B Pogonam Cangr - MyBonuws [T Mg | B SRl

ano., Mexior. B0, Wil
Meais ol [Specal Vs, Ve Frion Sescal
@ Table View Catl Table Viws Coll 4 W Table View Ceb Tabie View Cail o
| A
Ay B e A R

| - . . e
&

Daze Purchased 371271982 & Purchased 1712/1962 .

b
e .

pedition *

Make the Remove button trigger the remove : method of the array controller.

Bind the value of the controls to the selection of the array controller as follows:

Binding Bind to Controller Key Key Path
value of date picker Cars selection datePurchased
enabled of Remove button Cars canRemove

value of level indicator Cars selection condition

Bind the va1lue of the image view to Cars. Choose the controller key se1ection and the key path photo. Also, check the box that says Conditionally Sets
Editable. See Figure 11.13.

Figure 11.13. Image View Binding

ano [Carlot - MyDocument.xib w"
(») () (=] | ek | Bagoom @
ST Scheme. Breabpoints | ‘Mliwe Editor View Organizer

w4 | Pycarons | costor) WD, o By 0 cowea. o B2 View B2 Box - Bax tmpmuln .. "B % £ O 6 2
Vaion

i ; i i ¥ Valui (0T e PRl

™ Bind to: | Cars
|- ke el e Special ’ Cantralier iy

| i Table View Cetl Table View Céll [Ifecice

Madel Key Path
phote

< Value Transformer

‘ ¥ Allows Editing Multiple Vahies Selection
Abways Presents Application Modal Alerts
N e ¥ Conditionally Sets Editable

[Add || Remowe | Conditionaty Sets Enabled
Canditicnalty Sets Hidden

- ¥ Raives For Mot Applicable Kays
Date Purchased 2/12/1982 ; 0 i} @l =
Q Condition ** 1 Otject Libirary NEHE

[[Push Button - intercepts moase -down
events and sends an action message 10 &
arget ebjert whea in's clicked or

Gradient Button - INCenoepts maoute-
diowm events and sends an ation
EESEDE 1O & TANYET DBIECT WhEn 'S

Aounded Rect Button - Intercepts
mouse-down events and sends an

A

Select the box. In the Bindings Inspector, under the Title With Pattern heading, bind Display Pattern Title1 to Cars (our custom name for the array
controller). Set the Controller Key to se1ection and the Model Key Path to makeMode1. Set the Display Pattern to petails for s(titlel}e. Set the No
Selection Placeholder to <no selection>. Set the Null Placeholder to <no Make/Model>. See Figure 11.14.

Figure 11.14. Box Binding

Box
Date Purchased 2/12/1982 |2

B e -
e
! tanget object when it's cicked er...
Gradignmt Bumion - Inerems mouke -
dowen vt #nd bends n et
message 1o 4 target object mhen it's...

=

Roanded Rect Buttos - InlenEpes
{ b mozie-down gvents aed unds an

ol (4 hutton al

Let’s also make the text of the first two columns appear in bold if the car is on special. Bind the Font Bold of the Static Text (NsTextField) in each of the
first two columns to Table Cell View. Set the Model Key Path to objectvalue. onspecial (Eigure 11.15).

Figure 11.15. Specials Appear in Bold

You are done. Build and run the application. Saving and loading should work. Undo should work. Magic, eh?

How Core Data Works

Although you have written no code, many objects will be created to make this work. Figure 11.16 is a diagram of some of them.

Figure 11.16. Overview of Core Data

NSArray 2|
Controller g Cobjects observed by object context [
g ! '
content B I NSManaged | |
g NSManaged | |
____________ SO - Fa 1™ 03 |
NSPersistent \\ 3 I NSManaged [
Document |] | . Object [
l | 3t
'“““-ux_‘—\— g md condition=3 i
NSManaged | -~ 7] datePurchased=1/1/2012 .
ObjectCantext | = makeModel = "Acura A12" :
| |
. '
NSPersistent | o
StoreCoordinator | NSManaged
™ ObjectModel

f/ Object Store \
(XML, Binary, SQLite)
o

LS

So, the NspPersistentDocument reads in the model you created and uses it to create an instance of NsSManagedobjectModel. In our case, the managed
object model has one NSEntityDescription (Which describes our car entity). That entity description has several instances of NsattributeDescription.

Once it has the model, the persistent document creates an instance of NsPersistentStoreCoordinator and an instance of NSManagedobjectContext. The
NSManagedObjectContext fetches instances of NsManagedobject from the object store. While those managed objects are in memory, the managed object
context observes them. Whenever the data inside the managed objects is changed, the managed object context registers the undo action with the
document’s NsundoManager. The managed object context also knows which objects have been changed and need to be saved.

So, among the classes in the Core Data framework, you will find yourself interacting with NsManagedobjectcontext the most. To fetch objects, you will use
NSManagedObjectContext. 10 save changes to your object graph, you will use NSManagedObjectContext.

Given that we are probably going to add cars to the system when we purchase them, it would be nice if the datePurchased attribute were set to the current
date. One good way to do this is to subclass NsarrayController and override its newobject method.

Create a new file of type Objective-C class. It will be a subclass of NsarrayController. Name it cararrayController. IncararrayController.m, remove
the init and dealloc the template created and override newobject:

- (id)newObject
{
id newObj = [super newObject];
NSDate *now = [NSDate datel];
[newObj setValue:now forKey:@"datePurchased"];
return newOb7j;

Open uypocument . xib in the Interface Builder editor and select the array controller. In the Identity Inspector, set the class to be cararraycontroller. (Be
sure that you are in the Identity Inspector, not the Attributes Inspector; this array controller is still holding on to an array of instances of the car entity.) See

Figure 11.17.
Figure 11.17. Change Class of Array Controller

ana [carLot - MyDocument.xib u"
g 3 . ey 7 e g S
(») (m) [comm.] [m] iiuha na 1 D l Bog odFE =
Run Stop Scheme Breakpoints L] Ediror Voo Organizer

= 4 | [yceton [iCarer MyDocument.xib - MyDocumseslab English) + G Cars | D BlBw & S 6H 8|

T Cuitem Clis |
B.ON0 e Clais | CarrrayCantralier [~ |
 — — v Wser Defined Rumime Attributes |
Maie Model Frice Special Fop i iuh TYPS i |
W Tabile View Cell Table View Cell o
< + =
@ ¥ Adesairy |
vabet [Cars.
)\ =
o Object 1D 100021
: 1 b {
| Add Remove b -
Lotk | Inhvingd = (hohing)
L= B - - {
| | - D il | &im |
1]
Date Purchased 2/12/1982 | 3l Ot Ubrary 5 (mis)|
| ﬁ Condition * % Push Butlin - N FERees Mo -down |

wanti 4nd ipadi 4 sclion mEiispE Lt
target object when i's chicked or... |
Grasient Butten - imereps mouse-
derwen v nls and vends an actisn
meTsage 10 a Earget chject when it's.

Rownded Réct Buttos - (NEEpes
f evenns and wands an

: = | 0, butten

Build and run your application. When new cars are added, their daterurchased attribute should be initialized to the current date.

For the More Curious: View-Based versus Cell-Based Table Views

You have now used both view-based and cell-based table views: view based in this chapter, cell based in the SpeakLine exercise. You are probably
wondering why there are two types and which one you should choose.

Cell-based table views have been around since Cocoa’s origins at NeXT. This type of table view uses cells for performance reasons and works very well
for displaying simple data. But customization can be challenging, and incorporating animation or interactive controls, such as buttons, into cells can be
extremely challenging. Cell-based table views are your only choice if you are targeting Mac OS X 10.6 or earlier.

View-based table views were introduced in Mac OS X 10.7 and offer easy, convenient customization, allowing the use of the Interface Builder editor to lay
out the cell contents. Animation and interactive controls can be easily used, as the table cells are in fact views.

Bindings on cell-based table views are not as obvious but are simpler: Bind the table column only. Bindings on view-based table views are completely
different but more logical: Bind the table view’s contents and then bind individual controls within the cell views directly to the desired property. This has the
advantage of allowing for relatively trivial compound cells (cells containing multiple controls).

Challenge

After studying the code for createNewEmployee: in the RaiseMan application, make the cararraycontroller select the Make/Model column of the table
view when a new record is created. Hint: You will need to add an outlet to cararraycontrolier.

Chapter 12. NIB Files and NSWindowController

In RaiseMan, you are already using two NIB files: MainMenu.nib and rRMDocument. nib. (Recall that the compiler converts our XIB files to NIB files during
the build process.) MainMenu.nib is automatically loaded by Nsapp1lication When the application first launches. rRMbocument . nib is automatically loaded
each time an instance of rRupocument is created. In this chapter, you will learn how to load NIB files by using NsWindowController.

Why would you want to load a NIB file? Most commonly, your application will have several windows (such as a Find panel and a Preferences panel) that
are used only occasionally. By putting off loading the NIB until the window is needed, your application will launch faster. Furthermore, if the user never
needs the window, your program will use less memory.

NSPanel

In this chapter, you will create a Preferences panel. The panel will be an instance of Nspane1, which is a subclass of Nswindow. There are not that many
differences between a panel and a general window, but because a panel is meant to be auxiliary (as opposed to a document window), it acts a little
differently.

* A panel can become the key window without becoming the main window. For example, when bringing up a Print panel, the user can type into it (it is
key), but the document the user was looking at remains the main window (that is what will be printed). Nsapplication has @ mainwindow outlet and
a keyWindow outlet. Both outlets point at the same window unless a panel is involved; panels do not typically become the main window.

* If it has a c1o0se button, you can close a panel by pressing the Escape key. Panels do not appear in the window list in the Window menu. After all, a
user who is looking for a window is probably looking for a document, not a panel.

All windows have a Boolean variable called hidesonbeactivate. [f it is set to ves, the window will hide itself when the application is not active. Most
document windows have this variable set to no; most auxilary panels have it set to yEs. This mechanism reduces screen clutter. You can set
hidesOnDeactivate by using the Attributes Inspector in Interface Builder.

Adding a Panel to the Application

The Preferences panel that you are going to add will not do anything except appear for now. In Chapter 13, however, you will learn about user defaults and
will make the Preferences panel do something.

The Preferences panel will be in its own NIB file. You will create a subclass of NsWindowController called PreferenceController. An instance of
PreferenceController Will act as the controller for the Preferences panel. When creating an auxiliary panel, it is important to remember that you may
want to reuse it in the next application. Creating a class to act just as a controller and a NIB that contains only the panel makes it easier to reuse the panel
in another application. Hip programmers would say, “By making the application more modular, we can maximize reuse.” The modularity also makes it
easier to divide tasks among several programmers. A manager can say, “Rex, you are in charge of the Preferences panel. Only you may edit the NIB file
and the preference controller class.”

The objects on the Preferences panel will be connected to the preference controller. In particular, the preference controller will be the target of a color
well and the check box. The Preferences panel will appear when the user clicks on the Preferences... menu item. When running, it will look like Figure
12.1.

Figure 12.1. Completed Application

o [[TUTITTY File Edit Format View Window Help

About RaiseMan

W) Untitled
Preferences... &,
Services p A Raise (Add Employee |
ante Hicks 15%
r Hide RaiseMan #H andal Graves -10% Remove
] f Hide Others “C#H ronica Loughran i
§ Show All itlin Bree 2%
Q QuitRaiseMan #0Q
|] 4 Preferences
i ‘-_ Table background coler

h E Automatically open untitled document
d

Figure 12.2 presents a diagram of the objects that you will create and the NIB files in which they will reside.
Figure 12.2. Object/NIB Diagram

| BN @) Prafarencas

F :
| B | Table background coler ;

M Automatically open untitled document |

| = | NSMenultem
[T
| l." .I \ = [- +— i
; / target \ f e ||
| / checlft}m window s . tanlgpj
- target ool [Eréieréﬁcéﬁéi:lrdléer g | | ; | |
: | o= 2 |17 AppController | |
i A — g]
- changeBackgroundColor: 5 e
- changeNewEmptyDoc: = ! | - showPreferencePanel: | |
e e e e e e e e e — e e e — e e — e —a - _— e e e e — .

We will start by creating preferencecontroller; this will allow us to take advantage of Xcode's code completion later. Open the raiseMan project,
choose New -> New File... from the File menu, and create a new Objective-C class file that is a subclass of NswindowControl1er. Name the subclass
PreferenceController. Edit Preferencecontroller.h to look like this:

#import <Cocoa/Cocoa.h>

@interface PreferenceController : NSWindowController {
IBOutlet NSColorWell *colorWell;
IBOutlet NSButton *checkbox;

}

- (IBAction)changeBackgroundColor:(id)sender;

- (IBAction)changeNewEmptyDoc:(id)sender;
@end

Next, create a new subclass of Nsobject called appcontroller. Edit Appcontroller.h to look like this:
#import <Foundation/Foundation.h>
@class PreferenceController;

@interface AppController : NSObject {
PreferenceController *preferenceController;

- (IBAction)showPreferencePanel:(id)sender;
@end

Note the Objective-C syntax:
@class PreferenceController;

This tells the compiler that there is a class preferencecontrolier. You can then make the following declaration without importing the header file for
PreferenceController:

PreferenceController *preferenceController;

You could replace @class PreferenceController; With #import "PreferenceController.h". This statement would import the header, and the compiler
would learn that preferencecontroller was a class. Because the import command requires the compiler to parse more files, ec1ass will often result in
faster builds.

Note that you must always import the superclass’s header file, because the compiler needs to know which instance variables are declared in the
superclass. In this case, Nsobject.n is imported by Foundation/Foundation.h.

Setting Up the Menu Item

OpenwMainMenu.xib. Drag annsobject from the Library (under Objects & Controllers) to the dock. In the 1dentity 1Inspector, set its class to

AppController 1Figure 12.3).
Figure 12.3. Create an Instance of AppController

a0 1 RaiseMan - MainMenu. xib

@ 'n"@ L'_' [Build RaseMan: Secoseded | Yesterday a1 451 Phl

o csuen

Mz ® 4 = » @ |[= o« B Muemens . flappConmilr [0 BB £ © 6 8 |
| y ppg Balseblan © RaiseMan File Edit Formar View W 7 Custom Class |
| ™ 5 3 target, Mac 08 X 50K 107 -
| [rasseman Clain | AppController = 3 |

hi Perscnh _. ¥ User Defined Rustime Attributes |
m Person.m Key Path Type Value |
h ReDacument.h
m RMDocument.m

AMDacument ik
hi PreferenceCanraller i -
m| PreferenceController.m 0D Ule = |
- Fpn il il Otect Library i |

m| AppComrolier.m

i = ‘r'
Be ' >00

[B mainmen Qmu-h::ﬂna:ﬂmaolr.h
WEOb et subelats that is sot avail
T | Supparting Files In eterface Builser.

& tetiens e J
RaiseMan-info_plist Object Controller - A Cosa
InfoPiist.strings | , ifaingd -Compatitde contnlel dass

[S N Sy

h, RaiseMan-Prefapoh

| » Crecits.rif

3

|+ G ma® (G nssbject)|

Within the Interface Builder editor, click the application menu item raiseman. Control-drag from the Preferences... menu item to the appcontrolier. Make
itthe target and setthe action tO showPreferencePanel: (Eigure 12.4).

Figure 12.4. Set the Target of the Menu Item

B3 Raiseban - MainManusib aon [RaiseMan - Maind
= | Build RaiseMan Succeeded | Yesterdayat 4317 | E @ (m) [Roww.] (=] |[Build Raiseban; Succendnd | Ve
: b hinsas Rip Sres St] Be
B i< > Lot e T e [(MR @® 4 5o B [mi4 > B

- TR ST SO P BaiieMa = i
E Fle Edt_Formas View W[ISR oo cocios - M e s
About RaiseMan w | RaiseMan Abgut RaiseMan
L] | m Paricn.m -
a Servifes » h: AMDocament h ‘ Services
! Y m AMDotumestm
v Hicle RaiseMan 5¢H RMDG¢ et il Hide RaiseMan 3
A Hide Dthers “C3H — h' PreferenceContratier.h N Hide Others Tl
o Shiow All | = | PrsferenceCanticlier.m - Shaw All
i) AppCantrotieh
= / Quit RaiseMan Q| b m AopControlien.m e Quit RaiseMan 3
= { w Supporting fles
. A L W] miticns .
} | BsieMan - s, pligt
] InfoPlist strings [rT—pre—
Contrall
‘ i maimm showPreferencePanel: +
b BaigeMan-Sreds peh !
= Credas.nf
[G+ OEE® =

AppController.m

Now you need to write the code for appcontroller. Make the contents of appcontrolier.m look like this:

#import "AppController.h"
#import "PreferenceController.h"

@implementation AppController
- (IBAction)showPreferencePanel:(id)sender
Il ls preferenceController nil?
if (IpreferenceController) {
preferenceController = [[PreferenceController alloc] init];
}
NSLog(@"showing % @", preferenceController);

[preferenceController showWindow:self];
}

@end

Note that this code creates the instance of preferencecontroller only once. If the preferencecontroller variable is non-nil, it simply sends the
message showwindow: to the existing instance.

Note also that we import preferencecontroller.h into the .nfile that uses it.

Preferences.xib

In Xcode, create a new empty XIB file named preferences.xib (Figure 12.5).

Figure 12.5. Create an Empty XIB File

Choose a template for your new file:

8 ios
Cocoa Touch ;J\
Cand C++ :
User Interface
Core Data
Resource
Code Signing
Other

B Mac 05 X

il

Apglication Main Menu Window View

Cocoa

| CandC++
Core Data
Resource
‘Onher

=T

Empty

An empty Interface Builder document,

" Cancel) Previous

Click on preferences.xib to open it in the editor. Bring up the Identity Inspector, select File’s Owner, and set its class to preferencecontroller (Figure
12.6).

Figure 12.6. Set File’s Owner to Be a PreferenceController

809 B3 RaiseMan - Preferences xib o
- rr——— Build RasseMan: Seceeeded | Yesterday a1 431 P T —
() () (Rt — [il BanseMan: Suceee esterday 4 | Bo= @oE (=2 |
[min son scheme mestooins | BT L Edwer Wew Oruansae |
| mim & &4 = » @& | 2> [Preferenc. . Aiower 4 v D BlBI® # © 5 8|
- [y RalseSlan ¥ Cusdo Clidi

L1 tanget, Mac 05 X 50K 10.7

| ¥ [masseman Clan | PrafeenceControtier] = [

h| Personh ¥ User Defined Rustime AlEributes
m Person.m Key Path Tyoe Value
h REDocument.h
m RMODocument.m -
RMEatument sib I~
I PreferenceControlier b M m |
m FreferenceControiler.m D le = |
[—m—— - @ Ml Ot Library i -E!
h| AppComyalier.h d
mi AppControlfier.m A\ Object - Provides an since ol an |
MainMensxib ¥k s0biect subclens that i o available

in Ieterface Builder,
- Supporting Files

& teticns @ Object Cantraller - & Covea
Ralsebban-fo plist 4 Bingingt-compatitle conircler class.
InfePlise serings e Properties of the contiat obpect of an

m mairm

! Ralsedan-Frefixpch

; +1® I'-'":’.'ﬁ' I (] 0, nsohject

File’s Owner

When a NIB file is loaded into an application that has been running for a while, the objects that already exist need to establish some connection to the
objects read from the NIB file. File’s Owner provides this connection. File’s Owner is a placeholder in a NIB file for an object that will already exist when
the NIB file is loaded. An object loading a NIB file will provide the owner object. The owner is put into the place that File’s Owner represents. In your
application, the owner will be the instance of preferencecontroller that was created by the appcontrolier.

The use of File’s Owner is confusing to many people. You will not instantiate preferencecontroller in the NIB file. Instead, you have just informed the
NIB file that the owner (which will be provided when the NIB file is loaded) is a preferenceController.

Lay Out the User Interface

With preferences.xib open in the editor, create a new panel by dragging a panel from the Library (under Application->Windows) and dropping it
anywhere onto the screen (Eigure 12.7).

Figure 12.7. Create an Instance of NSPanel

ano [RaiseMan - Prefarences.xib o

4

@ - l'-. Build RaiseMan: Succeeded | Today at 222 PM EE EI E_EE I_ﬂl
b, J ¥ | 4 -—
Ran | Zmop Scheme e

W IEsaean Editor
iz d AE=@ |,-_- 4 [RaiseMan | |Ral.. . - Preferences.uib .nw:umu-|n B a+ £ e & gl
'_-(1n.l.|51-ll|
| ¥ 521 carpet, Mac 08 X $OK 10.7
| ¥] mascemtan
h| Persanh B0 Widw

m Persge.m
h) RMDocument h
m| RMDocument,m
RMDacument.xik
i_. PreferenceController.h
el [Vo seecion |

lh A

hi ApsCentolerh
m AppControfier.m »
MainMeny. sl 9
v] Supporng Fiies
w tetlens
|| Ralgebdan-bte plist
InfoPlist strings
m main.m s {
h RaiseMan-Prafixpeh : D i@ = |
| g Canent il Obyect Uibrary Lgd i
| » [Prameworks e |
| ™ Sl Produars (™77 pamal - & specul kisd of window,
== typscalhy serving am auniiany Sunction =
| || anapphcation,
HUD Window - Manages an onscreen
window, toordingting the daglay ad
event handing for its NS¥iew objects.
|+ & @ F® [4, panel

Make the panel smaller and drop a color well and a check box onto it. Label them as shown in Eigure 12.8. (Check boxes have labels, but you will have to
drag out a label for the color well.)

Figure 12.8. Completed Interface

B.00 Window

IilTable background color |

aAutomaticallv open untitled document | :

Set the target of the color well to be File’s Owner (your preferencecController)and setthe action to be changeBackgroundcolor: (Eigure 12.9).

Figure 12.9. Set the Target of the Color Well

Bira MO O [Raist

[Build RaiseM. @ ‘:!3 (R...:] @ ’ Build RaiseMan
L jXiBs).~ Prefera., s | - HiEs

| o Wind
' . .E Table background color ___:-Tab]e background color
ammmaticalw open unt] E.ﬁ\ul.‘omillimlll,I open untith
A A\
¥ s
| 5 = Bz
= =

Also, make your preferenceController be the target of the check box and set the action to be changeNewEmptyDoc: .

Control-click on File’s Owner to bring up the connections window. Set the colorwe11 outlet of File’s Owner to the color well object. Set the checkbox
outlet of File’s Owner to the check box object. See Figure 12.10.

Figure 12.10. Set the colorWell and checkbox Outlets

T RajseMa
— -~ s — . - f I--El_r!_
() (W Rk - Build RatseMan: Suges | | B - Buid RalzeMan: Su
@), @ [ORO0
Run Siop Scheme Breakpoints P Run Stop Scheme Breakpoints
w4 = | 3 Raisesan || jRaiseMan wms) i Preferences.xib 0 01 2= |« » | By RaiseMan RaiseMan XiBs |+ Preferences.xib
= 1 ane o -:,_ e, Windaw
‘ -Eg Table background color w I | Table background color
~ ¥ pwomatically open untitled do _'-‘Eﬁummw-:iﬂv open untitled ¢
e \ o \
File's Ownar
. H
= I
Referencing ¥ Referencing Outlets
b B 0 Mgw R 9 Qe
i3] Received Actians - ¥ Received Actions
]

thargilackgiou. & Coler Wall - = Cobar Well
ha ot = Chech Bow

Control-click File’'s Owner to get the connection window. Connect the window outlet to the panel (Figure 12.11).

Figure 12.11. Set the window Outlet of File’s Owner

RalsaMan - Preferences.xlb
e - i —einnen prmediiiany
\t) W R = [Build RaiseMan- Suce Today at :07 FM | Ela= DuE =
o
Run %op Schems Breakpaoints Frope .1 Editor View Ovganizer
= 4 o [DRaisesan o [RaiseMan [xEs o [Preferences.nib ¢ L File's Owner 4. 0D B A =+ &6 & =2
_T Custom Class - ."“l
Clias | PraferangeContradier 0"
— 3 7 User Defined Runtime Aizributes
KeyPath Type vaiue
B Table background Eolor D (] & =
o Automatically apen untitled decument Ll Opecttibrary JIEE]

Chtk B - NGEFOEQLE Mouse -Jown 1
W events and sends an aotion message 1o a
anget objexs when ity cicked or..,

m e | Cheeck Box Cell - Uied 1o implemess
— the user interfaces of check bowes

Q check

Open the Attributes Inspector for the panel. Disable resizing. Change the title on the window to Preferences (Eigure 12.12).

Figure 12.12. The New Window's Attributes

arm [Raisebhan - Preferences vib 1
= — — I ey T

AHU R Y | e | Eloziocm &)
e e e i -

| wosee. - Set the title
B v Dytaneson ” hatvetton) | oom) I Preterseorioch ;- Pusl - Portusaees .

"’ Fraterenies,

B Tabie background color

W Automatically opem wetitled document

Disable resizing

., Ok Baw €l - G 13 igremany
ot ater mieclice il hs baves

PreferenceController.m

In Xcode, edit preferenceController.m to look like this:
#import "PreferenceController.h"
@implementation PreferenceController
- (id)init

self = [super initWithWindowNibName: @"Preferences"];
return self;

}

- (void)windowDidLoad
{

[super windowDidLoad];
NSLog(@"Nib file is loaded");

}
- (IBAction)changeBackgroundColor:(id)sender

NSColor *color = [colorWell color];
NSLog(@"Color changed: % @", color);
}

- (IBAction)changeNewEmptyDoc:(id)sender
{

NSinteger state = [checkbox state];
NSLog(@"Checkbox changed %Id", state);

}

@end

Note that you set the name of the NIB file to be loaded in the init method. This NIB file will be loaded automatically when it is needed. The instance of
PreferenceController Will be substituted for the File’s Owner in the NIB file.

After the NIB file is loaded, the preferencecontroller will be sentwindowbidrLoad. It offers an opportunity (similar to awakeFromnib or
windowControllerDidLoadNib:) for the controller object to initialize the user interface objects that have been read from the NIB file.

When sent showwindow: for the first time, the NswindowController automatically loads the NIB file and moves the window onto the screen and to the front.
The NIB file is loaded only once. When the user closes the Preferences panel, it is moved off screen but not deallocated. The next time the user asks for
the Preferences panel, it is simply moved onto the screen.

The changeBackgroundColor: and checkboxChanged: methods are quite boring right now—they simply print out a message. In the next chapter, you will
change them to update the user’s defaults database.

Build and run the application. The new panel should appear, and altering the check box or color well should result in a message in the console (Figure
12.13).

Figure 12.13. Completed Application

RaiseMan - Preferences. xib
(») (!; R My M Fumning RaiveMan | o o pp— —

= o4 = [Raiesan FuaiseMan Preferences.ulb o = Pasel - Preferences
Untitled
@ a Ll wame Raise Add Emplayes
Agent 2 5%
A, — Remove |
Eal IN’FI'-tr;"“I 131

e 5 — |

o = | Tabile background cobor
A om

[Automatically open untitiled document

Theri

This d-apple-danin™. tty fdev/ttyseesd

(5wl g dubl]

b1y 2 L8620:507] Absut to read data of type com bignerdranch.raisesan-doc

ol IR69:507] oldValue = 1234

1L 18629:507] showing <Preferencefontroller: BxiO@5Sadid=

81 18E20:5087] Nib file is lLoaded

2811 APEZ9:587] Color changed: NSCalibratedRGEColorSpace 1 8.942331 B.905978 1
2011 18620:507] Calor e : NSCalibratedRCBCelorSpace 1 0.930674 0.909113 1
2011 10620:507] Calar ek od: NSCalibratedRCBColerSpace 1 @.956865 0. 025056 1

Lo830:507] Color ch d; NECalibretedRGiloloripace 1 @.965206 0.9041 1
A0629:507] Color changed: NSCalibratedRGBColorSpace 1 9.991608 0.943347 1

1L 18629:507] Color changed: NSCalibratedRGBColorSpace 1 @.989492 B.956144 1
B1L ABEZH:507] Color changed: NSCalibratedRGBColorSpace 1 §.955451 0.546617 1
2epy W om ABE2D:507] Coler changed: NSCalibratedRCHColerSpace §.5B9321 1 8.854571 1

2011 =ww=gmrsrasTwwrera-nassenany 10620 : 587] Colar changed: NSCalibratedRCBColorSpace @ 986457 1 0.949097 1

The first time a user encounters a color well, it may seem confusing. If you click the edge of the color well, the edge becomes highlighted, the Color panel
appears, and the well is in active mode.

For the More Curious: NSBundle

A bundle is a directory of resources that may be used by an application. Resources include images, sounds, compiled code, and NIB files. (Users often
use the word “plug-in” instead of “bundle.”) The class NsBund1e is a very elegant way of dealing with bundles.

Your application is a bundle. In Finder, an application looks to the user like any other file, but it is really a directory filled with NIB files, compiled code, and
other resources. We call this directory the main bundle of the application.

Some resources in a bundle can be localized. For example, you could have two versions of foo.nib, one for English speakers and one for French

speakers. The bundle would have two subdirectories: English.1lproj and French.lproj. You would put an appropriate version of foo.nib in each. When
your application asks the bundle to load foo.nib, the bundle will automatically load the French version of foo.nib, if the user has set the preferred
language to French. We will cover localization in Chapter 16.

To get the main bundle of an application, use the following code:
NSBundle *myBundle = [NSBundle mainBundle];
This is the most commonly used bundle. If you need to access resources in another directory, however, you could ask for the bundle at a certain path:

NSBundle *goodBundle;
goodBundle = [NSBundle bundleWithPath:@"~/Library/Application Support/MyApp/Good.bundle"];

Once you have an NsBundle object, you can ask it for its resources:
// Extension is optional

NSString *path = [goodBundle pathForImageResource:@"Mom"];
NSImage *momPhoto = [[NSImage alloc] initWithContentsOfFile:path];

A bundle may have a library of code. By asking for a class from the bundle, the bundle will link in the library and search for a class by that name:

Class newClass = [goodBundle classNamed:@"Rover"];
id newInstance = [[newClass alloc] init];

If you do not know the name of any classes in the bundle, you can simply ask for the principal class:

Class aClass = [goodBundle principalClass];
id anInstance = [[aClass alloc] init];

As you see, NsBundle iS handy in many ways. In this section, the NsBund1e was responsible (behind the scenes) for loading the NIB file. If you wanted to
load a NIB file without an NswindowController, you could do it like this:

BOOL successful = [NSBundle loadNibNamed:@"About" owner:someObject];

Note that you would supply the object that will act as the File’s Owner.

Challenge

Create a XIB file with a custom About panel. Add an outlet to appcontrolier to point to the new window. Also add a showaboutPanel: method. Load the
NIB by using NsBundle, and make appcontroller the File’s Owner.

Chapter 13. User Defaults

Many applications have Preferences panels that allow the user to choose a preferred appearance or behavior. The user’s choices go into the user
defaults database in the user’s home directory. Note that only the choices that vary from the factory defaults are saved in the user defaults database. If you
go to ~/Library/Preferences, YOU can see your user defaults database. The files are in a binary format, but you can use Xcode's property list editor to
browse though them.

The NsuserDefaults class allows your application to register the factory defaults, save the user’s preferences, and read previously saved user
preferences.

The color well that you dropped into the Preferences window in the previous chapter will determine the background color of the table view. When the user
changes his or her preference, your application will write the new preference to the user defaults database. When your application creates a new
document window, it will read from the user defaults database. As a consequence, only windows created after the change will be affected (Eigure 13.1).

Figure 13.1. Completed Application

Narme Mare Raize .'__hd_d_apio;e? J

Untitled 4

Name Raise (" Add Employee)

Remove

Preferences

I | Table background color

™ Automatically open untitled document

Also, have you noticed that every time you start the application, it brings up an untitled document? The Automatically open new document check box will
allow the user to choose whether the untitled document should appear.

NSDictionary and NSMutableDictionary

Before you do anything with user defaults, we need to discuss the classes NsDictionary (Figure 13.2) and NsMutableDictionary. A dictionary is a
collection of key-value pairs. The keys are strings, and the values are pointers to objects.

Figure 13.2. An Instance of NSDictionary

State
capital=@"Austin”
NSDictionary / population= 18,000,000
@ Texas" ~
State
@ California® capital= @ "Sacramenta”
population=231,000.000
& "Virginia"
State
~.

.| capital=&@"Richmond"
population=7,000,000

A string can be a key only once in a dictionary. When you want to know the value to which a key is bound, you will use the method objectForkey:.
anObject = [myDictionary objectForKey:@"foo"];

If the key is not in the dictionary, this method will return ni1.

NSMutableDictionary iS @ subclass of Nspictionary. Aninstance of Nspictionary is created with all the keys and values it will ever have. You can query
the object, but you cannot change it. NsMutablebictionary, On the other hand, allows you to add and remove keys and values.

NSDictionary

A dictionary is implemented as a hash table, so looking up keys is very fast. Here are a few of the most commonly used methods in the class
NSDictionary.

- (NSArray *)allKeys

Returns a new array containing the keys in the dictionary.
- (unsigned) count

Returns the number of key-value pairs in the dictionary.

- (id)objectForKey: (NSString *)aKey

Returns the value associated with axey or returns ni1 if no value is associated with axey.

A for-in loop will enumerate through the keys in a dictionary:
NSDictionary *dict = ...
for (NSString *key in dict) {

NSLog (@"%$@ -> %@", key, [dict objectForKey:kevy]);
}

NSMutableDictionary

Here are some commonly used methods in the class NsMutableDictionary:
+ (id)dictionary
Creates an empty dictionary.
- (void) removeObjectForKey: (NSString *)aKey
Removes axey and its associated value object from the dictionary.
- (void) setObject: (id) anObject forKey: (NSString *)aKey

Adds an entry to the dictionary, consisting of akey and its corresponding value object anobject. The value object receives a retain message before
being added to the dictionary. If akey already exists in the receiver, the receiver’s previous value object for that key is sent a re1ease message, and
anobject takes its place.

NSUserDefaults

Every application comes with a set of defaults “from the factory.” When a user edits his or her defaults, only the differences between the user’s wishes and
the factory defaults are stored in the user’s defaults database. Thus, every time the application starts up, you need to remind it of the factory defaults. This
operation is called registering defaults.

After registering, you will use the user defaults object to determine how the user wants the app to behave. This process is called reading and using the
defaults. The data from the user’s defaults database will be read automatically from the filesystem.

In your Preferences panel, you will allow the user to set the defaults. The changes to the defaults object will be written automatically to the filesystem. This
process is known as setting the defaults (Eigure 13.3).

Figure 13.3. NSUserDefaults and the Filesystem

Your application

Register
“factory defaults” :
at lunch time |

s

NSUserDefaults i

\ Set user defaults
« from the Preferences
| panal

Eﬁead
| defaults

.{l

| Defaults are written
| to the filesystem
+as XML

_——

Here are some commonly used methods that are implemented in NsUserDefaults:

+

(NSUserDefaults *)standardUserDefaults

Returns the shared defaults object.

(void) registerDefaults: (NSDictionary *)dictionary

Registers the factory defaults for the application.

(void) setBool: (BOOL)value forKey:
(void) setFloat: (float)value forKey:
(void) setInteger: (NSInteger)value forKey:
(void) setObject: (id)value forKey:

Methods for changing and saving a user’s wishes.

(BOOL) boolForKey: (NSString *)defaultName
(float) floatForKey: (NSString *)defaultName

(NSInteger)integerForKey: (NSString *)defaultName
(id) objectForKey: (NSString *)defaultName

(NSString
(NSString
(NSString
(NSString

*)defaultName
*)defaultName
*)defaultName
*)defaultName

Methods for reading the defaults. If the user hasn’t changed them, the factory defaults are returned.

(void) removeObjectForKey: (NSString *)defaultName

Removes the user’s preference, so the application will return to using the factory defaults.

Precedence of Types of Defaults

So far, we have talked about two levels of precedence: What the user writes to his or her defaults database overrides the factory defaults. In fact, several
more levels of precedence exist. These levels of default settings are known as domains. Here are the domains used by an application, from highest to

lowest priority:

Arguments: Passed on the command line. Most people start their applications by double-clicking on an icon instead of by working from the

command line, so this feature is seldom used in a production app.

Application: What comes from the user’s defaults database.

Global: What the user has set for his or her entire system.

Language: What is set based on the user’s preferred language.

Registered defaults: The factory defaults for the app.

Setting Defaults

The Identifier for the Application

What is the p1ist file in~/nibrary/Preferences created for this application called? By default, it uses the identifier of the application that created it. You
set this identifier in Chagter 10 to be com.bignerdranch.RaiseMan, SO the filename will be com.bignerdranch.RaiseMan.plist.

Create Keys for the Names of the Defaults

You will be registering, reading, and setting defaults in several classes in your application. To make sure that you always use the same name, you should
declare those strings in a single file and then simply #import that file into any file where you use the names.

There are several ways to do this (for example, you could use the C preprocessor’s #define command), but most Cocoa programers use global
variables for this purpose. Add the following lines to your preferencecontroller.h file after the # import statement:

extern NSString * const BNRTableBgColorKey;
extern NSString * const BNREmptyDocKey;

Now define these variables in preferencecontroller.nm. Put them after the #import lines but before eimplementation:

NSString * const BNRTableBgColorKey = @"BNRTableBackgroundColor";
NSString * const BNREmptyDocKey = @"BNREmptyDocumentFlag";

Why would we declare global variables that simply contain a constant string? After all, you could just remember what the string was and type it in
whenever you need it. The problem is that you might misspell the string. If the string is surrounded by quotes, the compiler will accept the misspelled
string. In contrast, if you misspell the name of a global variable, the compiler will catch your error.

To keep the global variables from conflicting with another company’s global variables, you have prefixed them with sxr (for Big Nerd Ranch). Global
variables from Cocoa are prefixed with ns. These prefixes are important only when you start using classes and frameworks developed by third parties.
(Note that class names are also global. You might prefer to prefix all your class names with exr to keep them from conflicting with anyone else’s classes.)

Register Defaults

Each class is sent the message initialize before any other message. To ensure that your defaults are registered early, you will override initialize in
AppController.m:

+ (void)initialize

Il Create a dictionary
NSMutableDictionary *defaultValues = [NSMutableDictionary dictionary];

Il Archive the color object
NSData *colorAsData = [NSKeyedArchiver archivedDataWithRootObject:
[NSColor yellowColor]];

/I Put defaults in the dictionary

[defaultValues setObject:colorAsData forKey:BNRTableBgColorKey];

[defaultValues setObject:[NSNumber numberWithBool:YES]
forKey:BNREmptyDocKey];

Il Register the dictionary of defaults
[[NSUserDefaults standardUserDefaults]
registerDefaults: defaultValues];
NSLog(@"registered defaults: % @", defaultValues);
}

This is a class method; that is why its declaration is prefixed with a +.

Note that we had to store the color as a data object. Nscolor Objects do not know how to write themselves out as XML, so we pack them into a data
object that does. One group of classes does know how to write themselves out as XML, known as the property list classes: Nsstring, NSArray,
NSDictionary, NSDate, NSData, and NSNumber. A property list comprises any combination of these classes. For example, a dictionary containing arrays of
dates is a property list.

Letting the User Edit the Defaults

Next, you will alter the preferencecontroller class so that the Preferences panel will cause the defaults database to get updated. Declare the following
methods in preferencecontroller.h:

+ (NSColor *)preferenceTableBgColor;

+ (void)setPreferenceTableBgColor:(NSColor *)color;
+ (BOOL)preferenceEmptyDoc;

+ (void)setPreferenceEmptyDoc:(BOOL)emptyDoc;

These class methods will make it easier for us to set and get the current default values, and will abstract away the details of how the preferences are
stored.

Implement the new class methods in preferencecontroller.m:

+ (NSColor *)preferenceTableBgColor
{

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
NSData *colorAsData = [defaults objectForKey:BNRTableBgColorKey];
return [NSKeyedUnarchiver unarchiveObjectWithData:colorAsData];

}

+ (void)setPreferenceTableBgColor:(NSColor *)color

NSData *colorAsData =
[NSKeyedArchiver archivedDataWithRootObject:color];
[[NSUserDefaults standardUserDefaults] setObject:colorAsData
forKey:BNRTableBgColorKey];

}
+ (BOOL)preferenceEmptyDoc

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
return [defaults boolForKey:BNREmptyDocKey];

}
+ (void)setPreferenceEmptyDoc:(BOOL)emptyDoc

[[NSUserDefaults standardUserDefaults] setBool:emptyDoc
forKey:BNREmptyDocKey];

}
Now let's modify windowbidLoad and the action methods to make use of the preferences:

- (void)windowDidLoad

{

[super windowDidLoad];

[colorWell setColor:

[PreferenceController preferenceTableBgColor]];
[checkbox setState:

[PreferenceController preferenceEmptyDoc]];

(IBAction)changeBackgroundColor: (id) sender

NSColor *color = [colorWell color];
[PreferenceController setPreferenceTableBgColor:color];

- (IBAction)changeNewEmptyDoc: (id) sender

NSInteger state = [checkbox state];
[PreferenceController setPreferenceEmptyDoc:state];
}

In the windowDidLoad method, you are reading the defaults and making the color well and check box reflect the current settings. In
changeBackgroundColor: and changeNewEmptyDoc:, you are updating the defaults database.

You should now be able to build and run your application. It will read and write to the defaults database, so the Preferences panel will display the last color
you chose and indicate whether the check box was on or off. You have not, however, done anything with this information yet, so the untitted document will
continue to appear, and the background of the table view will continue to be white.

Using the Defaults

Now you are going to use the defaults. First, you will make your appcontroller become a delegate of the Nsapplication Object and suppress the
creation of an untitled document, depending on the user defaults. Then, in RMDocument, you will set the background color of the table view from the user
defaults.

Suppressing the Creation of Untitled Documents

As before, there are two steps to creating a delegate: implementing the delegate method and setting the de1egate outlet to point to the object (Figure
13.4).

Figure 13.4. Delegate Suppresses Creation of Untitled Documents

__ NSApplication |

f

)
dmagmgf
I

¢

AppController

- (BOOL)applicationShouldOpenUntitledFile:

Before automatically creating a new untitled document, the Nsapp1ication object will send the message applicationShouldOpenUntitledFile: tO its
delegate. In appcontroller.m, add the following method:

- (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender

NSLog(@"applicationShouldOpenUntitledFile:");
return [PreferenceController preferenceEmptyDoc];

}

To make your appcontroller the delegate of the Nsapplication Object, open the MainMenu. xib file, and Control-click on File’s Owner (which represents
the Nsapplication Object) to bring up its connection window. Drag from delegate to your AppController.

Setting the Background Color on the Table View

Open rRMDocument .m @and import preferenceController.h at the top. This will allow us to use the BNRTableBgColorkey constant.
#import "PreferenceController.h"

After the NIB file for a new document window has been successfully unarchived, your rRMDocument oObject is sent the message
windowControllerDidLoadNib:. At that moment, you can update the background color of the table view.

You should already have this method in RMpocument . m; just edit it to look like this:

- (void)windowControllerDidLoadNib: (NSWindowController *)aController
{

[super windowControllerDidLoadNib:aController];

[tableView setBackgroundColor:
[PreferenceController preferenceTableBgColor]];

}

Build and run your application.

Note that Mac OS X Lion’s state-restoration features may make it tricky to observe the new document preference. You can disable state restoration by
editing the run scheme in Xcode. Open the Product menu and select Edit Scheme. Select the Run RaiseMan.app scheme, change to the Options pane,

and check Disable state restoration (Eigure 13.5).

Figure 13.5. Disabling State Restoration

™ RaiseMan - RMDocument.m

e Finivthad running Rainebdan ﬁ F—n
" = =
L M.) Ll
Bo®
o« [y Raisablan Baneban]| My Mac 64-b 1 -
o T, M Scheme Destination Breakpaints
Rassebdan]
—
I Personh 8 Budld 1l Adguments Datishi Diageostics
m Personm 1 rarges
' RMDocus - o 1:
- '] " " Pesiistent 5S1ate DHabEle WATE FeRtoration

AMDorwe | o Test

W Preferent Working Directory || Lise custam working directony

m Preferent | Profile Raiseban
Preferent -
) AppCont | 5. (g Anabree o o
m AppCent s
Vanten | » i Arhie
Suppaoriiy
= tetien
RaiseM
InfoPi
m mains
| EfERSE24
h Raisen 3098
= Cinedhy 12000
Frasnewoskl Bdedl
232
Produrts e

Duplicate Scheme Manage Schemes. oK meh. raluesan-

For the More Curious: NSUserDefaultsController

Sometimes, you will want to bind to a value from the NsUserDefaults Object. An NsUserDefaultsController makes this possible. All the NIBs in your
application will use a single shared instance of NSUserDefaultsController.

For example, if you wanted to use bindings (instead of target/action) to deal with the check box on the Preferences panel, you would bind it to the
shared NsUserDefaultsController’'s value, BNREmptyDocumentFlag (Figure 136)

Figure 13.6. Binding to the NSUserDefaultsController

%3 RalseMan - Preferences xib —
= | | Blos) EOF) (=]
- B fomlinn Ediror View eganzer

RaiseMan wks W Freference., | wsFamel-Pr, ExView Tiweckix | 0 B B ® & © (& 8

alpe Shared User Defasies Con

® Bind 1o. | Shared User Defaus €. M
- Praterencas ;

Comtrofer Key
i
B Tible background color b
Model Key Path
¥ Automatically open untitled document EMREmptyDocumentFlag 0
Value Transfarmer
-

B Aiows Lditing Multiple Vahies Selection

¥
| Miwarys Presents Application Modal Alerts.
A # Condinicnally Sets Enabled
| Condisigraliy Sets Hidden
u o Raises For Not Agplicable Kyt
] Walidutes Irmmadiatery
Aballicde Malues Placeholde:
W .

_ll object Ubrary CIETT]

Push Buthon - (mbarcests moase- m
dowen events and sends an action
message 1o a target chyect when

Gradignt Bttan - Imecess
moute-down events and sends an
action message bo 3 tanget ohject

N
Rec Button - Intenepts |
P

Raaigeman a

For the More Curious: Reading and Writing Defaults from the Command Line

The user defaults database is found in ~/Library/pPreferences/. To edit it from the command line, you use a tool called defaults. For example, to see
your defaults for Xcode, you can bring up the Terminal and enter the following command:

defaults read com.apple.Xcode
You should see all your defaults for Xcode. The first few lines of Aaron’s look like this:

{
DocViewerHasSetPrefs = YES;
NSNavBrowserPreferedColumnContentWidth = 155;

NSNavLastCurrentDirectoryForOpen = "~/RaiseMan";
NSNavLastRootDirectoryForOpen = "~";
NSNavPanelExpandedSizeForOpenMode = "{518, 400}";

NSNavPanelFilelListModeForOpenMode = 1;
You can also write to the defaults database. To set Xcode’s default directory in the Nsopenpanel to the /users directory, you could enter this:
defaults write com.apple.Xcode NSNavLastRootDirectoryForOpen /Users
Try this:
defaults read com.bignerdranch.RaiseMan

To see your global defaults, enter this:

defaults read NSGlobalDomain

Challenge

Add to the Preferences panel a button that will remove all the user’s defaults. Label the button Reset Preferences. Don'’t forget to update the Preferences
window to reflect the new defaults.

Chapter 14. Using Notifications

A user may have several RaiseMan documents open when he or she decides that it is too hard to read them with a purple background. The user opens
the Preferences panel and changes the background color but then is disappointed to find that the color of the existing windows doesn’t change. When the
user sends you an e-mail about this problem, you reply, “The defaults are read only when the document window is created. Just save the document, close
it, and open it again.” In response, the user sends you a mean e-mail. It would be better to update all the existing windows. But how many are there? Will
you have to keep a list of all open documents?

What Notifications Are and Are Not

Every running application has an instance of NsNotificationCenter, Which functions much like a bulletin board. Objects register as interested in certain
notifications (“Please write me if anyone finds a lost dog”); we call the registered object an observer. Other objects can then post notifications to the
center (“I have found a lost dog”). That notification is subsequently forwarded to all objects that are registered as interested. We call the object that posted
the notification a poster.

Many standard Cocoa classes post notifications: Windows send notifications that they have changed size. When the selection of a table view changes,
the table view sends a notification. The notifications sent by standard Cocoa objects are listed in the online documentation.

In our example, you will register all your Rvpocument Objects as observers. Your preference controller will post a notification when the user chooses a new
color. When sent the notification, the rRMpocument objects will change the background color.

Before the rRMpocument Object is deallocated, you must remove it from the notification center’s list of observers. Typically, this is done in the dealioc
method. (If you are using garbage collection, the instance of RMpocument Will be automatically removed from the notification center when it is deallocated.)

What Notifications Are Not

A notification center allows objects in an application to send notifications to other objects in that same application. When programmers first hear about
the notification center, they sometimes think that it is a form of interprocess communications. (“I will create an observer in one application and post
notifications from an object in another.”)

Notifications do not travel between applications. (Look into NsDistributedNotificationCenter if you need to pass notifications between applications.)

NSNotification

Notification objects are very simple. A notification is like an envelope into which the poster will place information for the observers. A notification has two
important instance variables: name and object. Nearly always, object is a pointer to the object that posted the notification. (It is analogous to a return
address.)

Thus, the notification also has two interesting methods:

- (NSString *)name
- (id)object

NSNotificationCenter

The NsNotificationCenter iS the brains of the operation. It allows you to do three things: register observer objects, post notifications, and unregister
observers.

Here are some commonly used methods implemented by NsNotificationCenter:
+ (NSNotificationCenter *)defaultCenter
Returns the notification center.
- (void)addObserver: (id) anObserver
selector: (SEL)aSelector
name: (NSString *)notificationName

object: (id) anObject

Registers anobserver to receive notifications with the name notificationName and containing anobject (Eigure 14.1). When a notification of the
name notificationName containing the object anobject is posted, anobserver is sent an aselector message with this notification as the argument.

Figure 14.1. Registering for Notifications

An object registers to receive nolilications named "SomehotilicationMame”

Foo
"t-..__h__‘___‘_
addObserver:self
selector: @selectorhandlaThis:)
nama: @ SomeNotificationMame®
Bar MNSMetificationCenter object:nil
— -‘---——.__h
Obsarvers S
Baz

- (void)handleThis:(NSHotification *jn

...and it is added to the list of observers
Foo

=1

Bar NSNotificationCenter

Observers

= b

= (voidlhandieThis:{NSNotification *)n

If notificationName iS nil1, the notification center sends the observer all notifications with an object matching anobject.
If anobject is nil, the notification center sends the observer all notifications with the name notificationName.

The observer is not retained by the notification center. Note that the method takes a selector.
- (void)postNotification: (NSNotification *)notification
Posts a notification to the notification center (Eigure 14.2).

- (void)postNotificationName: (NSString *)aName
object: (id) anObject

Figure 14.2. Posting a Notification

An objec! posts & rotilicalion named "SomeNolificationName”
Foo

NSMotification

name = @ SomaNolilicationiamea”

Har |_NSNotificationCanter
b

postNolificaton

obsavar %

i

L
Fida

ivoid)handie This:(NSNobficalion *n

and the nodification centar forwards it 1o the interestad obserr
Foo

T

obsarars

Baz S
L o NSNotification objsct
- (voldinandiaThisMSNotificatin “n [« _ _ . AandiaThis:

e mama = @ SomaNotilicalionhiarme”

Creates and posts a notification.
- (void) removeObserver: (id)observer

Removes observer from the list of observers.

Posting a Notification

Posting a notification is the easiest step, so you will start there. When it receives a changeBackgroundColor: Mmessage, YoUr PreferenceController

object will post a notification with the new color.

You are going to name the notification e"snrcolorchangedn, but you are going to create a global variable for the constant. (Experienced programmers put
a prefix on the notification so that it doesn’t conflict with other notifications that may be flying around the application.) Open preferencecontroller.h and
add the declaration with the other string constants:

extern NSString * const BNRColorChangedNotification;
In Preferencecontroller.m, define the constant:

NSString * const BNRColorChangedNotification = @"BNRColorChanged";
Make your changeBackgroundColor: method in PreferenceController.m look like this:

- (IBAction)changeBackgroundColor: (id) sender
{

NSColor *color = [colorWell color];
[PreferenceController setPreferenceTableBgColor:color];

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
NSLog(@"Sending notification");
[nc postNotificationName:BNRColorChangedNotification object:self];

Registering as an Observer

To register as an observer, you must supply the object that is the observer, the name of the notification in which it is interested, and the message that you
want sent when an interesting notification arrives. You can also specify that you are interested only in notifications with a certain object attached to them.
(Remember that this is often the object that posted the notification. Thus, when you specify that you want resize notifications with a certain window
attached, you are saying that you are interested only in the resizing of that particular window.)

Edit your RMDocument class’s init method as follows:

- (id)init
{
self = [super init];
if (self) {
employees = [[NSMutableArray alloc] init];

NSNotificationCenter *nc =
[NSNotificationCenter defaultCenter];

[nc addObserver:self
selector:@selector(handleColorChange:)

name:BNRColorChangedNotification
object:nil];
NSLog(@"Registered with notification center");
}

return self;

}
Then implement deal1oc to remove the instance of RMbocument from the notification center:

- (void)dealloc

[[NSNotificationCenter defaultCenter] removeObserver:self];

Handling the Notification When It Arrives

When the notification arrives, the method handlecolorchange: is called. For now, just log its arrival. Add this method to your rMDocument . m file:
- (void)handleColorChange:(NSNotification *)note

NSLog(@"Received notification: % @", note);

Build and run the application. Note that the notifications are sent and received when the color is edited in the Preferences panel.

The userinfo Dictionary

If you wanted to include more than just the poster with the notification, you would use the userInfo dictionary. Every notification has a variable called
userInfo that can be attached to anNspictionary filled with other information that you want to pass to the observers. In this case, we want to add the
color to the userinfo dictionary. RMDocument Will use the color when the notification arrives. In preferencecontroller.m, add a userinfo dictionary to the
notification:

- (IBAction)changeBackgroundColor: (id) sender

{
NSColor *color = [sender color];
[PreferenceController setPreferenceTableBgColor:color];

NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
NSLog (@"Sending notification");
NSDictionary *d = [NSDictionary dictionaryWithObject:color
forKey:@"color"];
[nc postNotificationName:BNRColorChangedNotification
object:self
userinfo:d];
}

In RMDocument .m, read the color out of the user1nfo dictionary:

- (void)handleColorChange: (NSNotification *)note
{

NSLog (@"Received notification: %@", note);
NSColor *color = [[note userinfo] objectForKey:@"color"];
[tableView setBackgroundColor:color];

}

Open several windows and change the preferred background color. Note that all of them receive the notification and change color immediately.

For the More Curious: Delegates and Notifications

An object that has made itself the delegate of a standard Cocoa object is probably interested in receiving notifications from that object as well. For
example, if you have implemented a delegate to handle the windowshouldclose: delegate method for a window, that same object is likely to be
interested in the NSwWindowDidResizeNotification from that same window.

If a standard Cocoa object has a delegate and posts notifications, the delegate is automatically registered as an observer for the methods it implements.
If you are implementing such a delegate, how would you know what to call the method?

The naming convention is simple: Start with the name of the notification. Remove the ns from the beginning and make the first letter lowercase. Remove
the Notification from the end. Add a colon. For example, to be notified that the window has posted an nswindowDidResizeNotification, the delegate
would implement the following method:

- (void)windowDidResize: (NSNotification *)aNotification

This method will be called automatically after the window resizes. You can also find this method listed in the documentation and header files for the class
NSWindow.

Challenge

Make your application beep when it gives up its active status. Nsapplication pOsts anNsapplicationDidResignActiveNotification notification. Your
AppController is a delegate of Nsapplication. NsBeep () Will cause a system beep.

Chapter 15. Using Alert Panels

Occasionally, you will want to warn the user about something by means of an Alert panel. Alert panels are easy to create. While most things in Cocoa are
object oriented, showing a modal Alert panel is typically done with a C function: NsRunalertPanel (). Here is the declaration:

NSInteger NSRunAlertPanel (NSString
NSString
NSString
NSString

*title,

*msg,
*defaultButton,
*alternateButton,

NSString *otherButton,)

The following code would result in the Alert panel shown in Eigure 15.1:

NSInteger choice = NSRunAlertPanel (@"Title",

@"Default",

@"Message",

@"Alternate"™, @Q@"Other"):;

Figure 15.1. Example Alert Panel

Title

Message

Ahe{naﬁe Other | | Default |

Note that the icon on the panel will be the icon for the responsible application. The second and third buttons are optional. To prevent a button from
appearing, replace its label with ni1.

The NsrunalertPanel () function returns an int that indicates which button the user clicked. There are global variables for these constants: nsalert
DefaultReturn, NSAlertAlternateReturn, and NSAlertOtherReturn.

Note thatNsrunalertpanel() takes a variable number of arguments. The second string may include printf-like tokens. Values supplied after the
otherButton label will be substituted in. Thus, the following code would result in the Alert panel shown in Figure 15.2:

NSInteger choice = NSRunAlertPanel (@"Title", @"Message can have %@Q",
@"Default", @"Alternate", nil,

@"Format Specifiers");

Figure 15.2. Another Example Alert Panel

Title

-"'\“ Message can have Format Specifiers

Alternate | Default |

Alert panels run modally; that is, other windows in the application don’t receive events until the Alert panel has been dismissed.

Alerts can also be run as a sheet.

Make the User Confirm the Deletion

If the user clicks the Remove button, an Alert panel should appear as a sheet before the records are deleted (Figure 15.3).

Figure 15.3. Completed Application

= @& |=| Quick Stop

Remove?

‘r\a Do you really want to remove 1 people?

Cancel) Remove 1}

£

To enable this behavior, open rvDocument.xib, select the table view, and open the Attributes Inspector. Allow the user to make multiple selections
(Eigure 15.4).

Figure 15.4. Inspect Table View

54 RaiseMan - RMDocument.xib

[Fanishued runréng RakteMan Elo = O -
(IR slf=] | =
Rreabpainti e Fifizor Wk Organizer
[R Wi K2V, 0 B Sool View - TableView ' WTableView | I B B (912 © & =
» 1 Tl Colar” 0 [Default - o |
Background | 3 | Defaun 3

Selection @ Maltisle o [ty
o Colurmn

o Type Setect

Winden |

i Add Employee
few Call Table View Cell | Aumddve
Remove | Calumn Information

v Costrol
D nielm AIIO\:-‘
i Ot Liorary 1| @mE Multiple
Puih Bultin - ACEFEEELT Melidd-Sown Selecﬁon

EwiARE G Jendi &0 BTI0H Suisg 18 &
Eargel cbiect whin it's clicked oe

Cradient Button - Imerceps mouse
down events and sends am action
e EaE 104 KPR ORjeC! whin it's

Rounded Rect Button - Intercepts
MOUSE-GOWN EVents and sEnds s

S A P L R T

You now want the Remove button to send to rMpocument @ message which will ask the user to confirm the deletion. If the user confirms this choice,
RMDocument Will send the removeEmployee: message to the array controller to remove the selected person oObjects.

In Xcode, open the rvpocument . h file and add the method that will be triggered by the Remove button:
- (IBAction)removeEmployee:(id)sender;

INn RMDocument . m, implement the removeEmployee: method that will start the Alert panel as a sheet:
- (IBAction)removeEmployee:(id)sender

NSArray *selectedPeople = [employeeController selectedObjects];
NSAlert *alert = [NSAlert alertWithMessageText:
@"Do you really want to remove these people?"
defaultButton:@"Remove"”
alternateButton:@"Cancel"
otherButton:nil
informativeTextWithFormat: @"%d people will be removed.",
[selectedPeople count]];

NSLog(@"Starting alert sheet");
[alert beginSheetModalForWindow:[tableView window]
modalDelegate:self
didEndSelector:@selector(alertEnded:code:context:)
contextinfo:NULL];
}

This method will start the sheet. When the user clicks a button, the document object will get sent the message alertEnded:code:context:

- (void)alertEnded:(NSAlert *)alert
code:(NSinteger)choice
context:(void *)v

NSLog(@"Alert sheet ended");

I If the user chose "Remove", tell the array controller to

Il delete the people

if (choice == NSAlertDefaultReturn) {
Il The argument to remove: is ignored
I/l The array controller will delete the selected objects
[employeeController remove:nil];

}

Open rupocument . xib. Control-drag from the Remove button to the File’s Owner icon to make the File’s Owner be the new target. Set the action to

removeEmployee: 1Figure 15.5).
Figure 15.5. Change Target and Action of Remove Button

Haise
Il Table View Cell

E | M Salacnon | e T T ey -

Build and run your application.

Challenge

Add to the Alert sheet a button that says Keep, but no raise. Instead of deleting the employees, this button will simply set the raises of the selected
employees to zero.

Chapter 16. Localization

If the application you create is useful, you will want to share it with all the people of the world. Unfortunately, we don't all speak the same language.
Suppose that you wish to make your RaiseMan application available to French speakers. We would say, “You are going to /ocalize RaiseMan for French
speakers.”

If you are creating an application for the world, you should plan on localizing it for at least the following languages: English, French, Spanish, German,
Dutch, ltalian, and Japanese. Clearly, you do not want to have to rewrite the entire app for each language. In fact, our goal is to ensure that you don’'t have
to rewrite any Objective-C code for each language. That way, all the nations of the world can use a single executable in peace and harmony.

Instead of creating multiple executables, you will localize resources and create string tables. Inside your project directory, an en. 1proj directory holds all
the resources for English speakers: XIB files, images, and sounds. To localize the app for French speakers, you will add a fr.1proj directory. The XIBs,
images, and sounds in this directory will be appropriate for French speakers. At runtime, the app will automatically use the version of the resource
appropriate to the user’s language preference.

What about the places in your application where you use the language programmatically? For example, in Rvbocument .m, you have the following line of
code:

NSAlert *alert = [NSAlert alertWithMessageText:
@"Do you really want to remove these people?"
defaultButton:@"Remove"
alternateButton:@"Cancel"
otherButton:nil
informativeTextWithFormat:@"%$d people will be removed.",
[selectedPeople count]];

That Alert sheet is not going to bring about world peace. For each language, you will have a table of strings. You will ask NsBund1e to look up the string,
and nsBundle Will automatically use the version appropriate to the user’s language preference (Eigure 16.1).

Figure 16.1. Completed Application

Souhaitez-vous enregistrer les modifications apportées au
7 document = Sans titre 2 » 7 —— .
£ Sans titre
Wos modifications seront perdues sky
Voulez-vous supprimer ces personnes?

Enregistrer sous : Sans tire 2 1L 1 personnes seront supprimées.
Emplacement : | I Bureau |
Annuler | [-Supprimar

Me pas enregistrer

Localizing a NIB File

In Xcode, open rRvpocument . xib and bring up the File Inspector. Click the + button under the Localization section (Eigure 16.2).

Figure 16.2. Create a French Version of RMDocument.xib

ana 5 RaiseMan - RMDocument xib T

(J ¢ : Build RaiveMan: Swcceeded | 6/15711 a1 6:15 Pl m m (T=1]
. \. R My M. n | il an cee iila E EI IE E I@
Run | frop Schemm - Breshpolnts R Editar hew Grganszer
=1Pﬁh&dﬂn-_,l-¢ﬂ-| RMODocumentxib - AMDotument.kib [Englishy - - Window bnd- B % & & L =
| v Localiration |
[MaNE] Windo Engligh
" Mame Raiser Add Employee
il Text Cell 12,346% - |
. Remove a |
8
| German joey |=;E||
¥ = Sparih fes) e |
w.i [H | | atian o e
| Portuguese (pn f 1
Portuguese—Portugal (pe-FT) “
u | ounchnd |
/ Sweakh (5w} mir's
Norwegian Boimdl (mo)
Dasisk (gay gty
|4 Finsisem | =l
|m= Russian i) |
—l P daly o
Chinege (2h-Hang)
Add Localization Chineis (zh-Han)
Korean (ko)
Ot >

You will be prompted for a locale. Choose French.

If you look in Finder, you will see that a copy of en.1proj/RMbocument.xib has been created in fr.1proj. You will francophize this copy. In the Xcode
Project Navigator, you will have two versions of RMbocument . xib: English and French, as shown in Eigure 16.3. Click on the French version to open it in
the editor.

Figure 16.3. Two Versions of MainMenu.xib

ann [RalseMan - RMDocument.xib "

@ ‘m] (= Build Raisebdan: Suecneded | 615711 3 615 P l Blca @Moa =
N —
Bm®A=m®m@ [m 4 » [Sfasewan | RaseMan | - RMDocsmencxib | - RMDocument.uis [Engishy o i- Window

':jmn
1 target. Mac 05 X 50K 10.7

¥ []RaiseMan A.0.0 MWnhor
hj Persoruh 5
m Persiem g Name Raise Add Employee
hi RMDocument. i S Text Cell 12,346%
m RMDocument.m ' Remove
T [A ol

~ AMDocuene., i [English)

AMDocument xib French) | Y,
) PreferenceControlier b £
m| PreferenceControiler.m

Preferences xib =N
hi AppContrater.h Ei"'; I
m AppControfler.m

MainMenu xib g

¥ __|Supporing Files
[| Framewoeics
» [| Produets

+i 0.0 0 (® |m

Make your window look like Figure 16.4.

Figure 16.4. Completed Interface

@
8,00 Window
Nom Augmentation | | Nouveau Employé |
Text Cell 12,346%

| Supprimer [

To type in characters with accents, you will need to use the Option key. For example, to type ¢, type the e, while holding down the Option key, and then
type e again. In Mac OS X Lion you can also hold down a key for a second to see a popup with its diacritical marks (In the International page of System
Preferences, you can add the Keyboard Viewer to your input menu. If you are using a lot of unusual characters, the Keyboard Viewer can help you learn
which key combinations create which characters.)

At this point, you have created a localized resource. Note that if you make a lot of changes to your program, you may need to update both XIB files (the
French version and the English version). For example, finding that the buttons were too narrow for the French translation, Aaron resized the window
accordingly. For this reason, it is a good idea to wait until the application is completed and tested before localizing it.

Build your app. Before running it, bring up the Language & Text page of the System Preferences application. Drag Francais to the top of the list to set it
as your preferred language. Now run your application. Note that the French version of the NIB is used automatically.

Also note that the document architecture takes care of some localization for you. For example, if you try to close an unsaved document, you will be asked
in French whether you want to save the changes.

String Tables

For each language, you can create several string tables. A string table is a file with the extension .strings. For example, if you had a Find panel, you
might create a rind.strings file for each language. This file would have the phrases used by the Find panel, such as “None found.”

The string table is just a collection of key-value pairs. The key and the value are strings surrounded by quotes, and the pair is terminated with a semicolon:

"Keyl" = "Valuel";
"Key2" = "Value2";

To find a value for a given key, you use NsBundle:

NSBundle *main;
NSString *aString;

main = [NSBundle mainBundle];

aString = [main localizedStringForKey:@"Keyl"
value:@"DefaultValuel"
table:@"Find"];

This would search for the value for "key1" in the rind.strings file. If it is not found in the user’s preferred language, the second-favorite language is
searched, and so on. If the key is not found in any of the user’s languages, "pefaultvaluel” is returned. If you do not supply the name of the table,
Localizable iS used. Most simple applications just have one string table for each language: 1ocalizable. strings.

Creating String Tables

To create a rocalizable.strings file for English speakers, choose the New -> New File... menu item in Xcode. In the Mac OS X Resource category,
create a new Strings file, and name it Localizable.strings. Save itinthe en.1proj directory (Eigure 16.5).

Figure 16.5. Create an English String Table

M ™ RaiseMan - RMDocument.xib
B ro M'r'-M m Finished running Raivekian ﬁ m xes-
Biad y iew
.- '-3"":".' Choose Save As: | Localizable
. 108
b Persan L [TIE ru_u] | om 4 en.lproj EIA!
mi Person fopel
h| RMDor Userir FAVE 5 L
m RMDoC Caore . I
RMDg Ragoul Deskion 4l enlprod 3
RML Code? Ta; adam fr.iprol
2 "I“': Ceher| i Applications
: F::.:: e Docurments
Prefere Cocoa Draphax e (=] fn]
h| ApeCa C and
m AppCa User i e
Mtk Core T : emeral
r-rm.o: Other. drteeth & : gesiol it
Froducts: yoe " "
g Group Supparting Files
+ & EE
1 Targets ¥ b RaiseMan
Canc bt
Mew Folder Cancel Save
Edit the new file to have the following text:
"REMOVE MSG" = "Do you really want to remove these people?";
"REMOVE INF" = "%d people will be removed.";
"REMOVE" = "Remove";
"CANCEL" = "Cancel";

Save it. (Don’t forget the semicolons!)

Now create a localized version of that file for French. Select the English version of the Localizable.strings file in Xcode (it is the only version so far),
bring up the File Inspector, and create a localized variant (Eigure 16.6).

Figure 16.6. Create a French String Table

— [-

) (m)(a we] O3 _ Elo o FofE

| Run Swop Schame Breakpnins LAl Ediror View
BIOAEs R |= « Localizable stings | No Seiection |

Drgarizer

m, RMDocument.m - ARIare] LSEANERETE. SIFng T

m| PreferenceComtrollar.m

Preferences.nib
h]| AppControlier .k
m Applontroler.m
MainMenis wib
d Supporting Filis

E
= tetizns
Raipahdan - teplisn
InfoPlist.strings

m mainm

i RaiseMan-Prefix.pch

= Cregis.nf
Frmiworiai

. Products

e Ei.om o 3 1 | NoSeaion

Edit the file to look like this:

"REMOVE_MSG" ="Voulez-vous supprimer ces personnes?";
"REMOVE_INF" ="%d personnes seront supprimées.";
"REMOVE" ="Supprimer";

"CANCEL" ="Annuler";

(To create the e with the accent aigu, type while holding down the Option key, and then type «.)

When saving a file with unusual characters, you should use the Unicode (UTF-8) file encoding. In the File Inspector for fr.1proj/Localizable.strings,
ensure that the Text Encoding is set to UTF-8. (If it is not and you are presented with a panel asking whether you wish to convert the file to UTF-8, click
the + button labeled Convert.)

Save the file.

Using the String Table

In an app with just one string table, you would write code like this a lot:

NSString *deleteString;
deleteString = [[NSBundle mainBundle]
localizedStringForKey:@"REMOVE"
value:@"Do you want to remove these people?"
table:nil];

Fortunately, a macro is defined in NsBund1e.h for this purpose:

#define NSLocalizedString(key, comment)
[[NSBundle mainBundle] localizedStringForKey: (key)
value:@""
table:nil]

(Note that this macro completely ignores the comment. It is, however, used by a tool called genstrings, which scans through your code for calls to the
macro NsLocalizedString and creates a skeleton string table. This string table includes the comment.)

In RMDocument . m, find the place where you run the Alert panel. Replace that line with this one:

NSAlert *alert = [NSAlert
alertWithMessageText:NSLocalizedString(@"REMOVE_MSG", @"Remove")
defaultButton:NSLocalizedString(@"REMOVE", @"Remove")
alternateButton:NSLocalizedString(@"CANCEL", @"Cancel")
otherButton:nil
informativeTextWithFormat:NSLocalizedString(@"REMOVE_INF",
@"%d people will be removed."),
[selectedPeople count]];

Build the app. Change your preferred language back to French in System Preferences, and run the app again. When you delete a row from the table, you

should get an Alert panel in French.

For the More Curious: ibtool

Clearly, as you develop and localize many applications, you will develop a set of common translations. It would be handy to have an automated way to get
the translated strings into a XIB file. This is one of several uses for ibtool.

The ibtool command, which is run from the terminal, can list the classes or objects in a XIB and can also dump the localizable strings into a p1ist. Here
is how you would dump the localizable strings from the en. 1proj/RMDocument . xib file into a file named poc.strings:

> cd RaiseMan/en.lproj
> ibtool --generate-stringsfile Doc.strings RMDocument.xib

The resulting poc. strings file would have a bunch of entries something like this:

/* Class="NSTableColumn";headerCell.title="Name";ObjectID="100026"; */
"100026.headerCell.title" = "Name";

To create a Spanish dictionary for this XIB file, you could edit the file to have Spanish entries:

/* Class="NSTableColumn";headerCell.title="Name";ObjectID="100026"; */
"100026.headerCell.title" = "Nombre";

To substitute the strings in a XIB file with their Spanish equivalents from this dictionary, you could create a new NIB file like this:
> mkdir ../es.lproj

> ibtool --strings-file Doc.strings
--write ../es.lproj/RMDocument.xib RMDocument.xib

To learn more about ibtool, use UniX's man command:

> man ibtool

For the More Curious: Explicit Ordering of Tokens in Format Strings

As text is moved from language to language, both the words and the order of the words change. For example, the words in one language may be laid out
like this: “Ted wants a scooter.” In another, the order might be “A scooter is what Ted wants.” Suppose that you try to localize the format string to be used
like this:

NSString * theFormat = NSLocalizedString (@"WANTS", "%@ wants a %@");
x = [NSString stringWithFormat:theFormat, @"Ted", @"Scooter"];

The following will work fine for the first language:

"WANTS" = "%@Q@ wants a %Q";

For the second language, you would need to explicitly indicate the index of the token you want to insert. This is done with a number and the dollar sign:

"WANTS = "A %2$@ is what %$1$@ wants".

Chapter 17. Custom Views

All visible objects in an application are either windows or views. In this chapter, you will create a subclass of Nsview. From time to time, you may need to
create a custom view to do custom drawing or event handling. Even if you do not plan to do custom drawing or event handling, you will learn a lot about

how Cocoa works by learning how to create a new view class.

Windows are instances of the class nswindow. Each window has a collection of views, each of which is responsible for a rectangle of the window. The
view draws inside that rectangle and handles mouse events that occur there. A view may also handle keyboard events. You have worked with several
subclasses of Nsview already: NSButton, NSTextField, NSTableView, and NscolorWell are all views. (Note that a window is not a subclass of Nsview.)

The View Hierarchy

Views are arranged in a hierarchy (Eigure 17.1). The window has a content view that completely fills its interior. The content view usually has several
subviews. Each subview may have subviews of its own. Every view knows its superview, its subviews, and the window it lives on.

Figure 17.1. Views Hierarchy

fANe Window

== Box Titke
Button

NSWindow

contentView

NSView

NSBox

NSColorWell

NSButton

NSTextField

Here are the relevant methods from Nsview:

- (NSView ,)superview;
- (NSArray «)subviews;
- (NSWindow .)window;

Any view can have subviews, but most don’t. The following five views commonly have subviews:

1. The content view of a window.

2. NsBox. The contents of a box are its subviews.

3.Nsscrollview. A view that appears in a scroll view is a subview of the scroll view. The scroll bars are also subviews of the scroll view.

4. nssplitview. Each view in a split view is a subview (Eigure 17.2).

Figure 17.2. A Scroll View in a Split View

This text view is a subview of a
scroll view. The scroll view isa
subview of a split view.

The NSimageView above is also
a subview of the split view |

5. NsTabview. As the user chooses different tabs, different subviews are swapped in and out (Figure 17.3).

Figure 17.3. A Tab View

Get a View to Draw Itself

In this section, you will create a very simple view that will appear and paint itself green. It will look like Figure 17.4, except greener.

Figure 17.4. Completed Application

g ﬁ ImageFun File Edit Window Help

8n0e Window

Create a new project of type Cocoa Application. Name it DrawingFun, and set the Class Prefix to DrawingFun. Turn off Create Document-Based
Application, Use Core Data, and Include Unit Tests.

Using the File->New->New File... menuitem, create a new Objective-C class thatis an NSView subclass, and name it stretchview.

Create an Instance of a View Subclass

OpenumainMenu.xib and click the window in the editor dock to show it. Create an instance of your class by dragging out a Custom View from the Library
(under Cocoa -> Layout Views) and dropping it onto the window (Eigure 17.5).

Figure 17.5. Drop a View onto the Window

ane 21 Drawingfun - MainMenu.xib =
— _— W it i ottty . e it
(») (m)[o.:] [= f e . (O[] (=]
= 4 » | [oawngFan Drawing... : [sainme | JiMainkte . 5= Window - DrawingFus © B2 \.rgnl D B B % < & & =
DrawingFun File Edit Format View Window Help T View
Focus Hing | Detawn &
ae T Orawir [_] Hidden
@ = it B Actonesizes Subiews
.. . R ! €an Draw Concurrentiy
&)
D i & = |
E) Lavout views T

Cudtom View - Pravides vou with
an instance of & view subclass that i
nat aeailasle i Inferfzce Bailder,
Vartical Split View - Armangrs
subviews sl £ Sne analher 10 that

the user can change their relative

Harizantal Split Vie

Bad

Resize the view to fill most of the window. Open the Identity Inspector and set the class of the view to be stretchview (Figure 17.6).

Figure 17.6. Set the Class of the View to StretchView

ans £ DrawingFun - MainMenu.xib —
o N L — ; 1 A e
() (mifo.) (=] [ok | Blo=) (0l =
= 4 ¢ [ovawngrun Drawd.. « saes. Bsues o scwisds. BV EStacivies [B B e 2 & & 8
DrawingFun File Edit Format View Window Help ¥_Cublon Claa
Claid | Seresehiew o m
AnA DrawingFun X ToolTin
ool T T

¢ Accessbillty Identity

Description

@ ¢

Hely |

= o uieim

Cuitai Vidw - Piovidis yod with
an ingtance of & view subclass thas iy
not availatle in interface Baider,

Vertical Split View - Arranges
Subvirwk Sl 08 Gne dnalher 46 Pyt
thet used cah change Eheir relitive

Harizantal Split View - Arasges 4
s e nother §s that |
iy

B G
Size Inspector

Your stretchview Object is a subview of the window's content view. This point raises an interesting question: What happens to the view when the
superview resizes? The Size Inspector allows you to specify that behavior. Open the Size Inspector, and make all the lines inside the Autosizing view
red, as shown in Figure 17.7. Now the view will grow and shrink as necessary to keep the distance from its edges to the edges of its superview constant.

Figure 17.7. Make the View Resize with the Window

Help

o8 >O

Vertical Splin View - Armangis
| Subwiew ferxt 19 S ROINGF 45 IRal
0 theuser can change their refative..

Horizontal Split View - Amanges
Sulviwt St xl 02 SNe Anolher 43 Tt

T

|

4

.
it
4

| ZOEEJ | ZOEEJ
X Y
* 1 1
. ass 7] | 21413
F + Width Height
Crigin
i
-
— .‘---:p--\ =
Auto.;izihg Example
Arrange [Position View ”
.:-| Layout Views ﬂ LEM
Ii' | Custom View - Provides you with].
I an instance of a view subclass that is

Figure 17.9 is a complete diagram of what the red lines in the Size Inspector mean.

If you wanted the view to stay the same height, you could let the distance between the bottom of the view and the bottom of the superview grow and shrink.
You could also let the distance between the right edge of the view and the right edge of the window grow and shrink. In this exercise, you do not want this
behavior. But in a parallel universe where you did want the view to stick to the upper-left corner of the window, the inspector would look like Figure 17.8.

Figure 17.8. Don’t Do This—This View Will Not Resize with the Window

Figure 17.9. What the Red Lines in the Size Inspector Mean

A red iine in the 5ize Inspactor means...

| Distance from top of view

o | el
& | to top of superview is
g5 I nat allowed ta change
o L
323
= =]
pg 3
g .~ @
e o o
g @ @ | @
[=1l
522 S
oo =
g1 53
- -
323 |2
| ®&=F | | |
|) R = a0 l
Width of view|can change 22
28 =
S =3
= 8_ @
£2& 3
o8 e
L= 3
) o] &
Selected view R
2% g
@ =8
e g%
Distance from bottom of view i E:.
to bottom of superview is -
=

not allowed to change

| Superview

drawRect

When a view needs to draw itself, it is sent the message drawrect: with the rectangle that needs to be drawn or redrawn. The method is called
automatically—you never need to call it directly. Instead, if you know that a view needs redrawing, you send the view the setNeedsDisplay: message:

[myView setNeedsDisplay:YES];

This message informs nyview thatitis “dirty.” After the event has been handled, the view will be redrawn.

Before calling drawrect:, the system /ocks focus on the view. Each view has its own graphics context, which includes the view’s coordinate system, its
current color, its current font, and the clipping rectangle. When the focus is locked on a view, the view’s graphics context is active. When the focus is
unlocked, the graphics context is no longer active. Whenever you issue drawing commands, they will be executed in the current graphics context.

You can use NsBezierPath to draw lines, circles, curves, and rectangles. You can use NsImage t0 create composite images on the view. In this example,
you will fill the entire view with a green rectangle.

Open stretchview.m and add the following code to the drawrect: method:

- (void)drawRect: (NSRect)dirtyRect

{
NSRect bounds = [self bounds];

[[NSColor greenColor] set];
[NSBezierPath fillRect:bounds];

As shown in Figure 17.10, nsrect is a struct with two members: origin, whichis annsproint, and size, which is annssize.

Figure 17.10. NSRect, NSSize, and NSPoint

NSRect

s/ |
= 2
iy =
=, & g
—+ y: float -
width: float
origin: NSPoint

Nssize is a struct with two members: width and height (both f1o0ats).
NsPoint is a struct with two members: x and y (both f1o0ats).

For performance reasons, structs are used in a few places instead of Objective-C classes. For completeness, here is the list of all the Cocoa structs that
you are Iikely to use: Nssize, NSPoint, NSRect, NSRange, NSDecimal, and NSAffineTransformStruct. NSRange is used to define subranges. NSDecimal
describes numbers with very specific precision and rounding behavior. nsaffineTransformstruct describes linear transformations of graphics.

Note that your view knows its dimensions as an nsrect called bounds. In this method, you fetched the bounds rectangle, set the current color to green, and
filled the entire bounds rectangle with the current color.

The nsrect that is passed as an argument to the view is the region that is “dirty” and needs redrawing. It may be less than the entire view. If you are doing
very time-consuming drawing, redrawing only the dirty rectangle may speed up your application considerably.

Note that setNeedsDisplay: Wwill trigger the entire visible region of the view to be redrawn. If you wanted to be more precise about which part of the view
needs redrawing, you would use setNeedsDisplayInRect: instead:

NSRect dirtyRect;
dirtyRect = NSMakeRect (0, 0, 50, 50);
[myView setNeedsDisplayInRect:dirtyRect];

Build and run your app. Try resizing the window.

Drawing with NSBezierPath

If you want to draw lines, ovals, curves, or polygons, you can use NsBezierPath. In this chapter, you have already used the NSBezierPath’s fillRect:
class method to color your view. In this section, you will use NsBezierpath to draw lines connecting random points (Figure 17.11).

Figure 17.11. Completed Application

o

The first thing you will need is an instance variable to hold the instance of NsBezierPath. You will also create an instance method that returns a random
point in the view. Open stretchview.h and make it look like this:

#import <Cocoa/Cocoa.h>

@interface StretchView : NSView {
NSBezierPath *path;

}
- (NSPoint)randomPoint;

@end

Instretchview.m, you will override initwithFrame:. As the designated initializer for Nsview, initwithFrame: Will be called automatically when an

instance of your view is created. In your version of initwithFrame:, you Wwill create the path object and fill it with lines to random points. Make
Stretchview.m lOOK like this:

#import "StretchView.h"
@implementation StretchView
- (id)initWithFrame:(NSRect)frame

self = [super initWithFrame:frame];

if (self) {
/I Seed the random number generator
srandom((unsigned)time(NULL));

Il Create a path object
path = [NSBezierPath bezierPath];
[path setLineWidth:3.0];
NSPoint p = [self randomPoint];
[path moveToPoint:p];
int i;
for (i=0;i<15; i++) {
p = [self randomPoint];
[path lineToPoint:p];

}

[path closePath];
}
return self;

}

/l randomPoint returns a random point inside the view
- (NSPoint)randomPoint

NSPoint result;

NSRectr =[self bounds];

result.x =r.origin.x + random() % (int)r.size.width;
result.y =r.origin.y + random() % (int)r.size.height;
return result;

}

- (void)drawRect: (NSRect) rect
{
NSRect bounds = [self bounds];

I Fill the view with green
[[NSColor greenColor] set];
[NSBezierPath fillRect: bounds];

/l Draw the path in white
[[NSColor whiteColor] set];
[path stroke];

}

@end

Build and run your app. Pretty, eh?

OK, now try replacing (path stroke] with [path fi11].Build and runit.

NSScrollView

In the art world, a larger work is typically more expensive than a smaller one of equal quality. Your beautiful view is lovely, but it would be more valuable if it
were larger. How can it be larger, vet still fit inside that tiny window? You are going to putitin a scroll view (Fiqure 17.12).

Figure 17.12. Completed Application

2

A scroll view has three parts: the document view, the content view, and the scroll bars. In this example, your view will become the document and will be
displayed in the content view, which is an instance of Nsc1ipview.

It looks tricky, but this change is very simple to make. In fact, it requires no code at all. Open MainMenu.xib in Interface Builder. Select the view, and
choose Embed -> Scroll View from the Editor menu (Eigure 17.13).

Figure 17.13. Embed StretchView in a Scroll View

_ @ xcode File Edit View Mavigate [IEEEH Product Window Help gEOu
Canvas. E
Mignment

Reveal In Document Structure
@ Simulate Document
9
A
R T
=
®
L]
(i

As the window resizes, you want the scroll view to resize, but you do not want your document to resize. Open the Size Inspector, select the scroll view,
and set the Size Inspector so that it resizes with the window (Eigure 17.14).

Figure 17.14. Make Scroll View Resize with Window

ANA £ DrawingFun - MainMenu.xib =
{] Finished sunning Drawingfun | e

I
]
L ;
Autosizing Exarnple

P e ™|
o ile = |

Vertical Split View - Aranges
subvarat Pl 19 Gk anather 5 that
e wsts can change their relative.

| Harizantal Salit View - Araages »
b Pl B8 ok ARGINGT 50 L |
1= T ST S P T |

Note the width and height of the view.

To select the document view, double-click inside the scroll view. You should see the title in the rightmost part of the jump bar change to Stretch View.
Make the view about twice as wide and twice as tall as the scroll view. Set the Size Inspector so that the view will stick to the lower-left corner of its
superview and not resize (Eigure 17.15). Build the application and run it.

Figure 17.15. Make StretchView Larger and Nonresizing

AN 1 DrawingFun - MainMenu.xity

Finished ranning Drawingfun

omangtun, S Scroll View - Stresch Wiew | B2 Seresch
| DrawlingFun File Edit Format View Window Help LA |
I

=] Sherw | Frame Rectangle g

o

LA

P

LS

| A.ulns_lllnlll Example |
| Arrange Fl'llﬂ‘ﬂﬂ- --‘lﬂ.ll‘ ; E:

o e = |
| (] Layout views s |

Custom View - Provdes you it (]
8 indtance of & view sabclass that is
not aviluble = intertace Baider, |
RO i)

Vertical Split View - Aranges
Subiviews Sl B0 Sae anather 1o that
the uses tan change their relative..

KY1L

Harizantal Split View - Araages .
Subvirws sl 19 one another 10 that |
| sha iirse sna chnnne shalsoluba |7 |

|

Creating Views Programmatically

You will instantiate most of your views in the Interface Builder editor. Every once in a while, you will need to create views programmatically. For example,
assume that you have a pointer to a window and want to put a button on it. This code would create a button and put it on the window’s content view:

NSView *superview = [window contentView];

NSRect frame = NSMakeRect (10, 10, 200, 100);

NSButton *button = [[NSButton alloc] initWithFrame:frame];
[button setTitle:@"Click me!"];

[superview addSubview:button];

For the More Curious: Cells

NSControl inherits from Nsview. Nsview (with its graphics context) is a relatively large and expensive object to create. When the NsButton class was
created, the first thing someone did was to create a calculator with ten rows and ten columns of buttons. The performance was less than it could have
been, because of the 100 tiny views. Later, someone had the clever idea of moving the brains of the button into another object (not a view) and creating
one big view (called an NsMatrix) that would act as the view for all 100 button brains. The class for the button brains was called nsButtonce11 (FEigure

17.16).

Figure 17.16. NSMatrix

NSButtonCell
target:
action = foo: e
tag=0

NSButtonCell " NSMatrix |
target:
action = foo:
tag =1

rows: int
columns: int

NSButtonCell
target: gzt

action = foo:
tag=2

In the end, NsButton became just a view that had an NsButtoncell. The button cell does everything, and NsButton Simply claims a space in the window

(Figure 17.17).
Figure 17.17. NSButton and NSButtonCell

NSButtonCell

NSButton
target:
action = foo: frame: NSRect
tag=0

Similarly, Nss1ider is a view with an Nss1idercell, and NsTextField iS @ view with an NsTextFieldcell. By contrast, NscolorWell has no cell.

To create aninstance of NsMatrix in the Interface Builder editor, drop a control with a cell onto the window, choose Editor -> Embed In -> Matrix, and then
Option-drag the size handles until the matrix has the correct number of rows and columns (Figure 17.18).

Figure 17.18. A Matrix of Buttons

ane 9 Matrix - MainMenu.xib

07O =S| =]@ﬁﬁn:-m

rmvunmlnnul-u-vn&n

|7 Maria
Celn 0 5 8]
Rows Columns
Mode | Highlight E

Selection | Empty

i Rectanguiar
L = [|
] Draws Background
T Contred "
Text Direction| Naturad = B
TN —
LT T

Rounded fect Bution - Intencepts @
mouse-down events and sends an
BTN TREAAGE 12 & LAget Bhject

Rownded Textured Button -
Intercepis mouse-dawn events and
sengs an action message to A,

—, Textured Button - intertepts
i Mot e-down events and sends an

AnnsMatrix has a target and an action. A cell may also have a target and an action. If the cell is activated, the cell's target and action are used. If the
target and action Of the selected cell are not set, the matrix's target and action Will be used.

When dealing with matrices, you will often ask which cell was activated. Cells can also be given a tag:

- (IBAction)myAction: (id) sender {
id theCell = [sender selectedCell];
int theTag = [theCell tag];

The cell's tag can be set in Interface Builder.

Cells are used in several other types of objects. The data in a cell-based NsTab1eview, for example, is drawn by cells.

For the More Curious: isFlipped

Both PDF and PostScript use the standard Cartesian coordinate system, whereby y increases as you move up the page. Quartz follows this model by
default. The origin is usually at the lower-left corner of the view.

For some types of drawing, the math becomes easier if the upper-left corner is the origin and y increases as you move down the page. We say that such
aview s flipped.

To flip a view, you override isFlipped in your view class to return yes:

- (BOOL) isFlipped
{
return YES;

}

While we are discussing the coordinate system, note that x- and y-coordinates are measured in points. A point is typically defined as “72.0 points = 1
inch.” In reality, by default “1.0 point = 1 pixel” on your screen. You can, however, change the size of a point by changing the coordinate system:

// Make everything in the view twice as large
NSSize newScale;

newScale.width = 2.0;

newScale.height = 2.0;

[myView scaleUnitSquareToSize:newScale];
[myView setNeedsDisplay:YES];

Challenge

NSBezierPath can also draw Bezier curves. Replace the straight lines with randomly curved ones. (Hint: Look in the documentation for NsBezierPath.)

Chapter 18. Images and Mouse Events

In the previous chapter, you drew lines connecting random points. A more interesting project would have been to write a drawing application. To write this
sort of application, you will need to be able to get and handle mouse events.

NSResponder

Nsview inherits from NsResponder. All the event-handling methods are declared in Nsresponder. We will discuss keyboard events in the next chapter. For
now, we are interested just in mouse events. NSResponder declares these methods:

- (void)mouseDown: (NSEvent *)theEvent;

- (void) rightMouseDown: (NSEvent *)theEvent;
- (void)otherMouseDown: (NSEvent *)theEvent;
- (void)mouseUp: (NSEvent *)theEvent;

- (void) rightMouseUp: (NSEvent *)theEvent;

- (void)otherMouseUp: (NSEvent *)theEvent;

- (void)mouseDragged: (NSEvent *)theEvent;

- (void) scrollWheel: (NSEvent *)theEvent;
)
)

- (void)rightMouseDragged: (NSEvent *)theEvent;
- (void)otherMouseDragged: (NSEvent *)theEvent;

Notice that the argument is always an NsEvent Object.

NSEvent

An event object has all the information about what the user did to trigger the event. When you are dealing with mouse events, you might be interested in
the following methods:

- (NSPoint)locationInWindow
Returns the location of the mouse event.

- (NSUInteger)modifierFlags

Tells you which modifier keys the user is holding down on the keyboard. This enables the programmer to tell a Control-click from a Shift-click, for example.
The code would look like this:

- (void)mouseDown: (NSEvent *)e
{
NSUInteger flags;
flags = [e modifierFlags];
if (flags & NSControlKeyMask) {
...handle control click...

}
if (flags & NSShiftKeyMask) {
...handle shift click...
}
Here are the constants that you commonly anp (&) against the modifier flags:
NSShiftKeyMask
NSControlKeyMask
NSAlternateKeyMask
NSCommandKeyMask
- (NSTimelInterval)timestamp
Gives the time interval in seconds between the time the machine booted and the time of the event. NSTimeInterval iS @ double.
- (NSWindow *)window
Returns the window associated with the event.

- (NSInteger)clickCount

Indicates whether the click was single, double, or triple.

- (float)pressure

Returns the pressure if the user is using an input device that gives pressure (a tablet, for example). It is between 0 and 1.
- (float)deltaX;

- (float)deltay;

- (float)deltaz;

Give the change in the position of the mouse or scroll wheel.

Getting Mouse Events

To get mouse events, you need to override the mouse event methods in stretchview.m:

#pragma mark Events
- (void)mouseDown:(NSEvent *)event

NSLog(@"mouseDown: %Id", [event clickCount]);

- (void)mouseDragged:(NSEvent *)event

NSPoint p = [event locationInWindow];
NSLog(@"mouseDragged:% @", NSStringFromPoint(p));
}

- (void)mouseUp:(NSEvent *)event

NSLog(@"mouseUp:");

Build and run your application. Try double-clicking, and check the click count. Note that the first click is sent and then the second click. The first click has a
click count of 1; the second click has a click count of 2.

Note the use of #pragma mark. The jump bar at the top of any Xcode editing window enables you to jump to any of the declarations and definitions in the
file; #pragma mark puts a label into that pop-up. Stylish programmers (like you, dear reader) use it to group their methods.

Using NSOpenPanel

It would be fun to composite an image onto the view, but first you need to create a controller object that will read the image data from a file. This is a good
opportunity to learn how to use NsopenPanel. Note that the RaiseMan application used NsopenPanel, but it was done automatically by the NsDocument
class. Here you will use nsopenpPanel1 explicitly. Figure 18.1 shows what your application will look like once the user has chosen an image. The slider at
the bottom of the window will control how opaque the image is.

Figure 18.1. Completed Application

Figure 18.2 shows the object diagram.

Figure 18.2. Object Diagram

NSMenultem NSSlider NSBezierPath NSImage

action=showOpenFanal:

e :pa;% path image
AN
DrawingFunAppDelegate StretchView
- sirefohView —»| %P2
& : - setlmage.
i - randomPoint

Change the XIB File

Open the prawingFun project from Chapter 17. In brawingFunAppbelegate.h, add an outlet for the stretchview and an action that will start the Open
panel:

#import <Cocoa/Cocoa.h>
@class StretchView;

@interface DrawingFunAppDelegate : NSObject <NSApplicationDelegate> {
IBOutlet StretchView *stretchView;

}
@property (strong) IBOutlet NSWindow *window;

- (IBAction)showOpenPanel:(id)sender;
@end

OpenwainMenu.xib and bring up our drawing window. Drop a slider onto the window. In the Inspector, set its range from 0 to 1. Also, check the box
labeled Continuous. This slider will control how opaque the image is (Eigure 18.3).

Figure 18.3. Inspect the Slider

Harizontal Slider - Dinplays 4
== range of values for something i the
fres shrdboqnadid

+ Vartical Shider - Displays a range of
vabars for something in the I
L
Cireular Slider - Displays 3 range &
() of valuts ter sermethisg in the o
=/ (8 slider)

Switch to the Size Inspector and configure the slider to stretch horizontally and maintain the left, right, and bottom margins (Eigure 18.4). This will make
the slider resize appropriately with the window.

Figure 18.4. Configure the Slider’s Autoresizing

v

Tk X

¥
-
L

e — T

— uunuu-:-nn:u

+ Vertieal Slider - Displiys 4 range of
waloes for something in the I
mpplication.

Cireular Slider - Displays 2 range
(2} of valots bor pomeshing in the
o} 1, sliger o)

- L

Bind the value of the slider to the app delegate’s stretchview.opacity key path.

Figure 18.5. Bind the Slider’s Value

01 DrawingFun - Maink

l-ldbrnhnlun Succeeded | Tndwﬂ]l!lhl

=1
M

File Edit

Bind 5o | Drawing Fun App Delegate
|| Controller Key o

| Miodel Key Path

i streteFView.opaciy)

| Fi=
o Asows Editing Multiple Values Selection

Jmmmwmmn'

Condiziorally Sets Enabied =

E {—9— mxmuﬂhuﬁ
|
|
K

+ Vertical Stider - Ditalivi 4 range of
vilots for something in
soslication.

- Displays 2 range
) ef-mu«mmhwnn

.ic >

Control-click on the brawingFunAppbelegate. Connect the stretcnhview outlet to the stretchview on the window (Eigure 18.6).

Figure 18.6. Connect the stretchView Outlet

apn 21 DrawingFun - MainMenu.xib =
@ ® il =) [e] @6 (00 (@ |
Run Sop Scheme fisbia e - Editor Wiew eganizer

« B DrawingFun ¢ [7D... | ~ Ml MainMenu.xib (English) « Bl DramingFunsopDeiegae | O B B8 W = © (& 8

D0 o= |
Fr—]

== wimhmhhﬂ
apslication,

| Vertical Siider - Displays a range of
| walaes, for something in the
apglication,

Circular Shides - Displayt a range &
| (;} of values for someshisg in the b

| G slider Q

Look at the main menu in your XIB. Open the File menu and delete all menu items except Open. Control-drag to connect the menu item to the
DrawingFunAppDelegate’S showOpenPanel: action (Figure 187) Save the file.

Figure 18.7. Connect the Menu Item

Edit the Code

Edit prawingFunappbelegate.m to read as follows. Note that there’s some new syntax, called a block, in this method. We’ll discuss blocks in detail in
Chapter 29. Note that you may see a warning that stretchview may not respond to setImage:; this is fine for now. We will fix it in the next section.

#import "DrawingFunAppDelegate.h"
#import "StretchView.h"

@implementation DrawingFunAppDelegate
@synthesize window;
- (IBAction)showOpenPanel:(id)sender

__block NSOpenPanel *panel = [NSOpenPanel openPanel];
[panel setAllowedFileTypes:[NSIimage imageFileTypes]];

[panel beginSheetModalForWindow:[stretchView window]
completionHandler:* (NSinteger result) {

if (result == NSOKButton) {
NSIimage *image = [[NSImage alloc]
initWithContentsOfURL:[panel URL]];
[stretchView setimage:image];

panel = nil; // prevent strong ref cycle
10
}

@end

The line where you start the sheet is a very handy method:

- (void)beginSheetModalForWindow: (NSWindow *)window
completionHandler: (void (”) (NSInteger result))handler

This method brings up an Open panel as a sheet attached to the window. The second parameter, handler, is the block. The block syntax takes some
getting used to, but blocks are a very powerful tool. When the Open panel is dismissed by the user, the block is run, allowing your code to respond to the
user’s actions.

Composite an Image onto Your View

You will also need to change stretchview so that it uses the opacity and image. First, declare variables and methods in your stretchview.h file:
#import <Cocoa/Cocoa.h>

@interface StretchView : NSView
{

NSBezierPath *path;

NSimage *image;

float opacity;
}
@property (assign) float opacity;
@property (strong) NSimage *image;
- (NSPoint)randomPoint;

@end

Now implement these methods in your stretchview.m file:
#pragma mark Accessors
- (NSImage *)image

return image;

}
- (void)setimage:(NSImage *)newlmage
image = newlmage;

[self setNeedsDisplay:YES];
}

- (float)opacity
{

return opacity;

- (void)setOpacity: (float)x
{

opacity = x;
[self setNeedsDisplay:YES];
}

At the end of each of the methods, you inform the view that it needs to redraw itself. Near the end of the initwithFrame: method, set opacity to be 1.0:

[path closePath];
opacity =1.0;

}

return self;

}
Also in stretchview.m, you need to add compositing of the image to the drawrect: method:

- (void)drawRect: (NSRect) rect
{
NSRect bounds = [self bounds];
[[NSColor greenColor] set];
[NSBezierPath fillRect:bounds];
[[NSColor whiteColor] set];
[path fi11];
if (image) {
NSRect imageRect;
imageRect.origin = NSZeroPoint;
imageRect.size = [image size];
NSRect drawingRect = imageRect;
[image drawInRect:drawingRect
fromRect:imageRect
operation:NSCompositeSourceOver
fraction:opacity];

}

Note that the drawInRect: fromRect:operation:fraction: method composites the image onto the view. The fraction determines the image’s opacity.
Build and run your application. You will find a few images in /peveloper/Examples/sketch. When you open animage, it will appear in the lower-left corner
of your stretchview Object.

The View’s Coordinate System

The final bit of fun comes from being able to choose the location and dimensions of the image, based on the user’s dragging. The mouse down will
indicate one corner of the rectangle where the image will appear, and the mouse up will indicate the opposite corner. The final application will look
something like Figure 18.8.

Figure 18.8. Completed Application

Each view has its own coordinate system. By default, (0, 0) is in the lower-left corner. This is consistent with PDF and PostScript. You can change the
coordinate system of the view if you wish. You can move the origin, change the scale, or rotate the coordinates. The window also has a coordinate

system.

If you have two views, a and b, and you need to translate an nspoint pb from b’s coordinate system to a’s coordinate system, it would look like this:
NSPoint pa = [a convertPoint:pb fromView:b];

Ifv is ni1, the pointis converted from the window's coordinate system.

Mouse events have their locations in the window’s coordinate system, so you will nearly always have to convert the point to the local coordinate system.
You are going to create variables to hold onto the corners of the rectangle where the image will be drawn.

Add these instance variables to stretchview.h:

NSPoint downPoint;
NSPoint currentPoint;

The location of the mouseDown: Will be downPoint and currentpoint Will be updated bymouseDragged: and mouseUp:.

Edit the mouse-event-handling methods in stretchview.m to update downPoint and currentPoint:
- (void)mouseDown:(NSEvent *)event

NSPoint p = [event locationInWindow];
downPoint = [self convertPoint:p fromView:nil];
currentPoint = downPoint;

[self setNeedsDisplay:YES];

}

- (void)mouseDragged:(NSEvent *)event

NSPoint p = [event locationinWindow];
currentPoint = [self convertPoint:p fromView:nil];
[self setNeedsDisplay:YES];

}

- (void)mouseUp:(NSEvent *)event

NSPoint p = [event locationInWindow];
currentPoint = [self convertPoint:p fromView:nil];
[self setNeedsDisplay:YES];

}

Add a method to calculate the rectangle based on the two points:
- (NSRect)currentRect
{

float minX = MIN(downPoint.x, currentPoint.x);

float maxX = MAX(downPoint.x, currentPoint.x);

float minY = MIN(downPoint.y, currentPoint.y);

float maxY = MAX(downPoint.y, currentPoint.y);

return NSMakeRect(minX, minY, maxX-minX, maxY-minY);

}
(For some reason, many people mistype that last method. Look at yours once more before going on. If you get it wrong, the results are disappointing.)
Declare the currentrRect method in stretchview.h.

So that the user will see something even if he or she has not dragged, initialize downpoint and currentpPoint inthe setImage: method:

- (void) setImage: (NSImage *)newlmage

{
image = newlmage;
NSSize imageSize = [newlmage size];
downPoint = NSZeroPoint;
currentPoint.x = downPoint.x + imageSize.width;
currentPoint.y = downPoint.y + imageSize.height;
[self setNeedsDisplay:YES];

}

In the drawrect: method, composite the image inside the rectangle:

- (void)drawRect: (NSRect) rect

NSRect bounds = [self bounds];
[[NSColor greenColor] set];
[NSBezierPath fillRect:bounds];
[[NSColor whiteColor] set];
[path stroke];
if (image) {
NSRect imageRect;
imageRect.origin = NSZeroPoint;
imageRect.size = [image size];
NSRect drawingRect = [self currentRect];
[image drawInRect:drawingRect
fromRect:imageRect
operation:NSCompositeSourceOver
fraction:opacity];

}

Build and run your application. Note that the view doesn’t scroll when you drag past the edge. It would be nice if the scroll view would move to allow users
to see where they have dragged to, a technique known as autoscrolling. In the next section, you will add autoscrolling to your application.

Autoscrolling

To add autoscrolling to your application, you will send the message autoscroll: to the clip view when the user drags. You will include the event as an
argument. Open stretchview.m and add the following line to the mousepragged: method:

- (void)mouseDragged: (NSEvent *)event

{

NSPoint p = [event locationInWindow];
currentPoint = [self convertPoint:p fromView:nil];
[self autoscroll:event];
[self setNeedsDisplay:YES];
}

Build and run your application.
Note that autoscrolling happens only as you drag. For smoother autoscrolling, most developers will create a timer that sends the view the autoscrol1:
method periodically while the user is dragging. Timers are discussed in Chapter 24.

For the More Curious: NSimage

In most cases, it suffices to read in an image, resize it, and composite it onto a view, as you did in this exercise.

An NsImage Object has an array of representations. For example, your image might be a drawing of a cow. That drawing can be in PDF, a color bitmap,
and a black-and-white bitmap. Each of these versions is an instance of a subclass of NsImagerep. You can add representations to and remove
representations from your image. When you sit down to rewrite Adobe Photoshop, you will be manipulating the image representations.

Here is a list of the subclasses of NSImageRep:
* NSBitmapImageRep
* NSEPSImageRep
* NSCachedImageRep
* NSCustomImageRep
* NSPDFImageRep
Although Ns1mageRrep has only five subclasses, it is important to note that Ns1mage knows how to read dozens of image formats, including all the common

formats: PNG, JPEG, PDF, GIF, BMP, TIFF and so on.

Challenge

Create a new document-based application that allows the user to draw ovals in arbitrary locations and sizes. NsBezierPath has the following method:

+ (NSBezierPath *)bezierPathWithOvalInRect: (NSRect)rect;

If you are feeling ambitious, add the ability to save and read files.

If you are feeling extra ambitious, add undo capabilities.

Chapter 19. Keyboard Events

When the user types, where are the corresponding events sent? First, the window manager gets the event and forwards it to the active application. The
active application forwards the keyboard events to the key window. The key window forwards the event to the “active” view. Which view, then, is the active
one? Each window has an outlet called firstresponder that points to one view of that window. That view is the “active” one for that window. For example,
when you click on a text field, it becomes the firstresponder of that window (Figure 19.1).

Figure 19.1. The First Responder of the Key Window Is “Active”

tirstFesponder

— [HSTextField |
NSButton
NSApplication —]
NSTextView
\
ey Wi e = — [rsvew | : __
NSWindow e . NSTextField
|] |subVicrws |
| —— mnoukit 4
foontantyiew | |
— S i S iy
L T i R, iy |
NSTextField |
frsiFespondar : - =
I
PR vy |
T — _/l/‘ The “active” view ||

T —— -

When the user tries to change the firstresponder to another view (by tabbing or clicking the other view), the views go through a certain ritual before the
firstResponder outlet is changed. First, the view that may become the firstresponder is asked whether it accepts first-responder status. A return of no
means that the view is not interested in keyboard events. For example, you can’t type into a slider, so it refuses to accept first-responder status. If the view
does accept first-responder status, the view that is currently the first responder is asked whether it resigns its role as the first responder. If the editing is
not done, the view can refuse to give up first-responder status. For example, if the user had not typed in his or her entire phone number, the text field could
refuse to resign this status. Finally, the view is told that it is becoming the first responder. Often, this triggers a change in its appearance (Eigure 19.2).

Figure 19.2. Becoming the First Responder

When the user tabs from one text field to the naxt,
the text field that would become key is asked if
it accepis first-responder stafus.,

firstRespondar
g ———— NSTextField
e B
‘-./"
NSWindew |— NSView n
T -
contentView subviews I‘
T - NS TextField
L“ﬂh_ el
accepts ﬁi-réth_e_spunder
If it accepts, the original first responder resignFirstResponder
is asked if it will resign first-responder s S EEEEEERL
status. AR W,
= firstResponde T ———
- BT e e NSTextField
- 8 __'__,__,-'—"" T—
NSWindow [— NSView
[}
contentView subviews
E— | NSTextField
It it resigns, the first-responder outlet is changed,
and the new first responder is sent
becomeFirstResponder
NS TextField
NSWindow cantentView NSView o
——————
o subviews i
o NS TextField
e, —— e
... fistResponder .-
becameFirsiﬁ;t-iponder

Note that each window has its own first responder. Several windows may be open, but only the first responder of the key window gets the keyboard
events.

NSResponder

We are interested in the following methods that are inherited from Nsresponder:
- (BOOL) acceptsFirstResponder
Overridden by a subclass to return ves if it handles keyboard events.
- (BOOL) resignFirstResponder
Asks whether the receiver is willing to give up first-responder status.
- (BOOL)becomeFirstResponder
Notifies the receiver that it has become first responder in its Nswindow.
- (void) keyDown: (NSEvent *)theEvent
Informs the receiver that the user has pressed a key.
- (void) keyUp: (NSEvent *)theEvent
Informs the receiver that the user has released a key.
- (void) flagsChanged: (NSEvent *)theEvent

Informs the receiver that the user has pressed or released a modifier key (Shift, Control, or so on).

NSEvent

We discussed Nsevent in terms of mouse events in the previous chapter. Here are some of the methods commonly used when getting information about
a keyboard event:

- (NSString *)characters

Returns the characters created by the event.

- (BOOL) isARepeat

Returns vEs if the key event is a repeat caused by the users holding the key down; returns o if the key event is new.
- (unsigned short) keyCode

Returns the code for the keyboard key that caused the event.

- (NSUInteger)modifierFlags

Returns an integer bit field indicating the modifier keys in effect for the receiver. For information about what the bits of the integer mean, refer to the
discussion in Chapter 18.

Create a New Project with a Custom View

Create a new project of type Cocoa Application. Name it TypingTutor and set the Class Prefix to TypingTutor.

In Xcode, create an Objective-C class that is a subclass of NSView subclass, and name it BigLetterview.

Lay Out the Interface

OpenMainMenu.xib and click on the TypingTutor window in the dock to open it. Create an instance of your class by dragging out a Custom View (under
Cocoa -> Layout Views) and dropping it onto the window (Eigure 19.3).

Figure 19.3. Drop a View onto the Window

AN] B TypingTutor - MainMenu.xib —
(el (mr_:] (=] X ¥ = EIENEIE O is]
Rur S:op Scheme Breakpoints. Editor Visw Organizer
= 4 r [y TypirgTue Typirg. MainMe. MainMe . szWindow-TypingTutor Eview | 0 B B w2 Q0 & =2
TypingTutor File Edit Format View Window Help T View
; ; : Show | frame Recungle 58

L AN TepinaTutnr % 7

® &
Q'

]
. i Custom View - Privides you with
an ingtance of a view subclass that bs
l not aeailable is interfzce Bulder,
Vartical Split View - Asranged
Subitwel el B SNt anather 55 that
e uses can change fheir relative

Harizanal Split View - Amasges 4
= Fubwiaws Mt to o anOINSr IOTNE | 5
tha s s rA AR Bhaie sadutie

In the Identity Inspector, set the class of the view to be BigLetterview (Eigure 19.4).

Figure 19.4. Set the Class of the View to BigLetterView

awm File _Edit smwummmlp

res

B

o®: "

| o, Secure Text Field - Hides text
! | | AU | mswes | from dapiay or ccher access wa the

Text Field with Number
1234 Formanter - Displays numbers that *
i the used caa Select of e and tha | v

T~ 3 5 S e] 1 | o

12

Drop two text fields (under Cocoa -> Controls) onto the window (Eigure 19.5).
Figure 19.5. Completed Interface

BigLetterView

Make Connections

Now you need to create the loop of key views for your window. That is, you are setting the order in which the views will be selected as the user tabs from
one element to the next. The order will be the text field on the left, the text field on the right, the BigLetterview, and then back to the text field on the left.

Set the left-hand text field’s nextkeyview to be the right-hand text field (Eigure 19.6).
Figure 19.6. Set nextKeyView of Left-Hand Text Field

B MAH TypingTutor

[+] TextField
¥ Outlets

delegate

formatter

menu

nexctieyWiew
Sent Actions
selector
Accessibility

link

title

Referencing Outlets — [S agm————— |

New Referencing Outlet O | X " ”
Received Actions > " |
performClick:

prink:

selectText:
takeDoubleValueFrom:

00

elolele)

B Q

Set the right-hand text field’s nextkeyview to be the BigLetterview (Figure 19.7).

Figure 19.7. Set nextKeyView of Right-Hand Text Field

o, ™A TypingTutor

[] TextField
¥ Outlets

delegate

formatter

menu

nextieyView

Sent Actions

selector

Accessibility

link

tithe
Referencing Qutlets
nextieyView # TextField
New Referencing Outlet

Received Actions

performClick:

print:

Finally, set the nextkeyview Of the BigLetterview to be the left-hand text field (Figure 19.8). This will enable the user to tab between the three views. Shift-
tabbing will move the selection in the opposite direction.

Figure 19.8. Set nextKeyView of the BigLetterView

® ™A TypingTutor

(] Big Letter View
¥ Outlets
menu
nextkeyView
v Accessibility
link
title

utlets

By View # TextField
3 = New Referencing Outlet
¥ Received Actions
print:
¥ Accessibility References
link
title

Which view, then, should be the firstrResponder when the window first appears? To make the BigLetterview the initialFirstResponder Of the window,
Control-click on the title bar of the window in the editor to see the Connection panel, then drag from the initialFirstResponder outlet to the
BigLetterView (Eigure 19.9). You can also use the icon of the window on the dock to set the outlet.

Figure 19.9. Set the initialFirstResponder of the Window

(] Window - TypingTutor
(%] ¥ Outlets

" delegate
aANA TypingTutor initlalFirstResponder

50

menu
¥ Referencing Quiiels

&3 2 # Typlng Tut...
= New Referencing Outlet

O

O®

L]

- ¥ Received Actions

E’F_ deminiaturize:

! makekeyAndOrderfront
miniaturize:
orderBack:
orderfront:
orderOut:
performClose:
performMiniaturize:

QOO0 0000

(@101

performZoom:

print:
runToolbarCustomizationPalette:
toggleToolbarShown:

Q0

)

Write the Code

In this section, you will make your BigLetterview respond to key events and accept first-responder status. The characters typed by the user will appear in
the console. The completed application will look like Figure 19.10.

Figure 19.10. Completed Application

AOH TypingTutor :
Tye
»
d
- -
= .
=
Loc
1 B
o e — b I:
ABC 123 i

In BigLetterView.h

etterview.m
Rusnriing TypingTutor

Editor
m o [0 -delereEackward

setl;

¥:
L

[IW11-03-15 1547

2011-83-15 15:4
2011-83=19 15:

42.524 TypingTutor(55601:503] Resigaing
Acepting
Accepting
Accepting
Accepting
Becening
The strisg is
The strisg is
The strisg is
The strisg is
The strisg is
The strisg is

38.913 TypingTutar[55601:503]
38.914 TypingTutor[55601:381]
38,914 TypingTuter]53601:803]
36.915 TypingTutor|55691:503]
38.915 TypingTutor(55691:583]
43_8E5 TypingTutor(55651:683]
944 TyplngTuter(55691:983]
44,117 TypingTutor[55601:983]
+T28 TypingTuter(55601.503]
6. 008 TypingTutor[S5681:501]
45.952 TypingTutor(55691:581]

now B
now E
new F
now d
now &
now f

Ela =

OFO =
Wiew Ovganizer
]
Clear | (] N LB

Your BigLetterview Will have two instance variables and accessor methods for those variables. The ngco1or variable will identify the background color of
the view and will be an Nsco1or Object. The string variable will hold onto the letter that the user most recently typed and will be an Nsstring Object.

#import <Cocoa/Cocoa.h>

@interface BigLetterView NSView {
NSColor *bgColor;
NSString *string;
}
@property (strong) NSColor *bgColor;
@property (copy) NSString *string;
@end

In BigLetterView.m

The designated initializer for a view is initwithFrame:. In this method, you will call the superclass’s initwithFrame: method and initialize bgcolor and
string to default values. Add the following methods to Bigretterview.m:

- (id)initWithFrame:(NSRect)frame

self = [super initWithFrame:frame];
if (self)

NSLog(@"initializing view");
bgColor = [NSColor yellowColor];
string=@" ";

return self;

Create accessor methods for bgcolor and string:
#pragma mark Accessors

- (void)setBgColor:(NSColor *)c
{

bgColor =c;

[self setNeedsDisplay:YES];
}
-(NSColor *)bgColor

return bgColor;
}

- (void)setString:(NSString *)c

string =c;
NSLog(@"The string is now % @", string);
}

- (NSString *)string

return string;

}

Add the following code to the drawrect: method to fill the view with bgcolor. If it is the window's rirstresponder, the view will stroke a blue rectangle
around its bounds to show the user that it will be the view receiving keyboard events:

- (void)drawRect: (NSRect) rect
{
NSRect bounds = [self bounds];
[bgColor set];
[NSBezierPath fillRect:bounds];

Il Am | the window's first responder?

if ([[self window] firstResponder] == self) {
[[NSColor keyboardFocusindicatorColor] set];
[NSBezierPath setDefaultLineWidth:4.0];
[NSBezierPath strokeRect:bounds];

}

The system can optimize your drawing a bit if it knows that the view is completely opaque. Override Nsview's isopaque method:
- (BOOL)isOpaque
{

return YES;
}

The methods to become firstresponder are as follows:
- (BOOL)acceptsFirstResponder

NSLog(@"Accepting");
return YES;

}
- (BOOL)resignFirstResponder

NSLog(@"Resigning");
[self setNeedsDisplay:YES];
return YES;

}
- (BOOL)becomeFirstResponder

NSLog(@"Becoming");
[self setNeedsDisplay:YES];
return YES;

}

Once the view becomes the first responder, it will handle key events. For most keypowns, the view will simply change string to be whatever the user
typed. If, however, the user presses Tab or Shift-Tab, the view will ask the window to change the first responder.

NSResponder (from which nsview inherits) has a method called interpretkeyEvents:. For most key events, it just tells the view to insert the text. For
events that might do something else (such as Tab or Shift-Tab), it calls methods on itself.

In keyDown:, YOU simply call interpretKeyEvents:
- (void)keyDown:(NSEvent *)event

[self interpretKeyEvents:[NSArray arrayWithObject:event]];
}

Then you need to override the methods that interpretkeyEvents: will call:
- (void)insertText:(NSString *)input
Il Set string to be what the user typed

[self setString:input];
}

- (void)insertTab:(id)sender
{

[[self window] selectKeyViewFollowingView:self];

}

I/l Be careful with capitalization here, "backtab" is considered
/I one word.
- (void)insertBacktab:(id)sender

[[self window] selectKeyViewPrecedingView:self];

}

- (void)deleteBackward:(id)sender
[self setString:@" "1;
}

@end

Build and run your program. You should see that your view becomes the first responder. While it is first responder, it should take keyboard events and log
them to the terminal. Also, note that you can Tab and Shift-Tab between the views (Eigure 19.11).

Figure 19.11. Completed Application

ANH TrpingTutor
FypingTutor - Biglemerview.m
". Runniing TypingTutor | Ela s Cll'_—1 0 =
- = L& — =]
Bu e Editor Hiew Oeganizer
= wm) [~detereRackeard
4
set]
I
=
Log Crear | (1] INL L3
| | B:42.524 TypingTutor[55E91:5983] Resigaing
e 3 = 1:38.913 TypingTuter[55601:983] Accepting
ABC 123 T:38.914 TypingTutor[55601:081] Aceepting

T:38.914 TypingTutor[55691:903] Accepting

T138.915 TypingTutor|55691:503] Accepting
PIRIT=NISISTNSIAT (30,915 TypingTutor|55691:583] Becowing
2011=03=15 15:47:43_BES TypingTutor|55681:983] The strisg is now B
2011=83=19 15:47:43 944 TypingTuter(|55601:%83] The strimg is now E
2021-93-19 15:47:44,112 TypingTutar[55601:003] The strisg is new F
2011-03-16 15:47:46.729 TypingTutor[55681:503] The strisg is now d
2001-03-15 154740809 TypingTutor[53681:503] The strisg is now e
2011-83-19 15147 146,952 TypdngTutor[55€91:583) The strisg is now F

(Yes, acceptsFirstResponder gets called more times than you might expect (each time the view is selected)).

For the More Curious: Rollovers

Three mouse events were not discussed in Chapter 18: mouseMoved:, mouseEntered:, and mouseExited:.
- (void)mouseMoved: (NSEvent *)event

To receive mouseMoved:, the view's window needs to accept “mouse-moved” events. If it does, the mouseMoved: message is sent to the window’s first
responder. To set the window to get mouse-moved events, you send it the message setAcceptsMouseMovedEvents :

[[self window] setAcceptsMouseMovedEvents:YES];

At this point, the view will be sent the message every time the mouse moves. This is a lot of events. When people ask us about mouse-moved events, we
ask them why they want it. They usually say, “Uh, rollovers.”

Rollovers are very popular in Web browsers. As you roll over a region, its appearance changes to make it clear that if you clicked now, that region would
accept the click. Hyperlinks in Safari, for example, become highlighted when you roll over them.

To do rollovers, you don't typically use mouseMoved: . Instead, you set up a tracking area and override mouseEntered: and mouseExited:.

When a view is put on a window, viewDidMoveToWindow gets called. This is a pretty good place to create tracking areas. By passing the
NSTrackingInVisibleRect, the tracking area will automatically match the visible rect of the owner.

- (void)viewDidMoveToWindow
{
int options = NSTrackingMouseEnteredAndExited |
NSTrackingActiveAlways |
NSTrackingInVisibleRect;
NSTrackingArea *ta;
ta = [[NSTrackingArea alloc] initWithRect:NSZeroRect
options:options
owner:self
userInfo:nil];

[self addTrackingArea:tal;
}

Then, you change the appearance when mouseEntered: and mouseExited: are called. Assuming that you have a variable called istighlighted Of type
BoOL, here is the code:

- (void)mouseEntered: (NSEvent *)theEvent

isHighlighted = YES;
[self setNeedsDisplay:YES];

- (void)mouseExited: (NSEvent *)theEvent

isHighlighted = NO;
[self setNeedsDisplay:YES];
}

You would then check isHighlighted in your drawrRect: method and draw the view appropriately.

The Fuzzy Blue Box

Your BigLetterView gets a blue box around its edge when itis firstresponder. Note, however, that the box isn’t nice and fuzzy like the box around text
fields. You want the fuzzy blue box? It takes a little work.

See where you draw the blue box in drawrect: inBigletterview.m? Change it to look like this:

if (([[self window] firstResponder] == self) &&

[NSGraphicsContext currentContextDrawingToScreen]) {
[NSGraphicsContext saveGraphicsState];
NSSetFocusRingStyle(NSFocusRingOnly);

[NSBezierPath fillRect:bounds];
[NSGraphicsContext restoreGraphicsState];

}

Now, when you lose first-responder status, you need to redraw the view and the area occupied by the fuzzy blue glowaround it.

- (BOOL) resignFirstResponder

{
NSLog (@"Resigning") ;
[self setKeyboardFocusRingNeedsDisplaylnRect:[self bounds]];
return YES;

}

Build and run your application.

Chapter 20. Drawing Text with Attributes

The next step is to get the string to appear in our view. At the end of this chapter, your application will look like Figure 20.1. The character being displayed
will change as you type.

Figure 20.1. Completed Application

a0 TypingTutor

NSFont

Overall, the class NsFont has only two types of methods:
1. Class methods for getting the font you want
2. Methods for getting metrics on the font, such as letter height

The following are commonly used methods in NsFont:

+ (NSFont *)userFontOfSize: (float) fontSize

+ (NSFont *)userFixedPitchFontOfSize: (float)fontSize
+ (NSFont *)messageFontOfSize: (float)fontSize

+ (NSFont *)toolTipsFontOfSize: (float)fontSize

+ (NSFont *)titleBarFontOfSize: (float)fontSize

Return a font object for the user’s default font for the corresponding string types. If you send a fontsize of 0.0, these methods will use the default font
size.

User fonts are intended to be used in areas representing user input: a text field, for example. The other methods are useful when implementing
custom user interface controls.

+ (NSFont *)fontWithName: (NSString *)fontName size: (float) fontSize

Returns a font object; fontnane is a family-face name, such as “HelveticaBoldOblique” or “Times-Roman.” Again, a fontsize of 0.0 uses the default
font size.

Unless your application calls for using a specific font, we recommend using the prior set of methods in place of this one, in order to maintain
consistency.

NSAttributedString

Sometimes, you want to display a string that has certain attributes for a range of characters. As an example, suppose that you want to display the string
“Big Nerd Ranch” and want the letters 0 through 2 to be underlined, the letters 0 through 7 to be green, and the letters 9 through 13 to be subscripts.

When dealing with a range of numbers, Cocoa uses the struct Nsrange. NsRange has two members: 1ocation and 1ength are both integers. The 1ocation
is the index of the first item, and the 1ength is the number of items in the range. You can use the function NsMakeRange () to create an nsrange.

To create strings with attributes that remain in effect over a range of characters, Cocoa has NsattributedsString and NSMutableAttributedString. Here
is how you could create the Nsattributedstring just described:

NSMutableAttributedString *s;
s = [[NSMutableAttributedString alloc]
initWithString:@"Big Nerd Ranch"];

[s addAttribute:NSFontAttributeName
value: [NSFont userFontOfSize:22]
range:NSMakeRange (0, 14)];

[s addAttribute:NSUnderlineStyleAttributeName
value: [NSNumber numberWithInt:1]
range:NSMakeRange (0,3) 1

[s addAttribute:NSForegroundColorAttributeName
value: [NSColor greenColor]
range:NSMakeRange (0, 8)];

[s addAttribute:NSSuperscriptAttributeName

value: [NSNumber numberWithInt:-1]
range:NSMakeRange (9,5) 17

Once you have an attributed string, you can do lots of stuff with it.
[s drawInRect:[self bounds]];

// Put it in a text field
[textField setAttributedStringValue:s];

// Put it on a button
[button setAttributedTitle:s];

Figure 20.2 shows the result of this code’s execution.
Figure 20.2. Using the Attributed String

= T) G
BIg INerC

' Ranch

é:

Here are the names of the global variables for the most commonly used attributes, the type of object they correspond to, and their default values:

Global Variable Name Corresponds to Default Value
NSFontAttributeName A font object 12-point Helvetica
NSForegroundColorAttributeName A color Black
NSParagraphStyleAttributeName AnNSParagraph- Standard paragraph
Style object style
NSUnderlineColorAttributeName A color The same as the
foreground
NSUnderlineStyleAttributeName A number 0 (which means no
underline)
NSSuperscriptAttributeName A number 0 {which means no
superscripting or
subscripting)
NSShadowAttributeName An NSShadow object Nib (no shadow)

A list of all the attribute names can be found in NSattributedString.h.
The easiest way to create attributed strings is from a file. Nsattributedstring can read and write the following file formats:
* A string: Typically from a plain text file.

* RTF: Rich Text Format is a standard for text with multiple fonts and colors. In this case, you will read and set the contents of the attributed string with

aninstance of Nspata.
* RTFD: This is RTF with attachments. Besides the multiple fonts and colors of RTF, you can have images.
* HTML: The attributed string can do basic HTML layout, but you probably want to use the webview for best quality.
» Word: The attributed string can read and write simple . doc files.
* OpenOffice

When you read a document in, you may want to know some things about it, such as the paper size. If you supply a place where the method can put a
pointer to a dictionary, the dictionary will have all the extra information that it could get from the data. For example:

NSDictionary *myDict;

NSData *data = [NSData dataWithContentsOfFile:@"myfile.rtf"];
NSAttributedString *aString;
aString = [[NSAttributedString alloc] initWithRTF:data

documentAttributes:&myDict];

If you don’t care about the document attributes, just supply nuLL.

Drawing Strings and Attributed Strings

Both Nsstring and NsAttributedstring have methods that cause them to be drawn onto a view. Nsattributedstring has the following methods:
- (void)drawAtPoint: (NSPoint)aPoint
Draws the receiver. aroint is the lower-left corner of the string.
- (void)drawInRect: (NSRect) rect
Draws the receiver; all drawing occurs inside rect. If rect is too small for the string to fit, the drawing is clipped to fitinside rect.
- (NSSize)size

Returns the size that the receiver would be if drawn.

NSstring has analogous methods. With nsstring, you need to supply a dictionary of attributes to be applied for the entire string.

- (void)drawAtPoint: (NSPoint)aPoint
withAttributes: (NSDictionary *)attribs

Draws the receiver with the attributes in attribs.

- (void)drawInRect: (NSRect) aRect
withAttributes: (NSDictionary *)attribs

Draws the receiver with the attributes in attribs.
- (NSSize)sizeWithAttributes: (NSDictionary *)attribs

Returns the size that the receiver would be if drawn with the atttibutes in attrips.

Making Letters Appear

OpenBigLetterview.h. Add aninstance variable to hold the attributes dictionary and declare prepareattributes.
#import <Cocoa/Cocoa.h>
@interface BigLetterView : NSView {
NSColor *bgColor;
NSString *string;
NSMutableDictionary *attributes;
}
- (void)prepareAttributes;
OpenBigLetterview.m. Create a method that creates the attributes dictionary with a font and a foreground color:
- (void)prepareAttributes
{
attributes = [NSMutableDictionary dictionary];

[attributes setObject:[NSFont userFontOfSize:75]
forKey:NSFontAttributeName];

[attributes setObject:[NSColor redColor]
forKey:NSForegroundColorAttributeName];

}

In the initwithFrame: method, call the new method:

- (id)initWithFrame: (NSRect) rect
{
self = [super initWithFrame:rect];
if (self) {
NSLog (@"initializing view");
[self prepareAttributes];
bgColor = [NSColor yellowColor];
string = @" ";
}

return self;

}
Inthe setstring: method, tell the view that it needs to redisplay itself:

- (void)setString: (NSString *)c

{
string = c;
NSLog (@"The string: %Q@", string);
[self setNeedsDisplay:YES];

}

Create a method that will display the string in the middle of a rectangle:
- (void)drawStringCenteredin:(NSRect)r

NSSize strSize = [string sizeWithAttributes:attributes];

NSPoint strOrigin;

strOrigin.x = r.origin.x + (r.size.width - strSize.width)/2;

strOrigin.y = r.origin.y + (r.size.height - strSize.height)/2;

[string drawAtPoint: strOrigin withAttributes:attributes];
}

Call that method from inside your drawrect: method:
- (void)drawRect: (NSRect) rect
{
NSRect bounds = [self bounds];

[bgColor set];
[NSBezierPath fillRect:bounds];

[self drawStringCenteredin:bounds];

if (([[self window] firstResponder] == self) &&

Build and run the application. Note that keyboard events go to your view unless they trigger a menu item. Try pressing Command-W. It should close the
window (even if your view is the first responder for the key window).

Getting Your View to Generate PDF Data

All the drawing commands can be converted into PDF by the AppKit framework. The PDF data can be sent to a printer or to a file. Note that the PDF will
always look as good as possible on any device, because it is resolution independent.

You have already created a view that knows how to generate PDF data to describe how it is supposed to look. Getting the PDF data into a file is really
quite easy. Nsview has the following method:

- (NSData *)dataWithPDFInsideRect: (NSRect)aRect

This method creates a data object and then calls drawrect:. The drawing commands that would usually go to the screen instead go into the data object.
Once you have this data object, you simply save it to a file.

OpengigLetterview.m and add a method that will create a Save panel as a sheet. We'll use a block again, as we did with nsopenpane1 in Chapter 18, to
respond to the user’s actions.

- (IBAction)savePDF:(id)sender

__block NSSavePanel *panel = [NSSavePanel savePanel];

[panel setAllowedFileTypes:[NSArray arrayWithObject: @"pdf"]];

[panel beginSheetModalForWindow:[self window]
completionHandler:* (NSinteger result) {

if (result == NSOKButton)

{
NSRectr = [self bounds];
NSData *data = [self dataWithPDFInsideRect:r];
NSError *error;
BOOL successful = [data writeTOURL:[panel URL]
options:0
error:&error];
if (Isuccessful) {
NSAlert *a = [NSAlert alertWithError:error];
[a runModal];
}
}

panel = nil; // avoid strong ref cycle
5
}

Also, declare the action method inthe BigLetterview.n file:

- (IBAction)savePDF:(id)sender;

OpenwuainMenu.xib. Select the Save As... item under the File menu. If there is no a Save As item, drag a new Menu Item from the Library onto the File

menu. Relabel it Save As PDF.... (You may delete all the other menu items from the menu, if you wish.) Make the Save As PDF... menu item trigger the
BigLetterView'S savePDF: method (Eigure 20.3).

Figure 20.3. Connect Menu ltem

Save and build the application. You should be able to generate a PDF file and view it in Preview (Figure 20.4).

Figure 20.4. Completed Application

RAS [*| X.pdf {1 page)

»
Provicas | Next Zoom

i X

You will notice that multikeystroke characters (such as ¢) are not handled by your Bigretterview. To make this possible, you would need to add several
methods that the NsInputManager uses. This topic is beyond the scope of this book (we just wanted to show you how to get keyboard events), but you can
learn about it in Apple’s discussion of NSInputManager in the documentation.

For the More Curious: NSFontManager

Sometimes, you will have a font that is good but would be perfect if it were bold or italicized or condensed. NsFontManager can be used to make this sort
of conversion. You can also use a font manager to change the size of the font.

For example, imagine that you have a font and would like a similar font but bold. Here is the code:

fontManager = [NSFontManager sharedFontManager];
boldFont = [fontManager convertFont:aFont toHaveTrait:NSBoldFontMask];

Challenge 1

Give the letter a shadow. The Nsshadow class has the following methods:

(id) init;

- (void) setShadowOffset: (NSSize)offset;
- (void) setShadowBlurRadius: (float)val;
- (void) setShadowColor: (NSColor *)color;

Challenge 2

Add the Boolean variables bo1d and italic to your BigLetterview. Add check boxes that toggle these variables. If bo14d is YEs, make the letter appear in
boldface; if italic is YEs, make the letter appear in italics.

Chapter 21. Pasteboards and Nil-Targeted Actions

A process called the pasteboard server (/usr/bin/pboard) runs on your Mac. Applications use the Nspasteboard class to write data into that process
and to read data from that process. The pasteboard server makes possible such operations as copying, cutting, and pasting between applications.

An application can copy the same data onto the pasteboard in several formats. For example, an image can be copied onto the pasteboard as a PDF
document and as a PNG image. Then the application that reads the data can choose the format that it likes most. The pasteboard uses UTls to identify
the various types used on the pasteboard.

Prior to Mac OS X 10.6, the pasteboard APIs allowed for only one item on the pasteboard at any one time (although that item could have an arbitrary
number of representations, or types). In 10.6, Apple updated the pasteboard APIs to allow for multiple items on a pasteboard: for example, multiple URLs
copied from Finder. Each item can have multiple types associated with it, such as string and URL representations.

When putting data on the pasteboard, your application typically clears the pasteboard and then writes one or more objects directly to the pasteboard.
Each of those objects forms an individual item on the pasteboard. The objects must conform to a pasteboard-writing protocol, which supplies the data. In
this case the data for those items is immediately copied to the pasteboard.

The receiving application will then ask the pasteboard for an array of objects. It supplies an array of classes along with this request, which enables the
pasteboard to provide the richest representations available for each item. In this scenario, the classes must conform to the pasteboard-reading protocol.

Data can also be passed via the pasteboard lazily. To do so, a class declares the data it will provide and then promises to provide that data when asked
to do so by means of a delegate method in the future. We will talk about lazy copying at the end of the chapter.

Apple also provides APIs to work with the pasteboard on a per type basis, which may be useful if your application requires very fine control of the
pasteboard. These APIs match the pre-10.6 APIs very closely.

Multiple pasteboards are available. There is a pasteboard called the general pasteboard, for copy-and-paste operations and another for drag-and-drop
tasks. One pasteboard stores the last string that the user searched for, another copies rulers, and another copies fonts.

In this chapter, you will add cut, copy, and paste capabilities to your Bigretterview. First, you will implement the methods that will read from and write to
the pasteboard. Then we will discuss how those methods get called.

NSPasteboard

As mentioned earlier, the Nspasteboard class acts as an interface to the pasteboard server. Following are some of the commonly used methods of
NSPasteboard.

+ (NSPasteboard *)generalPasteboard

Returns the general Nspasteboard. You will use this pasteboard to copy, cut, and paste.

+ (NSPasteboard *)pasteboardWithName: (NSString *)name

Returns the pasteboard identified by name. Here are the global variables that contain the names of the standard pasteboards:

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

- (NSInteger)clearContents

Clears the contents of the pasteboard before writing objects to it. Returns the current change count of this pasteboard, which is not needed in most
applications.

- (BOOL)writeObjects: (NSArray *)objects

Writes to the pasteboard objects that conform to the NsPasteboardwriting protocol. Conforming classes include Nsstring, NSAttributedString,
NSURL, and NsImage. Each object represents an individual pasteboard item. If multiple types are to be written for each item, the object must write
those types through the pasteboard-writing protocol.

For example, if an array of NsurL objects is written to the pasteboard, a pasteboard item will be created for each nsurL. Each of those pasteboard
items will have two types associated with it: public.url and public. utf8-plain-text.

- (NSArray *)readObjectsForClasses: (NSArray *)classes
options: (NSDictionary *)options

Reads objects from the pasteboard. One object will be returned per pasteboard item. An array of classes must be passed that describe the order in
which the types are desired, usually with the richest representation first. The classes must conform to the NspPasteboardreading protocol.

Following on the previous example, if the c1asses array contains only [NSURL class], an array of Nsurw instances will be returned. If it contains only
[NSString class], NSString instances will be returned.

Note that UTls are not used directly in any of the preceding methods. Instead, they are class focused.

NSPasteboardItem, Which itself conforms to NsPasteboardReading and NSPasteboardWriting, allows you to work much more closely with the pasteboard
contents using UTls. Here are some of the more commonly used methods on NsPasteboardItem:

- (BOOL) setDataProvider: (id<NSPasteboardItemDataProvider)provider
forTypes: (NSArray *)types

Used for providing pasteboard data lazily, declares that provider will provide the given types when requested. Here are a few of the global variables
for the standard types. Each of these evaluates to a UTI.

NSPasteboardTypeColor
NSPasteboardTypeFont
NSPasteboardTypePDF
NSPasteboardTypeRuler
NSPasteboardTypeRTF
NSPasteboardTypeRTED
NSPasteboardTypeHTML
NSPasteboardTypeString
NSPasteboardTypeTabularText
NSPasteboardTypeTIFF
kUTTypeURL

You can also create your own UTls for use with the pasteboard.

- (BOOL) setData: (NSData *)aData forType: (NSString *)dataType
- (BOOL)setString: (NSString *)s forType: (NSString *)dataType
- (BOOL) setPropertyList: (id)plist forType: (NSString *)dataType

Write data to the pasteboard.
- (NSArray *)types
Returns an array containing the types of data that are available to be read from the pasteboard.

- (NSString *)availableTypeFromArray: (NSArray *)types

Returns the first type found in types that is available for reading from the pasteboard; types should be a list of all types that you would be able to
read.

- (NSDhata *)dataForType: (NSString *)dataType
- (NSString *)stringForType: (NSString *)dataType
- (id)propertyListForType: (nSString *)dataType

Read data from the pasteboard.

Add Cut, Copy, and Paste to BigLetterView

You will create methods named cut:, copy:, and paste: inthe BigLetterview class. To make these methods easier to write, you will first create methods
for putting data onto and reading data off a pasteboard. Add these methods to Bigletterview.m:

- (void)writeToPasteboard:(NSPasteboard *)pb

Il Copy data to the pasteboard

[pb clearContents];

[pb writeObjects:[NSArray arrayWithObject:string]];
}

- (BOOL)readFromPasteboard:(NSPasteboard *)pb

{
NSArray *classes = [NSArray arrayWithObject:[NSString class]];

NSArray *objects = [pb readObjectsForClasses:classes
options:nil];
if ([objects count] > 0)

/I Read the string from the pasteboard
NSString *value = [objects objectAtindex:0];

I/ Our view can handle only one letter
if (lvalue length] == 1) {

[self setString:value];

return YES;

return NO;

}

Note how we have implemented the write and read methods. When writing to the pasteboard, we clear its contents and then write objects to it. When
reading from the pasteboard, we supply an array of the classes we are interested in and then request the matching objects from the pasteboard. By
implementing the NsPasteboardWriting and NSPasteboardReading Protocols, the Nsstring class has made this task very simple.

Declare the cut:, copy :, and paste: methods inBigLetterview.h:

- (IBAction)cut:(id)sender;
- (IBAction)copy:(id)sender;
- (IBAction)paste:(id)sender;

Implement these methods inBigLetterview.m:
- (IBAction)cut:(id)sender

[self copy:sender];
[self setString:@""];
}

- (IBAction)copy:(id)sender

NSPasteboard *pb = [NSPasteboard generalPasteboard];
[self writeToPasteboard:pb];

}
- (IBAction)paste:(id)sender

NSPasteboard *pb = [NSPasteboard generalPasteboard];
if([self readFromPasteboard: pb]) {

NSBeep();
}

}

Build and run the application. Note that the Cut, Copy, and Paste menu items now work when the BigLetterview is selected. The keyboard equivalents
also work. You can copy only strings that have one character into the BigLetterview.

Nil-Targeted Actions

How is the right view sent the cut:, copy:, Or paste: message? After all, there are many, many views. If you select a text field, it should get the message.
When you select another view and then choose the Copy or Paste menu item, the message should go to the newly selected view.

To solve this problem, the clever engineers at NeXT came up with nil-targeted actions. If you set the target of a control to ni1, the application will try to
send the action message to several objects until one of them responds. The application first tries to send the message to the first responder of the key
window. This is exactly the behavior that you want for Cut and Paste. You can have several windows, each of which can have several views. The active
view on the active window gets sent the cut-and-paste messages.

The beauty of targeted actions doesn’'t end there. Nsview, NSApplication, and Nswindow all inherit from NsrResponder, which has an instance variable
called nextresponder. If an object doesn’t respond to a nil-targeted action, its nextrResponder gets a chance. The nextrResponder for a view is usually its
superview. The nextrResponder Of the content view of the window is the window. Thus, the responders are linked together in what we call the responder
chain.

Note that nextresponder has nothing to do with nextkeyview.

For example, one menu item closes the key window. It has a target ofni1l. The action is performciose:. None of the standard objects respond to
performClose: exceptNswindow. Thus, the selected text field, for example, refuses to respond to performclose:. Then the superview of the text field
refuses, and on up the view hierarchy. Ultimately, the window (the key window) accepts the performciose: method. So, to the user, the “active” window is
closed.

As was mentioned in Chapter 12, a panel can become the key window but not the main window. If the key window and the main window are different, both
windows get a chance to respond to the nil-targeted action.

Your question at this point should be: In what order will the objects be tested before a nil-targeted action is discarded?

1. The firstResponder Of the keywindow and its responder chain. The responder chain would typically include the superviews and, finally, the key
window.

2. The delegate of the key window.
3. [fitis a document-based application, the NswindowController and then Nspocument Object for the key window.

4. If the main window is different from the key window, it then goes through the same ritual with the main window: the firstrResponder of the main
window and its responder chain (including the main window itself), the main window’s delegate, and the NSWwindowController and then
NSDocument Object for the main window.

5. The instance of Nsapplication.
6. The delegate Of the NsApplication.

7. The NSDocumentController.

This series of objects represents the responder chain introduced above. Figure 21.1 presents an example. The numbers indicate the order in which the
objects would be asked whether they respond to the nil-targeted action.

Figure 21.1. An Example of the Order in Which Responders Get a Chance to Respond

firstResponder

—Fde] ==r [NSTexiField
9 5
i — NSView NSButton
NSApplication . subViows
8 e T conantView 6

c \ T svien]
keyWindow i |
¥ .!ﬁs.#am' | NS TexiField
B F—————1 it Viows
3 contant\iew 2
Ar—,ga‘-e firstResponder B ned
MyClass

4

Note that in document-based applications (such as RaiseMan), the Nspocument Object gets a chance to respond to the nil-targeted action. The object
receives the messages from the following menu items: Save, Save As..., Revert To Saved, Print..., and Page Layout....

Looking at the XIB File

To continue with our example, open MainMenu.xib. Note that the cut, copy, and paste items are connected to the icon labeled First Responder. The First
Responder icon represents ni1. It gives you something to drag to when you want an object to have a ni1 target (Figure 21.2).

Figure 21.2. Check Menu ltem

TypingTutor File = Format View Window Help
Undo

Redo (] Menu Item - Copy
¥ Outlets
Cut e
¥ Sent Actions
Paste oy % First Responder

¥ Accessibili
Paste and [i

Delete title
I Yad ||} ¥ Referencing Outlets
Mew Referencing Outlet
¥ Accessibility References

Speech L3

For the More Curious: Which Object Sends the Action Message?

The target on the cut, copy, and paste menu items is ni1. We know that sending a message to ni1 will not do anything. All target-action messages are
handled by Nsapp1ication. It has the following method:

- (BOOL) sendAction: (SEL)anAction to: (id)aTarget from: (id) sender

When the targetis ni1, Nsapplication knows to try to send messages to the objects in the responder chain.

For the More Curious: UTIs and the Pasteboard

In Chapter 10, we discussed how UTls are used by Mac OS X to identify file types. The pasteboard also uses UTls for this purpose. Although we did not
use UTls directly in this exercise, Nsstring USES NsPasteboardTypeString as its type when it reads and writes itself from the pasteboard. If you were to
|Og the value of NSPasteboardTypeString, YOU would find that its value is public.utf8-plain-text.

The hierarchical nature of UTls enables an application to be broad (public. image) or specific (public.png) when requesting objects from the
pasteboard. The system will work out whether a type is permissable, based on what types it conforms to.

Custom UTlIs

At some point, you will want to use the pasteboard for custom, application-specific data. In such cases, you can simply use your own UTI. Custom UTls
should take the form of a reverse DNS name, such as com.bignerdranch. raiseman.person. You would then want to implement NspasteboardWriting
and NsPasteboardReading ON Your custom object or use NspasteboardItem as an abstraction layer.

Note that custom UTls do not need to be exported (using 1nfo.plist) unless they are to be used by other applications. If they are exported, they must

conform to public.data.

For the More Curious: Lazy Copying

An application can implement copying to a pasteboard in a lazy manner. For example, imagine a graphics application that copies large images to the
pasteboard in several formats: PNG, TIFF, PDF, and so on. You can imagine that copying all these formats onto the pasteboard would be hard on the
application and the pasteboard server. Instead, such an application might do a lazy copy. That is, the application will declare all the types that it could put
on the pasteboard but will put off copying the data until another application asks for it.

Essentially, the application puts an “IOU” (instead of the data) on the pasteboard and gives an object that will provide the data when they are needed.
When another application actually asks for the data, the pasteboard server calls back for the data.

You will use an NsPasteboardItem t0 create this IOU object:

NSPasteboard *pboard = [NSPasteboard generalPasteboard];
[pboard clearContents];

NSPasteboardItem *item = [[NSPasteboardItem alloc] init];
[item setDataProvider:self forTypes:...];

[pboard writeObjects: [NSArray arrayWithObject:item]];
Then implement pasteboard:item:provideDataForType::

- (void)pasteboard: (NSPasteboard *)pasteboard
item: (NSPasteboardItem *)item
provideDataForType: (NSString *)type

{
[item setData:... forType:typel];

}

When another application needs the data, this method will be called. At that point, the application must copy the data it promised to the supplied
pasteboard item.

As you can imagine, a problem would arise if the pasteboard server asked for the data after the application had terminated. When the application is
terminating, if it has an “lOU” currently on the pasteboard, it will be asked to supply all the data promised before terminating. Thus, it is not uncommon for
an “lOU” data provider to be sent pasteboard:item:provideDataForType: Several times while the application is in the process of terminating.

The trickiest part of a lazy copy is that when the user copies data to the pasteboard and later pastes it into another application, he or she doesn’t want the
most recent state of the data. Rather, the user wants it the way it was when he or she copied it. When implementing a lazy copy, most developers will take
some sort of a snapshot of the information when declaring the types. When providing the data, the developer will copy the snapshot, instead of the current
state, onto the pasteboard.

Of course, when the user does a copy somewhere else, your object will no longer be responsible for keeping the snapshot.

- (void)pasteboardFinishedWithDataProvider: (NSPasteboard *)sender;

If you implement this method, it will be called when you are no longer responsible for keeping the snapshot.

Challenge 1

You are putting the string onto the pasteboard. Create the PDF for the view and put that on the pasteboard, too. Now you will be able to copy the image of
the letter into graphics programs. Test it using Preview's New from Clipboard menu item. (Don't break the string copy and paste: Put both the string and
the PDF onto the pasteboard.) Hint: You will need to create an NsPasteboardItem.

Challenge 2

In the raiseman project, add a menu item that triggers the removeEmployee: method in RMDocument.

Chap

Although the engineers at Apple are very wise, one day you will think, “Golly, if only they had put that method on that class, my life would be so much
easier.” When this happens, you will want to create a cafegory. A category is simply a collection of methods that you would like added to an existing
class. The category concept is very useful, and it is surprising that so few object-oriented languages include this powerful idea.

Creating categories is easier than talking about them. In the previous chapter, you added pasting capabilities to your BigLetterview. Note, however, that

if the string on the pasteboard has more than one letter, the paste attempt will fail because BigLetterview is capable of displaying only one letter at a
time. Let’'s extend the example to take just the first letter of the string instead of failing.
Add a Method to NSString

It would be nice if every nsstring object had a method that returned its first letter. It does not, so you will use a category to add it.

Open the
NSString.

ter 22. Categories

TypingTutor project and create a new file of type Objective-C category. In the Category field enter rirstretter, and for Category on enter
Two files will be created: Nsstring+FirstLetter.mand NSString+FirstLetter.h. EditNsString+FirstLetter.n to look like this:

#import <Foundation/Foundation.h>

@interface NSString (FirstLetter)

-(NS

String *)bnr_firstLetter;

@end

You appear to be declaring the class nsstring, but you are not giving it any instance variables or a superclass. Instead, you are naming the category
FirstLetter and declaring a method. A category cannot add instance variables to the class, only methods.

Now implement the method bnr_firstLetter inthe file NSString+ FirstLetter.m. Make the file look like this:

#import "NSString+FirstLetter.h"

@implementation NSString (FirstLetter)

- (NSString *)bnr_firstLetter

}

@end
Now you ¢

- (B
{

}

if ([self length] < 2) {
return self;
}

NSRanger;

r.location = 0;

rlength =1;

return [self substringWithRange:r];

an use this method as if it were part of Nsstring. INBig Letterview.m, change readFromPasteboard: to look like this:

OOL) readFromPasteboard: (NSPasteboard *)pb

NSArray *classes [NSArray arrayWithObject: NSString class]];

NSArray *objects = [pb readObjectsForClasses:classes
options:nil];

if ([objects count] > 0)

// Read the string from the pasteboard
NSString *value = [objects objectAtIndex:0];

[self setString:[value bnr_firstLetter]];
return YES;

}

return NO;

At the beginning of BiglLetterview.m, import the header:

#import "NSString+FirstLetter.h"

Build and run your application. You will be able to copy strings with more than one letter into Bigretterview. Only the first letter of the string will be copied.

In this example, you added only one method, but note that you can add as many methods to the class as you wish. Also, you used only the methods of the
class here, but you can also access the class’s instance variables directly.

Notice that | added a prefix “bnr_" to the method name in my category. | would like to just name the method firstretter. But, what if Apple adds a
firstLetter Method to Nsstring in Mac OS X 10.9? There would be a conflict. For safety, | added the prefix. Also, note the file naming convention:
ClassName+CategoryName.h. Stylish Objective-C developers name their category files in this fashion to clearly indicate the class and category names.
The purpose of Nsstring+FirstLetter.h iS much more apparentthan rirstLetter.h.

Cocoa itself has many categories. For example, Nsattributedstring is part of the Foundation framework. However, NsattributedString’s drawInRect:
method is part of a category from the AppKit framework. As a result, the documention for the methods on Nsattributedstring are distributed between
the two frameworks. There are also separate header files for Nsattributedstring and its categories, which tends to cause some confusion.

For the More Curious: Declaring Private Methods

Often, you will have in your .m file methods defined that you do not want to advertise by declaring them in your . file. These are known as private
methods.

If you call a private method before you declare or define it, you will get a warning from the compiler. One common technique to prevent these warnings is
to declare the private methods in a category at the beginning of the .n file:

#import "Megatron.h"

// Declare the private methods
@interface Megatron ()

- (void)blowTheLidOff;

- (void)putTheLidBackOn;

@end

@implementation Megatron

..actually implement all the private and public methods...

@end

Chapter 23. Drag-and-Drop

Drag-and-drop is little more than a flashy copy-and-paste operation. When the drag starts, some data is copied onto the dragging pasteboard. When the
drop occurs, the data is read off the dragging pasteboard. The only thing that makes this technique trickier than copy-and-paste is that users need
feedback: an image that appears as they drag, a view that becomes highlighted when they drag into it, and maybe a big gulping sound when they drop
the image.

Several things can happen when data is dragged from one application to another: nothing may happen, a copy of the data may be created, or a link to the
existing data may be created. Constants represent these operations:

NSDragOperationNone
NSDragOperationCopy
NSDragOperationLink

There are several other operations that you see less frequently:

NSDragOperationGeneric
NSDragOperationPrivate
NSDragOperationMove
NSDragOperationDelete
NSDragOperationEvery

Both the source and the destination must agree on the operation that will occur when the user drops the image.
When you add drag-and-drop to a view, there are two distinct parts of the change:

1. Make it a drag source.

2. Make it a drag destination.

Let's take these steps separately. First, you will make your view a drag source. When that is working, you will make it a drag destination.

Make BigLetterView a Drag Source

When you finish this section, you will be able to drag a letter off the BigLetterview and drop it into any text editor. It will look like Figure 23.1.

Figure 23.1. Completed Application

aMNe TypingTutor

To be a drag source, your view must implement draggingSourceOperationMaskForLocal:. This method declares what operations the view is willing to
participate in as a source. Add the following method to BigLetterview.m:

- (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)isLocal
{
return NSDragOperationCopy;

}

This method is automatically called twice: once with ist.ocal as vEs, which determines what operations it is willing to participate in for destinations within
your application; and a second time, with istocal as o, which determines what operations it is willing to participate in for destinations in other
applications.

Starting a Drag

To start a drag operation, you will use a method on Nsview:

- (void)dragImage: (NSImage *)anImage
at: (NSPoint) imagelLoc
offset: (NSSize)mouseOffset
event: (NSEvent *)theEvent
pasteboard: (NSPasteboard *)pboard
source: (id) sourceObject
slideBack: (BOOL) slideBack

You will supply the method with the image to be dragged and the point at which you want the drag to begin. The event supplied should be the mousepown
event. The offset is completely ignored. The pasteboard is usually the standard drag pasteboard. If the drop does not occur, you can choose whether the
icon should slide back to the place from which it came.

Add aninstance variable to BigLetterview.h to hold the mousepown event:
NSEvent *mouseDownEvent;

INBigLetterview.m, define mouseDown: and put the event into that instance variable:
- (void)mouseDown:(NSEvent *)event

mouseDownEvent = event;

}

You will also need to create animage to drag. You can draw on an image just as you can on a view. To make the drawing appear on the image instead of
on the screen, you must first lock focus on the image. When the drawing is complete, you must unlock the focus.

Here is the whole method to add to BigLetterview.m:
- (void)mouseDragged:(NSEvent *)event

{

NSPoint down = [mouseDownEvent locationinWindow];
NSPoint drag = [event locationinWindow];
float distance = hypot(down.x - drag.x, down.y - drag.y);
if (distance < 3) {

return;
}

I Is the string of zero length?

if ([string length] == 0) {
return;

}

Il Get the size of the string
NSSize s = [string sizeWithAttributes:attributes];

Il Create the image that will be dragged
NSImage *anlmage = [[NSImage alloc] initWithSize:s];

Il Create a rect in which you will draw the letter
Il in the image

NSRect imageBounds;

imageBounds.origin = NSZeroPoint;
imageBounds.size = s;

// Draw the letter on the image

[anlmage lockFocus];

[self drawStringCenteredin:imageBounds];
[anlmage unlockFocus];

Il Get the location of the mouseDown event
NSPoint p = [self convertPoint:down fromView:nil];

I/l Drag from the center of the image
p-X = p.x - s.width/2;
p.y = p.y - s.height/2;

Il Get the pasteboard

NSPasteboard *pb = [NSPasteboard pasteboardWithName:NSDragPboard];

I/l Put the string on the pasteboard
[self writeToPasteboard:pb];

I/ Start the drag
[self dragimage:animage
at:p
offset:NSZeroSize
event:mouseDownEvent
pasteboard:pb
source:self
slideBack:YES];

}

That's it. Build and run the application. You should be able to drag a letter off the view and into any text editor. (Try dragging it into Xcode.)

After the Drop

When a drop occurs, the drag source will be notified if you implement the following method:

- (void)draggedImage: (NSImage *)image
endedAt: (NSPoint) screenPoint
operation: (NSDragOperation)operation;

For example, to make it possible to clear the BigrLetterview by dragging the letter to the trashcan in the dock, advertise your willingness in
draggingSourceOperationMaskForLocal:

- (NSDragOperation)draggingSourceOperationMaskForLocal: (BOOL)isLocal

{
return NSDragOperationCopy |NSDragOperationDelete;

}
Then implement draggedImage:endedAt:operation:

- (void)draggedimage:(NSimage *)image
endedAt:(NSPoint)screenPoint
operation:(NSDragOperation)operation

if (operation == NSDragOperationDelete) {
[self setString:@""];
}
}

Build and run the application. Drag a letter into the trashcan. It should disappear from the view.

Make BigLetterView a Drag Destination

There are several parts to being a drag destination. First, you need to declare your view a destination for the dragging of certain types. Nsview has a
method for this purpose:

- (void)registerForDraggedTypes: (NSArray *)pboardTypes

You typically call this method in your initwithFrame: method.

Then you need to implement six methods. (Yes, six!) All six methods have the same argument: an object that conforms to the NsbraggingInfo protocol.
That object has the dragging pasteboard. The six methods are invoked as follows:

1. As the image is dragged into the destination, the destination is sent a draggingEntered: message. Often, the destination view updates its
appearance. For example, it might highlight itself.

2. While the image remains within the destination, a series of draggingUpdated: messages are sent. Implementing draggingUpdated: is optional.
3. Ifthe image is dragged outside the destination, draggingExited: is sent.

4. If the image is released on the destination, either it slides back to its source (and breaks the sequence) or a prepareForbragoperation: message
is sent to the destination, depending on the value returned by the most recent invocation of draggingEntered: (Or draggingUpdated: if the view
implemented it).

5. If the prepareForDragoperation: message returns ves, then a performbragoperation: message is sent. This is typically where the application
reads data off the pasteboard.

6. Finally, if performbragoperation: returned ves, concludeDragOperation: is sent. The appearance may change. This is where you might generate
the big gulping sound that implies a successful drop.

registerForDraggedTypes:

Add a call to registerForDraggedTypes: to the initwithFrame: method in BigLetterView.m:

- (id)initWithFrame: (NSRect) rect
{

self = [super initWithFrame:rect];
i1f (self) {
NSLog (@"initializing view");
[self prepareAttributes];
bgColor = [NSColor yellowColor];
string = @"";
[self registerForDraggedTypes:
[NSArray arrayWithObject:NSPasteboardTypeString]];

}

return self;

Add Highlighting

To signal the user that the drop is acceptable, your view will highlight itself. Add a high1ighted instance variable to Bigretterview.n:

@interface BigLetterView : NSView

{
NSColor *bgColor;
NSString *string;
NSMutableDictionary *attributes;
NSEvent *mouseDownEvent;
BOOL highlighted;

}

Now you are going to add highlighting to drawrect:. The class NsGradient makes it easy to draw with gradients. In this case, you are going to draw a
radial gradient: white in the center and fading into the ngcolor.

- (void)drawRect: (NSRect) rect

{
NSRect bounds = [self bounds];

/l Draw gradient background if highlighted
if (highlighted) {
NSGradient *gr;
gr = [[NSGradient alloc] initWithStartingColor:[NSColor whiteColor]
endingColor:bgColor];
[gr drawInRect:bounds relativeCenterPosition:NSZeroPoint];
}else {
[bgColor set];
[NSBezierPath fillRect:bounds];

}

[self drawStringCenteredIn:bounds];

Implement the Dragging Destination Methods

So far, we have seen two ways to declare a pointer to an object. If the pointer can refer to any type of object, we would declare it like this:
id foo;

If the pointer should refer to an instance of a particular class, we can declare it like this:
MyClass *foo;

A third possibility also exists. If we have a pointer that should refer to an object that conforms to a particular protocol, we can declare it like this:
id <MyProtocol> foo;

NSDraggingInfo iS a protocol, not a class. All the dragging destination methods expect an object that conforms to the NsbraggingInfo protocol.

Add the following methods to BigLetterview.m:
#pragma mark Dragging Destination

- (NSDragOperation)draggingEntered:(id <NSDragginginfo>)sender

NSLog(@"draggingEntered:");

if ([sender draggingSource] == self) {
return NSDragOperationNone;

}

highlighted = YES;
[self setNeedsDisplay:YES];
return NSDragOperationCopy;

}

- (void)draggingExited: (id <NSDragginginfo>)sender
NSLog(@"draggingExited:");
highlighted = NO;

[self setNeedsDisplay:YES];
}

- (BOOL)prepareForDragOperation:(id <NSDragginginfo>)sender
{

return YES;
}

- (BOOL)performDragOperation:(id <NSDraggingInfo>)sender

NSPasteboard *pb = [sender draggingPasteboard];

if([self readFromPasteboard: pb]) {
NSLog(@"Error: Could not read from dragging pasteboard");
return NO;

}
return YES;
}

- (void)concludeDragOperation:(id <NSDragginginfo>)sender
NSLog(@"concludeDragOperation:");
highlighted = NO;
[self setNeedsDisplay:YES];

}

Add a Second BigLetterView

OpenMainMenu.xib and add another Bigretterview to the window. Delete the text fields. Make sure to set the nextkeyview for each BigLetterview SO
that you can tab between them (Figure 23.2).

Figure 23.2. Set nextKeyView for Each BigLetterView

anA TypingTutor

(=] Big Leiter View
¥ Outlets
menu
nexieyiew T
Accessibility e !
ink O B =y
e L3
Referencing Outlets
IndtialFirsRespander & Window - Typin_._

New Referencing Outlet

Received Actions

COpY:

out:

paste:

priee)
sawePOF - ® Mooy em - Sav. |

Accessibility References 1
2 o 13 Lettar View |

Build and run the application. Note that you can drag characters between the views and from other applications.

For the More Curious: Operation Mask

For some apps, the negotiations of what operation will occur when the user drops can be quite complicated. After all, the source advertises its willingness
to participate in some kinds of operations through draggingsourceoOperationMaskForLocal:. The user may also indicate preferences by holding down

the Control, Option, or Command key. It is the job of the destination to determine what happens.

The dragging info object will do most of the work for you. It will get the source’s advertised operation mask and filter it, depending on what modifier keys
the user holds down. To see this, implement draggingupdated: and log out the dragging info’s operation mask:

- (NSDragOperation)draggingUpdated:(id <NSDragginginfo>)sender
{

NSDragOperation op = [sender draggingSourceOperationMask];
NSLog(@"operation mask = %Id", op);
if ([sender draggingSource] == self) {

return NSDragOperationNone;

}
return NSDragOperationCopy;
}

Now build and run the application. Try dragging text from different sources and holding down different modifier keys. Note what happens to the mask and
the cursor.

Chapter 24. NSTimer

An instance of NsButton has a target and a selector (the action). When the button is clicked, the action message is sent to the target. Timers work in a
similar way. A timer is an object that has a target, a selector, and a delay, which is given in seconds (Figure 24.1). After the delay, the selector message
is sent to the target. The timer sends itself as an argument to the message. The timer can also be set to send the message repeatedly.

Figure 24.1. NSTimer

After a delay, the time sends its
action message to its target.

NSTimer
timelnterval=0.1)
action=doSomething: [~~~ ----._doSomething:
repeats=YES
Q R T
MyObject
- doSomething:

To play with timers a bit, you will create a typing tutor application. The application will have two BigLetterview Objects. One will display what the user
should type, and the other will display what the user has typed (Eigure 24.2). An NsProgressIndicator Will display how much time is left. After 2 seconds,
the application will beep to indicate that the user took too long. Then the user is given 2 more seconds.

Figure 24.2. Completed Application

AMNe TypingTutor

Type Here Match This

| f

[G |

You will create a Tutorcontroller class. When the user clicks the Go button, an instance of NsTimer will be created. The timer will send a message every
0.1 second. The method triggered will check whether the two views match. If so, the user is given a new letter to type. Otherwise, the progress indicator is
updated to reflect the elapsed time. If the user clicks the stop button, the timer is invalidated. Figure 24.3 shows the object diagram.

Figure 24.3. Object Diagram

NSProgressindicator

NSTimer
e —— - salDoublaValue:
acsonmehackThem: TutorControlier p'_cgmsr.\.'inw
repeats=YES [target ~—u| startTime: NSTimelnterval = BigLetterView
NSButton - AP . E:Tr;;awqﬁ cutlattarview
action=stopGo x\““-- BigLetterView
string: NSSaing

Go back to your TypingTutor project in Xcode. Create a new Objective-C class called Tutorcontroller. In Tutorcontroller.h, give it two outlets and an
action. You will also need a timer, an array for the letters, the index of the last letter displayed, and three time intervals that will help track how long the
current letter has been visible:

#import <Cocoa/Cocoa.h>
@class BigLetterView;

@interface TutorController : NSObject {
I/ Outlets
IBOutlet BigLetterView *inLetterView;
IBOutlet BigLetterView *outLetterView;

I/ Data
NSArray *letters;
int lastindex;

Il Time

NSTimelnterval startTime;
NSTimelnterval elapsedTime;
NSTimelnterval timeLimit;
NSTimer *timer;

}

- (IBAction)stopGo:(id)sender;
- (void)updateElapsedTime;

- (void)resetElapsedTime;

- (void)showAnotherLetter;
@end

Lay Out the Interface

OpenMainMenu.xib. Create an instance of Tutorcontroller by dragging an Object into the editor (from under Cocoa -> Objects & Controllers). Set the
class to be TutorcController (Eigure 24.4).

Figure 24.4. Create an Instance of TutorController

ane '
Y " A — . -
! = . (] uikd Succe 547 P | =l {
(») (m)[x | . Blo= (ool (T
Ram Moo cheme Beesipoety = Lono Vaw Drganiger
=4 = PyTypingTuee Tyog Tuti MasMen MariMer xib Eoglahl BTuxCotote |) B (W | & O 6 8
171 Macshaldein TypingTutor File Edit Format View Window H ¥ Custom El:srs_ R — m
Fie's s e — E]
@ st Resgmnder Luer Dwhaed Rurtiren AHrSuts
My hoplicason Kty Parn | Tyge e
& Ohjects s
T s Menu
e D ojeim
W Tywing Tuter App Desegate & Cujecns & Corrodiers e MELE
B Font Manage
Objact - Providen 58 birtants of da
WSCiRject sbolass that is. noi m
aailanie in Innetaoe Baiider
View Comiraller - & costraber hat
A 3 Wi, DBl laded
frare 3 ks i
Object Contraller - A Cacse .
bangirgs-oompatisle controder clank.
o mt mmisrn 4
Eia a

Click
expand dock

Add two labels (from Cocoa -> Controls) and place them above each of the Bigretterview instances. Set the left label to read Type Here and the right
label to Match This.

Drop an NsProgressIndicator onto the window. Use the Inspector to make it not indeterminate. Set its range to be 0 to 100 (Eigure 24.5).

Figure 24.5. Inspect the Progress Indicator

YRing Tulns L e -
B _ ' :
| _—
.a- i E - 2 =
L
. 2 Circulas Progress Indicator - Lets an
. — —— i uﬁwunm‘muﬁm
- 020000
[f) ks — T . | O, progress ol

Put a Rounded Textured Button onto the window. Using the Attributes Inspector, set its title to Go and its alternate title to Stop. Set its type to Toggle
and its state to Off (Eigure 24.6).

Figure 24.6. Inspect the Button

eS8 PO

Make Connections

Control-drag from the button to the Tutorcontroller object. Set the action to be stopco: (Figure 24.7).

Figure 24.7. Connect the Button to the TutorController

o8 > 08

Open the Bindings Inspector of the Progress Indicator (Eigure 24.8). Bind Value to TutorController’s model key elapsedTime. Bind Max Value, also
on the Progress Indicator, to the tutor controller's timeLimit.

Figure 24.8. NSProgressindicator Bindings

[el B TypingTutor - MainMenu.xib
0™ Db [buid Succennd | Yesinduy s 54710 | moeioom &
Eaitor Wiew Crgarizer
=4+ | B3 TypingTuoer Twpi Main Main o m W B e I:miwﬁnﬂmnlmuuml 0D e B » £ 0|86 8

v vilge (Tutor Controler peif)
B & Bind 1o | Tuter Comrolier - m
‘ Type Here Match This Comrober Key
™

el TypingTutar

Mol Wy Parh

Walue Transfarmer
=
o Aliows Editiag Multiple Values Selection ¥ |
D & =]
Weowos 8 (52
mouke-Sown eve il and e n
BeTion mediage B b Eager abject m

Rounded Textured Button -
Inberiapts mawie -down eeents and
SERAL R S010A MESKIQEI0 1.

Testured Button - intercepts
_ meune-down paents and sesdy an
L) A SEikg 15 b LAGEE Sl

Ga

1\

C
14 ®
i

Control-click on the Tutorcontroller to display the Connection panel. Drag from inLetterView to the BigLetterview on the left. Drag from outLetterView
to the BigLetterview On the right (Eigure 24.9).

Figure 24.9. Connecting the outLetterView Outlet

;'.,':: B) T - = “Build Succesded | Yesterday a2 5:47 PR

. Eloe oQoff] =
it
Run Sica Scherme Breakpeinks ol Editor Wiew Orgasizer
m o4 b | B TypingTute: TyengTutoe |+ Maisbenu.wib [l MainMens xib Engtishi | Il Tutoe Corarelter DE B+ & 0(& 8
- Xals TypingTutor
Type Here Match This

D {} & =
R convnts :

MCURE-SOWn EVents Snd e
actice mesiage to b Erger ohject |

Raounded Testured Batton -
Interonpts mawie -down ewents and
SEAAE &R SONSA MEREAQETY .

e S —

meuse-dowen ventt and seed) an
A2t Aedids 05 & LATGEL Sbjbcl

Add Code to TutorController

Implement the following methods in Tutorcontroller.m:

#import "TutorController.h"
#import "BigLetterView.h"

@implementation TutorController
- (id)init

self = [super init];
if (self) {
Il Create an array of letters
letters = [NSArray arrayWithObjects:@"a", @"s",

@Ildll,@llfll, @lljll, @llkll, @IIIII’ @Il;ll, nil];
/I Seed the random number generator
srandom((unsigned)time(NULL));
timeLimit = 5.0;

return self;

}
- (void)awakeFromNib

[self showAnotherLetter];

}

- (void)resetElapsedTime

startTime = [NSDate timelntervalSinceReferenceDate];
[self updateElapsedTime];

}
- (void)updateElapsedTime

[self willChangeValueForKey:@"elapsedTime"];
elapsedTime = [NSDate timelntervalSinceReferenceDate] - startTime;
[self didChangeValueForKey:@"elapsedTime"];

}

- (void)showAnotherLetter

{

lIChoose random numbers until you get a different
/l number than last time
int x = lastindex;
while (x == lastindex){
x = (int)(random() % [letters count]);
}

lastindex = x;
[outLetterView setString:[letters objectAtindex:x]];

/I Start the count again
[self resetElapsedTime];

}

- (IBAction)stopGo:(id)sender
{

[self resetElapsedTime];

if (timer == nil) {
NSLog(@"Starting");

Il Create a timer
timer = [NSTimer scheduledTimerWithTimelnterval:0.1
target:self
selector:@selector(checkThem:)
userinfo:nil
repeats:YES];
}else {
NSLog(@"Stopping");

I/l Invalidate the timer
[timer invalidate];
timer = nil;

}

- (void)checkThem:(NSTimer *)aTimer

if ([[inLetterView string] isEqual:[outLetterView string]]) {
[self showAnotherlLetter];

}

[self updateElapsedTime];

if (elapsedTime >= timeLimit) {
NSBeep();
[self resetElapsedTime];

}

@end

Build and run your application.

Note, once again, that we have separated our classes into views (BigLetterview) and controllers (Tutorcontroller). If we were creating a full-featured

application, we would probably also create model classes, such as Lesson and student.

For the More Curious: NSRunLoop

NSRunLoop IS an object that waits. It waits for events to arrive and then forwards them to Nsapplication. It waits for timer events to arrive and then
forwards them to nsTimer. You can even attach a network socket to the run loop, and it will wait for data to arrive on that socket.

Challenge

Change your DrawingFun application so that autoscrolling is timer driven. Delete your mousebragged: method from stretchview. In mousebown:, Create a
repeating timer that invokes a method in the view every tenth of a second. In the invoked method, autoscroll using the current event. To get the current
event, Use NSApplication’S currentEvent method:

NSEvent *e = [NSApp currentEvent];

(Remember that nsapp is a global variable that points to the instance of Nsapplication.) Invalidate the timer inmouseup:. Note that the autoscrolling
becomes much smoother and more predictable.

Chapter 25. Sheets

A sheet is simply an Nswindow instance that is attached to another window. The sheet comes down over the window, and the window stops getting events
until the sheet is dismissed. Typically, you will compose a sheet as an off-screen window in your XIB file.

NSApplication has several methods that make sheets possible:

// Start a sheet
- (void)beginSheet: (NSWindow *)sheet
modalForWindow: (NSWindow *)docWindow
modalDelegate: (id)modalDelegate
didEndSelector: (SEL)didEndSelector
contextInfo: (void *)contextInfo;

// End the sheet
- (void)endSheet: (NSWindow *)sheet returnCode: (NSInteger)returnCode;

Besides the sheet window and the window to which it is attached, you supply a modal delegate, a selector, and a contextinfo pointer when you start the
sheet. The modalpelegate Will be sent the didEndselector, and the sheet, its return code, and the contextinfo will be sent as arguments. Thus, the
method triggered by the didendselector should have a signature like this:

- (void) rex: (NSWindow *)sheet
fido: (NSInteger) returnCode

rover: (void *)contextInfo;

The dog names are used here to indicate that you could name the method anything you wish. Most programmers name the method something more
meaningful, such as sheetDidEnd: returnCode: contextInfo:.

Adding a Sheet

You are going to add a sheet that will allow the user to adjust the speed of TypingTutor. You will bring up the sheet when the user selects the Adjust
speed... menu item. You will end the sheet when the user clicks the OK button. The final application will look like Figure 25.1.

Figure 25.1. Completed Application

NS TypingTutor

Type Her Time per letter:

o

1 second 10 seconds

f oK)

O

Go

Your Tutorcontroller Will control the slider and the window, so you will need to add outlets for them. Also, your Tutorcontroller Will be sent a message
when the user selects the Adjust speed... menu item or clicks the OK button, so you will need to add two action methods to the Tutorcontroller.

Figure 25.2 presents the object diagram.

Figure 25.2. Object Diagram

NSButton

action=endSpeadWindow:

TutorController

tanget

HNSMenultem timeLimit : NSTimelnterval

action = b target —| - raiseSpeedWindow: NSSlider

raiseSpeadWindow: - endSpeedWindow: [~ speedSlider ___
- sheetDidEnd:
retumCoda: [- inValug
contextinto: speedWindow

NSWindow

Add Outlets and Actions

Edit Tutorcontroller.h as follows:

#import <Cocoa/Cocoa.h>
@class BigLetterView;

@interface TutorController : NSObject

{
// Outlets
IBOutlet BigLetterView *inLetterView;
IBOutlet BigLetterView *outletterView;
IBOutlet NSWindow *speedSheet;

// Data
NSArray *letters;
int lastIndex;

// Time
NSTimeInterval startTime;
NSTimeInterval timelLimit;
NSTimeInterval elapsedTime;
NSTimer *timer;
}
- (IBAction)stopGo: (id) sender;
- (IBAction)showSpeedSheet:(id)sender;
- (IBAction)endSpeedSheet:(id)sender;

- (void)updateElapsedTime;
- (void) resetElapsedTime;
- (void) showAnotherLetter;

@end

Save the file.

Lay Out the Interface

Openwmainvenu.xib. Add a menu item to the main menu for your application by dragging it out of the Library (under Cocoa -> Windows & Menus)
(Figure 25.3).

Figure 25.3. Add a Menu ltem

Hide Others
Show All

| Quit TypingTuter 20

WEH

€

{ X X 2L

&

Change the title of the menu item to Adjust Speed.... Control-drag from the menu item to the Tutorcontroller. Set the action to be showspeedsheet:

(Eigure 25.4).

Figure 25.4. Connect the Menu Item

Create a new window by dragging one out of the nibrary (under Cocoa -> Windows & Menus) (Eigure 25.5). Disable resizing for the window. Uncheck
Visible at launch.

Figure 25.5. Inspect New Window

e

'YX Gl

8

Put a slider on the new window. To label the left end of the slider as “1 second” and the right end as “10 seconds,” drop two labels onto the window. Add a
third label above the slider to read Time per letter:.Add a button and change its title to OK. Inspect the slider and set its range to be 1 to 10 (Eigure
25.6).

Figure 25.6. Inspect Slider

Firashed running Typang Tutor
e s

& [y TypingTutor ; [Ty, 0 <M, 0~ Mo s WL BT View | R Hon:
o TypingTutor File Edit Format View Window Help

a

L8 | Mtk diwd fbili k5 W0di 88 4

|
1

|
I. Rounded Reet Button - intenepes | o
I

Bind the Value of the slider to the TutorController’s timeLimit as shown in Figure 25.7.

Figure 25.7. Bind the Slider’s Value to timeLimit

e — 3 TypingTutor - MalnMens xio

Fimished running Typang Tutar

W nisan

Ty M. M Wi | K= View = Horizon Tick oo Sider q CEER)
|1’\‘mtﬂm£nnmwmuun
iEwlo | Tutar Cantraller 3

| Comtroder Key

]

| Model Key Path

I._'_,W_Mjl
() o et s e am acot b

meLsage 10 3 tanget obyect when

Gradient Buttan - Ineroes
b e-down events 4nd Mnds an
action message ba a langet object..

k|

Rounded Rect Button - Intercapts s |

_ | moute-dows evestiand sndsan |
Atinn st ate e b darnat ahises

@ &

When the user clicks the OK button, it should send to the Tutorcontroller a message that will end the sheet. Control-drag from the button to the
TutorController and choose endspeedsheet: as the action (Eigure 25.8).

Figure 25.8. Set the Target of the Button

1 TypingTutar - Mainkdenu.xd

Tmished running Trsing Tuter

W linriznecal Tick Beor
W SrabcTest - & wecond
b W Tt - Time pe
b W SunCTes - 15 sevends

To raise the window as a sheet, your TutorController must have a pointer to it. Control-click on the Tutorcontroller to get the Connection panel.
Connect the speedsheet outlet to the window (Figure 25.9).

Figure 25.9. Connect speedSheet Outlet

imor - MalnMeny xib

(») (m) i = = [Fimished running TypingTutor 1 Elos= ooao =

Run tuop Scheme Breakpoints A Inbuts Editor Wiew Oeganizer
=4+ B TriegTuter TypingTusor o+ [MasmMenu i [MainMenuxib Englisky + I8 Tuter Corralier
(3 Maceholders TypingTutor File Edit Format View Window Help

File's Owmes
W) Farst Responder

Tutor Controlier Speed Shees
= BglmerView per letter:
® Bglotter View ‘
¥ Raferancing Outlets —
i Rl reuieg Outet ol 10 seconds
¥ Recerved Actions = [
eraipredioeet L
sosperaes = o (S
wisplie . F
¥ Referencing Bindirgs
elapredTime = & Window - Speed Sheat

Add Code

When the user chooses the Adjust Speed... menu item, the sheet will run. Add the following method to Tutorcontroller.m:
- (IBAction)showSpeedSheet:(id)sender

[NSApp beginSheet:speedSheet
modalForWindow:[inLetterView window]
modalDelegate:nil
didEndSelector:NULL
contextinfo:NULL];

}

Note that you are attaching the sheet to the window that the intetterview is on. Also, when the sheet is dismissed, you are choosing not to get any sort of
callback.

The sheet will end when the user clicks the OK button. Add the following method to Tutorcontroller.m:

- (IBAction)endSpeedSheet:(id)sender
{

/l Return to normal event handling
[NSApp endSheet:speedSheet];

/I Hide the sheet
[speedSheet orderOut:sender];

}

Build and run your application. Bring up the sheet, adjust the speed, and dismiss the sheet.

For the More Curious: contextinfo

The contextInfo parameter is a pointer to some data. You can supply this parameter when you start the sheet, and the delegate will get the pointer when
you end the sheet. For example, here the developer has started a sheet and inserted a phone number for the context info:

NSString *phoneNumber = ...;
void *voidNumber = (_ bridge retained void *)phoneNumber;
[NSApp beginSheet:aWindow
modalForWindow: someOtherWindow
modalDelegate:self
didEndSelector:@selector (didEnd:returnCode:phone:)
contextInfo:voidPhone];

Later, in the didEnd: returncode: phone: method, the phone number will be supplied as the third argument:

- (void)didEnd: (NSWindow *)sheet
returnCode: (NSInteger)returnCode
phone: (void *)voidPhone

NSString *phoneNumber = (bridge transfer NSString *)voidPhone;
NSLog (@"sheetDidEnd: Phone number = %$@", phoneNumber) ;
}

Note also that the context info and the nsNotification's userinfo dictionary serve similar purposes.

You probably noticed that we had to do some rather unsightly casting to turn the nsstring * type into a voia *. The reason it that ARC requires hints from
the developer so that it knows how to account for the object reference. In this case, bridge retained instructs ARC that it should retain phoneNumper,
Ieaving itat +1 as beginSheet:modalForWindow:modalDelegate:didEndSelector: contextInfo: is called. In didEnd:returnCode:phone:, ownership of
the phoneNumber reference is being transferred to the local phonenumber variable by using the pridge transfer cast. The object is then released once
the local variable phoneNumber goes out of scope.

Before ARC, it was not uncommon when using manual reference counting to see an object pointer cast to void *; the developer was responsible for
ensuring that the object was retained and released appropriately. Expect to see APIs like this one revised in the future.

For the More Curious: Modal Windows

When a sheet is active, the user is prevented from sending events to the window to which it is attached. When an Alert panel is run, it is a modal window
—that s, the user is prevented from sending events to any other window.

To make a window modal, use the following method of nsapp:

- (NSInteger)runModalForWindow: (NSWindow *)aWindow

This method will block, and only events destined for awindow will be processed; clicking on the menu and other windows will do nothing. When you are
ready to make the awindow nonmodal, send this message to the Nsapplication Object:

- (void) stopModalWithCode: (NSInteger)returnCode

At that point, runModalForwindow: Will end and return returncode.

Chapter 26. Creating NSFormatters

A formatter takes a string and makes another object, typically so that the user can type something that is more than just a string. For example, the
NSDateFormatter, When passed the string august 17, 1967, converts it into an Nspate object that represents the seventeenth day of August in the year

1967 (Figure 26.1).
Figure 26.1. NSDateFormatter

When the user types in a date...

NSTextField getObjectValue: forString: @ August 17, 1967
_ . _errorDescription:

-
-
=

L.
NSDateFormatter

When the text field is sent setObjectValue: ... _jhﬁﬂate
NSTextField SlringFOI‘Dbje{:lVaiue: Il Aug 17, 1967

NSDateFormatter]

Also, a formatter can take an object and create a string for the user to see. For example, imagine a text field that has an NspateFormatter. When the text
field is sent setobjectvalue: With an Nspate object, the date formatter will create a string that represents that date. The user will then see that string.

All formatters are subclasses of the NsFormatter class. Two of these subclasses come with Cocoa: NspateFormatter and NSNumberFormatter. YOU used
NSDateFormatter in Chapter 3 to format the lottery date and NsNumberFormatter in Chapter 8 to format the expected raise as a percentage.

The most basic formatter will implement two methods:
- (BOOL)getObjectValue: (id *)anObject
forString: (NSString *)aString

errorDescription: (NSString **)errorPtr

This message is sent by the control (such as a text field) to the formatter when it has to convert astring into an object; astring is the string that the
user typed in. The formatter can return ves and set anobject to point to the new object. A return of no indicates that the string could not be converted,
and the errorptr is set to indicate what went wrong. Note that errorptr is a pointer to a pointer, as is anobject. That is, it is a location where you
can put a pointer to the string.

- (NSString *)stringForObjectValue: (id)anObject

This message is sent by the control to the formatter when it has to convert anobject into a string. The control will display the string that is returned for

the user (Eigure 26.2).
Figure 26.2. NSFormatter

Formatters convert strings to other object types ...

NSString | NSDateFormatter | | _NSCalendarDate
| |calendarFormat= & “Y%b %d, %Y"
@"yesterday” allowsNaturalLanguage=YES 34937943244

... and other object types to strings
NSString ! NSDateFormatter NSCalendarDate

| calendarFormat = & "“Sab %6d, %Y
@°Aug 17, 1967" | allowsNaturalLanguage=YES 235955929

Often the object that is created from the string is also a string. For example, you might have a TelephoneNumberFormatter that properly inserts the
parentheses and dashes into a telephone number.

A Basic Formatter
In this chapter, you will write your own formatter class. You will create a formatter that allows the user to type in the name of a color, and the formatter will in

turn create the appropriate Nsco1lor object. Then you will set the background of the BigrLetterview with that color object. Figure 26.3 shows what the
application will look like when you are done.

Figure 26.3. Completed Application

Match This

| | | cyan|]

Create ColorFormatter.h

Open the TypingTutor project in Xcode and create a new Objective-C class that is a subclass of NSFormatter. Name it colorFormatter.

IncolorFormatter.h, add aninstance variable:
#import <Foundation/Foundation.h>

@interface ColorFormatter : NSFormatter
NSColorList -colorList;

}

@end

Save the file.

Edit the XIB File

OpenMainMenu.xib. Drop a color well and a text field onto the window (Eigure 26.4).

Figure 26.4. Add Color Well and Text Field

Match This

BigLetterView BigLetterView

T :

Bind the value of the color well to the Tutorcontroller’s inLetterview.bgColor (Figure 26.5).

Figure 26.5. Bind Value of Color Well to bgColor of inLetterView

BigletierView

. Secure Teat Field -
wases hww»:mﬂlﬂl

Teewt Wi with Nuriser

|l.2 Formatter - Dispiays nambers
’hhna—mum-ﬂu =

T = = P

Bind the value of the text field to the same key path (Eigure 26.6).
Figure 26.6. Bind Value of Text Field to bgColor of inLetterView

. Secure Text Field - Hides next
wasas | from displey o other access wia the
| e imtertace.

o Text Fiakd with Mursber
1234 Formater - Drplays nambers that -
] e user can select or et and that...

Oe®:=" >0

0, e d“

Drop an nsobject in the editor. Set its class to be colorFormatter (Eigure 26.7).

Figure 26.7. Create an Instance of ColorFormatter

ans £ TwpingTutor - MainMenu.xib =
g - = - vt 9 e .
k‘!l () - [Build TypingTutor: Swoceeded | Today at 3:15 PM | . 11l m =l
“Rur fop Scheme Breakpoints: fRinpeun -Editor Wiew Oeganzer
= 4 b [P TypiegTune TypingTutor - Mainklen KasMesu xib [Englisky -l Color Fomunerl D BBRw = e & B8
5} Macahold T Custom Cliss
[T Placehodders
rr Class | Ceforloemater 1 | m
rroer- R RS S S SRS S PRESR G o -
B Frst Resmonder + User Definad Runtima Aitributes
A Applicatan Key Path Tyoe Waiue
% Objects
T Main Meny :
=2 Window - TypingTutor la]
b = Window - Spaed Sheer oD & =
::WT Tutor App Gelegate [l Obsec Litwary =i
ont Manager .
B Turee Comroiier Qibsjecy - Prowides an isnance of an
MEObjeet vubelans thas is men
. F avallasie i Interface Ballder.
: Dot Contradler - & Coosa
Berﬂ“-Ctﬂmh’.lH controler (i
Properties of the comess object of
Masaged Objoct Comtext - A 4
Ingrarde of NEMAsaprdObjeciContext
Pnnadiens & siacala SaIAs, st
@i 2, abject

Control-click on the text field to bring up its Connection panel. Set the formatter outlet to point to the colorFormatter object (Figure 26.8).

Figure 26.8. Set the Text Field’s Formatter Outlet

. E:.: 4 > &T\'umgfut.nr TypingTutor I-ie;nMenu.xib -n Ma:n—Mmu.mb. l-Eani.sh.r. BE W’undm\- = TvnmgTLl-mr [H]

T Placeholders

File's Owiner
@ First Responder
ol Application
& Obiects (] - TextField
W B TS VTEW L
debegaie
BZ Big Letter View kir
" SuaticText - Type Here menu
" StaticText - Match This | | neciieyView
B= Horizontal Progress 1. ¥ Sent Actions
¥ Round Textured Button SN
¥ Bindi
 Color Well b o

By s
s= Window - 5peed Sheet L
B Typing Tutor App Dcltgai_q,f"'-.
B Font Manager _)_,--"' |
B Tutor Controlier™ 4 ¥ Referencing Outlets

T Mew Referencing Outiet
(Wcsoraganer) - [Epssipistam

@@ Ic

NSColorList

For this exercise, you will use anNscolorList, a dictionary of color objects that maps a name to an instance of Nsco1or oObjects. Several color lists come
standard with Mac OS X. In particular, the color list named “Apple” includes many of the standard colors, such as “Purple” and “Yellow.”

NSColorList iS not a particularly useful class, but it makes this exercise very elegant. We will not spend much time discussing it.

Searching Strings for Substrings

When you have a string dakakookookakoo and are searching through it for a shorter string, such as xa, the result will be an nsrange. The 1ocation is the
first letter of the matching substring in the longer string. The 1ength is the length of the substring.

Of course, there are a couple of options that you might want to set. For example, you might want to do a case-insensitive search. Or you might want to do
a backward search (from the end of the string instead of the beginning). To search backward for the string k2 in abbakachakaza in a case-insensitive
manner, you would use the following code:

NSRange aRange;
NSString *big = @"abbakachakazazzz";
NSString *small = @"KA";
aRange = [big rangeOfString:small
options: (NSCaseInsensitiveSearch | NSBackwardsSearch)];

After this code executes, arange.location wWould be 9, and arange.length would be 2.

If the substring is not found, the length will be 0.

Implement the Basic Formatter Methods

Edit colorFormatter.mto look like this:
#import "ColorFormatter.h"

@interface ColorFormatter ()
- (NSString *)firstColorKeyForPartialString: (NSString *)string;

@end

@implementation ColorFormatter
- (id)init

self = [super init];
if (self) {

colorList = [NSColorList colorListNamed:@"Apple"];
}

return self;

}
- (NSString *)firstColorKeyForPartialString: (NSString *)string
{

I'ls the key zero-length?

if ([string length] == 0) {
return nil;

}

Il Loop through the color list
for (NSString *key in [colorList allKeys]) {
NSRange whereFound = [key rangeOfString:string

options:NSCaselnsensitiveSearch];

/I Does the string match the beginning of the color name?

if (WhereFound.location == 0) && (whereFound.length > 0)) {
return key;

}

/I If no match is found, return nil
return nil;

}
- (NSString *)stringForObjectValue:(id)obj

I/ Not a color?

if (![obj isKindOfClass:[NSColor class]]) {
return nil;

}

I/l Convert to an RGB Color Space
NSColor *color;

color =[obj colorUsingColorSpaceName:NSCalibratedRGBColorSpace];

/I Get components as floats between 0 and 1
CGFloat red, green, blue;
[color getRed: &red
green:&green
blue:&blue
alpha:NULL]J;

I Initialize the distance to something large
float minDistance = 3.0;
NSString *closestKey = nil;

Il Find the closest color
for (NSString *key in [colorList allKeys]) {
NSColor *c =[colorList colorWithKey:key];
CGFloatr, g, b;
[c getRed:&r
green:&g
blue:&b
alpha:NULL];

/l How far apart are 'color' and 'c'?
float dist;
dist = pow(red -r, 2) + pow(green -g, 2) + pow(blue - b, 2);

Il Is this the closest yet?
if (dist < minDistance) {
minDistance = dist;
closestKey = key;
}
}
I Return the name of the closest color
return closestKey;

}

- (BOOL)getObjectValue:(id *)obj
forString:(NSString *)string
errorDescription:(NSString **)errorString

/I Look up the color for 'string’
NSString *matchingKey = [self firstColorKeyForPartialString:string];
if (matchingKey) {

*obj = [colorList colorWithKey:matchingKey];

return YES;
}else {

Il Occasionally, 'errorString’ is NULL

if (errorString '= NULL) {

*errorString = [NSString stringWithFormat:
@" is not a color", string];

return NO;
}
}
@end

Build and run your application. You should be able to type in color names and see the background of the Bigretterview change accordingly. Also, if you
use the color well, you should see the name of the color change in the text field. Try typing in a string that is not a color.

The Delegate of the NSControl Class

Note that the bindings mechanism makes a nice Alert sheet when the formatting fails. The text field’s deiegate can also be informed of the failed
formatting. If the formatter decides that the string is invalid, the de1egate is sent the following error message:

- (BOOL)control: (NSControl *)control
didFailToFormatString: (NSString *)string
errorDescription: (NSString *)error

The delegate can override the opinion of the formatter. If it returns ves, the control displays the string as is. If it returns no, the delegate agrees with the
formatter: The string is invalid.

Implement the following method in Tutorcontroller.m:

- (BOOL)control:(NSControl *)control
didFailToFormatString: (NSString *)string
errorDescription:(NSString *)error

NSLog(@"TutorController told that formatting of % @ failed: % @",

string, error);
return NO;

}

Now open MainMenu. xib and make the TutorController the delegate Of the text field (Eigure 26.9).

Figure 26.9. Connect the Text Field’s delegate Outlet

71 Placehodd
e ar TypingTutor

File's Owener
@ First Responder

T g Match Thi
A, Application Ype Here atch This

& Objects

Main Mgy extFleld
== Window - TypingTutor

BE Miew
B2 B Leteer View
BZ Big Letber View
- SsaticTean - Type Here
W SaaticTaxt - Mateh This
BZ Morizonta! Progress Ind.
- R

wiured Bution
W Codor Well

- Accessibiity
s Winddw - Spedd Sheet 7 : ::
@ Troieg Toner Acp Deteowe 11 | Seferenciog Ousets
i Font Manager e M Belerincing Ot
() Ty Combr e) Ga Recaived Acticn
B Coles Focmatter serlsrmiiok:

prire
selerrTen
takeloukieValuel rom

Ej(Q,

Build and run your application. When validation fails, you will see a message on the console indicating what the string was and why it failed.

Checking Partial Strings

You might want to create a formatter that prevents the user from typing letters that are not part of a color name. To make the formatter check the string
after every keystroke, implement the following method:

- (BOOL)isPartialStringValid: (NSString *)partial
newEditingString: (NSString **)newString
errorDescription: (NSString **)errorString

Here partial is the string, including the last keystroke. If your formatter returns o, it indicates that the partial string is not acceptable. Also, if your
formatter returns o, it can supply the newstring and an errorstring. The newstring will appear in the control. The errorstring should give the user an
idea of what she or he did wrong. If your formatter returns ves, the newstring and the errorstring are ignored.

Add the foIIowing method to colorFormatter.m:

- (BOOL)isPartialStringValid:(NSString *)partial
newEditingString:(NSString **)newString
errorDescription:(NSString **)error

Il Zero-length strings are OK

if ([partial length] == 0}
return YES;

}

NSString *match = [self firstColorKeyForPartialString:partial];
if (match) {
return YES;
}else {
if (error) {
*error = @"No such color";
}

return NO;

}

Build and run your application. You will not be able to type in anything except the color names.

Notice something annoying about this app: You can’t see what color would be chosen until you tab out of the field. What you would like is a formatter that
does autocompletion. To enable autocompletion, you need to control the range of the selection as wel. Comment out the
isPartialStringValid:newEditingString:errorDescription: method and replace it with this method:

- (BOOL)isPartialStringValid:(NSString **)partial
proposedSelectedRange:(NSRange *)selPtr
originalString: (NSString *)origString
originalSelectedRange:(NSRange)origSel
errorDescription:(NSString **)error

Il Zero-length strings are fine
if ([*partial length] == 0) {
return YES;
}
NSString *match = [self firstColorKeyForPartialString:*partial];

/I No color match?

if (Imatch) {

return NO;
}
Il If this would not move the beginning of the selection, it
Il'is a delete
if (origSel.location == selPtr->location) {
return YES;
}

Il If the partial string is shorter than the
I/l match, provide the match and set the selection
if ([match length] != [*partial length]) {
selPtr->location = [*partial length];
selPtr->length = [match length] - selPtr->location;
*partial = match;
return NO;
}
return YES;

}

Build and run your application. Your formatter will now autocomplete color names as you type them.

Formatters That Return Attributed Strings

Sometimes, it is nice for the formatter to define not only the string that is to be displayed but also the attributes of that string. For example, a number
formatter might print the number in red if it is negative. For this purpose, you will use NsattributedString.

Your formatter can implement the following method:

- (NSAttributedString *)attributedStringForObjectValue: (id) anObj
withDefaultAttributes: (NSDictionary *)aDict

If the method exists, it will be called instead of stringForobjectvalue:. The dictionary that you are passed contains the default attributes for the view
where the data will be displayed. It is a good idea to merge the dictionary with your added attributes. For example, use the font from the text field where
the data will be displayed, but make the foreground color red to show that the profits are negative.

Implement the following method to display the name of the color in that color:

- (NSAttributedString *)attributedStringForObjectValue:(id)anObj
withDefaultAttributes:(NSDictionary *)attributes

{
NSString *match = [self stringForObjectValue:anObj];
if (Imatch) {
return nil;
}
NSMutableDictionary *attDict = [attributes mutableCopy];
[attDict setObject:anObj
forKey:NSForegroundColorAttributeName];
NSAttributedString *atString
= [[NSAttributedString alloc] initWithString:match
attributes:attDict];
return atString;
}

Build and run the application. Note that the text field will not change colors until it gives up first-responder status.

For the More Curious: NSValueTransformer

Bindings read values from objects. Sometimes, a value will need some massaging before it can be used. To fuffill this purpose, Apple created
NSValueTransformer. There is, for example, a negating value transformer that transforms ves into no, and ~o into vEs.

You can create your own NsvalueTransformer Subclasses and attach them to bindings in your application. Unlike formatters, value transformers are used
only by bindings.

Chapter 27. Printing

Code to handle printing is always relatively hard to write. Many factors are at play: pagination, margins, and page orientation (landscape versus portrait).
This chapter is designed to get you started on your journey toward the perfect printout.

Compared to most operating systems, Mac OS X makes writing print routines considerably easier. After all, your views already know how to generate
PDF, and Mac OS X knows how to print PDF. If you have a document-based application and a view that knows how to draw itself, you simply implement

printOperationWithSettings:error:. In this method, you create an Nsprintoperation Object, using a view, and return it. The code, in your Nsbocument
subclass, would look like this:

- (NSPrintOperation *)printOperationWithSettings: (NSDictionary *)ps
error: (NSError **)e;

NSPrintInfo *printInfo = [self printInfo];
NSPrintOperation *printOp

= [NSPrintOperation printOperationWithView:aView

printInfo:printInfo];
return printOp;

Dealing with Pagination

What about multiple pages? A view, after all, has only a single page. How will you get a view to print multiple-page documents? Off-screen, you will make

a huge view that can display all the pages of the document simultaneously (Eigure 27.1). The print system will ask the view how many pages it is
displaying and will ask the view where each page can be found in the view.

Figure 27.1. Each Page Is a Rectangle on the View

ipage ! 24
iPege 41+ page 5 1page 61

o o o b e Tl
e T ,lu----l._._l

Your view, then, must override two methods:

// How many pages?
- (BOOL) knowsPageRange: (NSRange *)rptr;

// Where is each page?
- (NSRect)rectForPage: (NSInteger)pageNum;

Instead of creating a huge view and returning a different rectangle for each page, you can note what page is being printed and always return the same
rectangle in rectForrage:. This is the technique you will be using in the exercise.

As an example, you will add printing to the RaiseMan application. You will print the name and expected raise for as many people as will fit on the paper
size that the user selected from the Print panel (Figure 27.2).

Figure 27.2. Completed Application

Q

5 MNext Zoom Miove Teut Select Annotate Sedebar Search
are

@ Harold Plainview : L Ageney,
1 Herbert Sterling o = T (]
£ Bethy Lrane Harold Plainview 1% i)
3 Roger Plainview Herbert Sterling 8% __ Remove
4 Roger Olsen | Betty Crane G Preview of “Untit
5 Lane Olsen Roger Plainview 19%
6 Roger Plainview Roger Olsen &%
7 Herbert Cooper Lane Olsen 11%
2 Joan H:}I.'I.Dwu:,r Roger Plainview 14%

: < Herbaert Coopar I®
9 Peggy Plﬂ'lr'l\.‘te‘ﬁ. Joan Holloway B
1@ Salvatore Sterling i o v
11 Betty Olsen] i 2
12 Peggy Harris 4.7%
13 Roger Draper 11.6%
14 Bert Holloway 3.2%
15 Aimee Olsen 2.3%
16 Bert Sterling 4.3%

Cangel Print sz

To do so, you will create a view that does the printing. Instead of making the view big enough to display all the people simultaneously, we will simply note
which page the system is printing and draw only the names on that page in drawRect :.

Create a class called peopleview thatis a subclass of Nsview. Make peopleview.h lOOK like this:

#import <Cocoa/Cocoa.h>

@interface PeopleView

}

NSView {
NSArray *people;
NSMutableDictionary *attributes;
float lineHeight;

NSRect pageRect;

NSinteger linesPerPage;

NSinteger currentPage;

- (id)initWithPeople:(NSArray *)array;
@end

In Peopleview.m, you willimplement the initwithPeople: method. This initializer will call NsView's initWithFrame

#import "PeopleView.h"
#import "Person.h"

@implementation PeopleView

- (id)initWithPeople:(NSArray *)persons

{

}

Il Call the superclass's designated initializer with some
Il dummy frame
self = [super initWithFrame:NSMakeRect(0, 0, 700, 700)];
if (self) {
people = [persons copy];
Il The attributes of the text to be printed
attributes = [[NSMutableDictionary alloc] init];
NSFont *font = [NSFont fontWithName: @"Monaco" size:12.0];
lineHeight = [font capHeight] * 1.7;
[attributes setObject:font
forKey:NSFontAttributeName];
}

return self;

#pragma mark Pagination
- (BOOL)knowsPageRange:(NSRange *)range

NSPrintOperation *po = [NSPrintOperation currentOperation];
NSPrintinfo *printinfo = [po printinfo];

Il Where can | draw?

pageRect = [printinfo imageablePageBounds];
NSRect newFrame;

newFrame.origin = NSZeroPoint;
newFrame.size = [printinfo paperSize];

[self setFrame:newFrame];

: method.

/ How many lines per page?
linesPerPage = pageRect.size.height / lineHeight;

I/l Pages are 1-based
range->location = 1;

Il How many pages will it take?

range->length = [people count] / linesPerPage;

if ([people count] % linesPerPage) {
range->length = range->length + 1;

}
return YES;
}
- (NSRect)rectForPage:(NSinteger)i
{
/I Note the current page
currentPage =i-1;
/I Return the same page rect everytime
return pageRect;
}

#pragma mark Drawing

/I The origin of the view is at the upper-left corner
- (BOOL)isFlipped
{

return YES;
}

- (void)drawRect: (NSRect)r
{
NSRect nameRect;
NSRect raiseRect;
raiseRect.size.height = nameRect.size.height = lineHeight;
nameRect.origin.x = pageRect.origin.x;
nameRect.size.width =200.0;
raiseRect.origin.x = NSMaxX(nameRect);
raiseRect.size.width =100.0;
NSinteger i;
for (i=0; i<linesPerPage; i++) {
NSinteger index = (currentPage * linesPerPage) +i;
if (index >= [people count]) {
break;
}

Person *p = [people objectAtindex:index];
/I Draw index and name
nameRect.origin.y = pageRect.origin.y + (i * lineHeight);
NSString *nameString = [NSString stringWithFormat:@"% 2d % @",
index, [p personName]];
[nameString drawInRect:nameRect withAttributes:attributes];

raiseRect.origin.y = nameRect.origin.y;
NSString *raiseString=[NSString stringWithFormat: @"%4.1f% %",
[p expectedRaise]];

[raiseString drawInRect:raiseRect withAttributes:attributes];

}

@end

The code in RMDocument .m is pretty simple. First, import peop1eview.n at the top:
#import PeopleView.h

Then implement printOperationWithSettings:error::

- (NSPrintOperation *)printOperationWithSettings:(NSDictionary *)ps
error:(NSError **)e;

PeopleView *view = [[PeopleView alloc] initWithPeople:employees];
NSPrintinfo *printinfo = [self printinfo];
NSPrintOperation *printOp
= [NSPrintOperation printOperationWithView:view
printinfo:printinfo];
return printOp;

}

In the MainMenu.xib file, note that the Print.. menu item isnii-targeted and that its action isprintDocument:, which will trigger
printOperationWithSettings:error:.

Build and run the application. Note that a setup of multiple pages per sheet (4-up, for example) works. Notice that you can change the paper size and
more or fewer people subsequently appear on each page.

For the More Curious: Are You Drawing to the Screen?

In an application, you will often want to draw things differently on screen than on the printer. For example, in a drawing program, the on-screen view might
show a grid on-screen but not when printed on paper.

In your drawrect: method, you can ask the current graphics context if it is currently drawing to the screen:

if ([[NSGraphicsContext currentContext] isDrawingToScreen]) {
...draw grid...
}

Challenge

Add page numbers to the printout.

Chapter 28. Web Services

Web services are getting a lot of hype. In the end, however, a Web service is just an HTTP request and response where each may be carrying XML data
(Figure 28.1). So using a Web service from Cocoa is simply a matter of being able to send HTTP requests and receive responses and it also may
require generating and parsing XML or JSON.

Figure 28.1. Your Average Web Service in Action

HTTP request = R
Your !_ ____________________________ .J Wab T
P e — f Server Database
: W HTTP response with XML L —

HTTP requests and responses are handled by NSURL, NSURLRequest, and NSURLConnection (Figure 28.2).

Figure 28.2. Classes for Making HTTP Requests

[NSURLRequest
- leache palicy | NSURL
| cache policy |
[NSURLConnection I—request—wéﬂmeout URL TG b ot ana
| hitpHeaders

Generating and parsing XML is typically done in one of two ways. The high-level method is to use NsxMLDocument and NsxMLNode. [f you have an Nspata
containing the following XML, NsxMLDocument Will parse it into a handy tree (Eigure 28.3):

<?xml version="1.0" encoding="UTF-8"7?>
<person>

<first>Larry</first>

<last>Furg</last>

</person>

Figure 28.3. Parsed XML Document

HSXMLMode
NSXMLOocument | _MEXMLMode: | chikdven: — ordeted]
| kind = Document i Wi amar [-'u"_]_' stingValue = “Larry"
— [NSXMLNode | narme = “first’ i
ehildren ————— | children
: | kind=Element -
. | name="parson NSXMLMode
- NSNS | e |t
kind = Element ———n] | -'lring\fuiue-- “Fury"
name = Tast” i =

Low-level XML parsing is done with NsxMLParser. As it parses Nspata containing XML, nsxuLrarser makes calls to its delegate as it encounters XML
elements and other structures. Low-level XML parsing is most appropriate when working with a large XML document or when memory resources are
limited, such as on iOS devices.

RanchForecast Project

It just so happens that the Big Nerd Ranch Web site has an XML feed of upcoming classes. In this exercise, you are going to write an application that
uses this Web service to show the upcoming classes at Big Nerd Ranch in a table view. The app will look like Figure 28.4.

Figure 28.4. Completed Application

aMNe RanchForecast

| Date Class Location |
Apr 2, 2011 Beginning Cocoa Atlanta, Ceorgia T
Apr 8, 2011 i0S Seminar Marina Room - §...
Apr 11,2011 Cocoa Commuter Class in ... Miami, FL :
Apr 11, 2011 i0S (iPhone/iPad) Atlanta, Georgia |
Apr 18, 2011 Android Atlanta, Ceorgia |
May 7, 2011 Beginning iOS (iPhone/iPad) Atlanta, Georgia !
Jun B, 2011 Django Atlanta, Georgia .
Jun 18, 2011 Beginning Ruby on Rails Atlanta, Georgia |
Jul 18, 2011 OpenGL Atlanta, Georgia I
Aug 29, 2011 Advanced Mac 05 X Atlanta, Ceorgia I
Apr 18,2011 i0S (iPhone/iPad) Frankfurt, Germany
May 16, 2011 Android Frankfurt, Germany .L
Jul 25, 2011 Cocoa |l Frankfurt, Germany
Sep 5, 2011 Cocoa | Frankfurt, Germany *
e 17 2011 Puthon Mactar: Eranlfurt Carmana

Create a new project of type Cocoa Application. Disable Create Document-Based Application, Uses Core Data, and Create Unit Tests. Name the
project RanchForecast. Set the Class Prefix to RanchForecast also.

We'll build this application from the model upward. Create a new Objective-C class called scheduledclass that subclasses Nsobject. Add four
properties: name, location, href, and begin in scheduledClass.h:

#import <Foundation/Foundation.h>

@interface ScheduledClass : NSObject {

NSString *name;

NSString *location;

NSString *href;

NSDate *begin;
}
@property (nonatomic, copy) NSString *name;
@property (nonatomic, copy) NSString *location;
@property (nonatomic, copy) NSString *href;
@property (nonatomic, strong) NSDate *begin;
@end

Then synthesize the properties in scheduledclass.m:
#import "ScheduledClass.h"
@implementation ScheduledClass
@synthesize name, location, href, begin;

@end

With a simple model, it can often be tempting to use an Nspictionary. Frequently, however, taking the time to create a class will make life easier in the
long run, especially when a project grows beyond its initial scope.

NSURLConnection

Now that we have the model defined, we will turn our attention to fetching the data from the Web service. In Cocoa, this is typically done using the
NSURLConnection Class. In order to create a connection, we must first create an NsurLrRequest, Which describes the request to the connection object.
NSURLRequest iS sufficient for simple requests. Requests requiring more conrol, such as specific request headers, should use NsMutableURLRequest.

NSURLConnection Can be used synchronously and asynchronously. In a synchronous connection, the current thread blocks while the request is completed,
making it unsuitable for use in the main thread, as this will make the user interface unresponsive while the request is completed.

Asynchronous connections are scheduled in the run loop, and a delegate is specified to respond to various events in the connection’s lifetime. In this
chapter, we will use an synchronous connection for simplicity.

Create a new subclass of Nsobject called scheduleFetcher. This class will encapsulate the hard work of communicating with the Web service and
parsing the result into the model object. By abstracting away this functionality, we keep our user interface controller classes simple and uncluttered, and
we can easily use this class in other projects. Define the interface in scheduleretcher.h:

#import <Foundation/Foundation.h>

@interface ScheduleFetcher : NSObject <NSXMLParserDelegate> {
NSMutableArray *classes;

NSMutableString *currentString;
NSMutableDictionary *currentFields;
NSDateFormatter *dateFormatter;

}

I Returns an NSArray of ScheduledClass objects if successful.
/I Returns nil on failure.

- (NSArray *)fetchClassesWithError:(NSError **)outError;
@end

Define init and fetchClassesWithError: iN ScheduleFetcher.m!

#import "ScheduleFetcher.h"
#import "ScheduledClass.h"

@implementation ScheduleFetcher
- (id)init
{

self = [super init];
if (self) {
classes = [[NSMutableArray alloc] init];
dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateFormat: @"yyyy-MM-dd HH:mm:ss zzzz"];

return self;

}
- (NSArray *)fetchClassesWithError:(NSError **)outError
{

NSURL *xmIURL = [NSURL URLWithString:
@"http://lbignerdranch.com/xml/schedule"];

NSURLRequest *req = [NSURLRequest requestWithURL:xmIURL
cachePolicy:NSURLRequestReturnCacheDataElselLoad
timeoutinterval: 30];
NSURLResponse *resp = nil;

NSData *data = [NSURLConnection sendSynchronousRequest:req
returningResponse:&resp

error:outError];
if (Idata)
return nil;

NSLog(@"Received %Id bytes.", [data length]);

return nil;

}

@end

We will use the NspateFormatter later in the parsing process. Before we get into XML parsing, however, let’s test our fetchclassesWwithError: method.
In RanchForecastAppDelegate.m:

#import "RanchForecastAppDelegate.h"
#import "ScheduleFetcher.h"

@implementation RanchForecastAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification
{

ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];

NSError *error = nil;

[fetcher fetchClassesWithError:&error];
}

Build and run your application. You should see a log message indicating that data was received. Resolve any problems before continuing. It may help to
log the error, if an error is being set.

Add XML Parsing to ScheduleFetcher

Now we need to parse the XML data from the Web service. We will do this by using an instance of NsxMLParser. Modify fetchClassesWithError: t0O
instantiate and run the parser:

- (NSArray *)fetchClassesWithError: (NSError **)outError
{
BOOL success;

NSURL *xmlURL = [NSURL URLWithString:
@"http://bignerdranch.com/xml/schedule"];
NSURLRequest *req = [NSURLRequest requestWithURL:xmlURL

cachePolicy:NSURLRequestReturnCacheDataElseLoad
timeoutInterval:30];

NSURLResponse *resp = nil;

NSData *data = [NSURLConnection sendSynchronousRequest:req
returningResponse: &resp
error:outError];
if (!data)
return nil;

[classes removeAllObjects];

NSXMLParser *parser;
parser = [[NSXMLParser alloc] initWithData: data];
[parser setDelegate:self];

success = [parser parse];

if (Isuccess)
*outError = [parser parserError];
return nil;

}

NSArray *output = [classes copy];
return output;
}

Note that the parser’s delegate is set to se1f. As all the NsxMLParserDelegate protocol methods are optional, we need to add only the ones we are
interested in. Add them now to scheduleFetcher.m:

#pragma mark -
#pragma mark NSXMLParserDelegate Methods

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)gName
attributes:(NSDictionary *)attributeDict

if ([elementName isEqual:@"class™])

{
currentFields = [[NSMutableDictionary alloc] init];

else if ([elementName isEqual: @" offering"])
{
[currentFields setObject:[attributeDict objectForKey:@"href"]
forKey:@"href"];
}

}
- (void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)gName

if ([elementName isEqual:@"class™])
ScheduledClass *currentClass = [[ScheduledClass alloc] init];

[currentClass setName:[currentFields

objectForKey:@"offering"]];
[currentClass setLocation:[currentFields

objectForKey:@"location"]];
[currentClass setHref:[currentFields

objectForKey:@"href"]];

NSString *beginString = [currentFields objectForKey:@"begin"];
NSDate *beginDate = [dateFormatter

dateFromString:beginString];
[currentClass setBegin:beginDate];

[classes addObject:currentClass];
currentClass = nil;

currentFields = nil;

else if (currentFields && currentString)

{
NSString *trimmed;
trimmed = [currentString stringByTrimmingCharactersinSet:
[NSCharacterSet whitespaceAndNewlineCharacterSet]];
[currentFields setObject:trimmed forKey:elementName];
}

currentString = nil;

}

- (void)parser:(NSXMLParser *)parser
foundCharacters:(NSString *)string

if (lcurrentString) {
currentString = [[NSMutableString alloc] init];
}

[currentString appendString:string];
}

As mentioned at the start of the chapter, when nsxMLParser’s parse method is called, it scans through the data provided, calling its delegate for each
change in the structure of the XML data that it encounters. As is this case in this exercise, you will frequently be interested only in the start and end of
elements, as well as the character data that occurs in between them.

The delegate is responsible for managing any state information during the parsing process. scheduleFetcher USES itS currentString, currentFields,
and classes instance variables for this purpose. The string data that currentstring accumulates for the current element is then stored in currentFields
once the element ends. Once each c1ass element ends, a scheduledclass instance is created and populated with the values from currentrields, and
the process starts over again for the next class.

Once the parsing is completed, a copy is made of the c1asses array (to make itimmutable), and the result is returned.

Run the application again and use the debugger to inspect the c1asses array before it is returned to see that the XML is being parsed.

Lay Out the Interface

In RanchForecastAppbelegate.h, declare a table view outlet and an array of classes:
#import <Cocoa/Cocoa.h>

@interface RanchForecastAppDelegate : NSObject <NSApplicationDelegate>
{
IBOutlet NSTableView *tableView;
NSArray *classes;
}
@property (strong) IBOutlet NSWindow *window;
@end

OpenumainMenu.xib. Drop a table view onto the window. Ensure that the table view’s Content Mode is set to Cell Based. Set the table view to have three
columns: Date, Class, and Location. Drag a date formatter onto the Date column cell and set its Date Style to Medium (Eigure 28.5).

Figure 28.5. Lay Out the Interface

ann ™ RanchForecast - MainMenu.xib

(El mle i 3 [Finished rusning Kanchforecast | Ela= (oulE (=
Bun Swop Scheme Breakpoints -l Editor Wiew r
=4 » i Br. =R o Texn Field Cell - Text Cell aeformatter ([B B % |+ & & =
RanchForecast File Edit Format View Window Help " Dt Formatist
: - : ! Behavior | Mac O5 X 10.4+ Dafault b
Dase Stple | Medium]
! Relative Date
oue s o I Time Sy No Time S e
' Apr1,1976 TextCell Text Cell | Sl [e 11 1884
A
oD e =

i Obsect Ubrary =i

LH 1
i —, Date Picker - Provides for visally
242!, displaying aed editing an MiDate

Instante.

Date Formatter - Creates s2ring
representatians of NSDule lind
NSCalendasCiate) objects, and comwerts... |

]), date

Control-click on the RanchForecastappbDelegate t0 bring up the Connection panel and connect the tabieview outlet.

Control-click on the table view to bring up its Connection panel. Make RanchForecastappbelegate the data source for the table view. (Don’'t see the
datasource outlet? Did you select the scroll view instead of the table view?)

In Chapter 7, we talked about how powerful key-value coding can be. Let’'s use that now to make things easy on the coding end and set the identitier of
each table column to be the name of the scheduledcilass property we want to display in that column. Use the Identity Inspector for each column of the
table view to set the identifiers t0 begin, name, and 1ocation for the Date, Class, and Location columns, respectively (Eigure 28.6). If you are using a
version of Xcode prior to 4.2, the identifer field will be shown in the Attributes Inspector. Use the Attributes Inspector to make each column not Editable.

Figure 28.6. Setting Identifier for Columns

Identifier
ana B RanchForecast - Maindenu.xib
e [dedd | E/23711 a1 12,35 PM
) (=) [nowms.) B | Botd Succraded | 6121) | g oom =
Bun oo Teheme Breaksoints e k Tditar Wit Degasine:
= 4 > Bymaschforecsst:) i R e W) B3N RIS WTableView) BiTableCoime -Cas (3 B B[2 © 8 8 |
| LORanchEorscast File EAE Format o View. M ndow, Help T |men

{
Clasy | w57 urn [=£3

¥ ¢ leterface [bem bdestifier

Identifer| name|

= Dave Chasy Lecaban ¥ Tool Tige
' Aps 1, 1976 Text Cell Text Cell Toal Tig
.9

N N

T Accesssbility ldentity
Description
Welp | Helo

- ¥ User Dehned Runtime Atiributes

r 1
#ic Key Pah Type Value

0 iljem |
Ml Cect Lbrary i) | BE e |

Push Button - asrrsests miuie - Sown |
everiti and iendi an sclion mEssage tod|
tangel object when it's chickedgr.. |

Gradiant Button - intrcepls mouse-
— dowen events and vends an actisn
message 10 a target object when it's

5 Rounded Rect Buttion - Nleeps
‘U k- 0ow aveili bad 3ndi B

St srars B e 8 bRmst nhises

Write Controller Code

Update ranchForecastappbDelegate.n t0 display the fetched classes in the table view:

#import "RanchForecastAppDelegate.h"
#import "ScheduleFetcher.h"
#import "ScheduledClass.h"

@implementation RanchForecastAppDelegate

@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification
{

ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];
NSError *error;

classes = [fetcher fetchClassesWithError: &error];
[tableView reloadData];
}

Now add the NSTableviewDataSource methods:

#pragma mark -
#pragma mark NSTableViewDataSource

- (NSinteger)numberOfRowsInTableView:(NSTableView *)theTableView
return [classes count];

}

- (id)tableView:(NSTableView *)theTableView

objectValueForTableColumn:(NSTableColumn *)tableColumn
row:(NSinteger)row

{
ScheduledClass *c = [classes objectAtindex:row];
return [c valueForKey:[tableColumn identifier]];

}

@end

Build and run the application. You should see a list of upcoming classes.

Opening URLs

The last step is to make it possible for the user to double-click on a class to open itin his or her browser.

In applicationDidFinishLaunching:, Set the doubleaction and target of the table view:

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification

{
[tableView setTarget:self];
[tableView setDoubleAction:@selector(openClass:)];

ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];
NSError *error;

classes = [fetcher fetchClassesWithError:&error];
[tableView reloadDatal];
}

Finally, implement openclass:. Here you are using the NsWworkspace Class. NsWworkspace represents the Finder.
- (void)openClass:(id)sender

ScheduledClass *c = [classes objectAtindex:
[tableView clickedRow]];

NSURL *baseUrl = [NSURL URLWithString:
@"http://Iwww.bignerdranch.com/"];
NSURL *url = [NSURL URLWithString:[c href]
relativeToURL:baseUrl];
[[NSWorkspace sharedWorkspace] openURL:url];

}

Build and run the application. Double-clicking on a title should open the page for the selected class in your default browser.

Challenge: Add a WebView

At the moment, you are using Nsworkspace to open the Web page in another application. Perhaps the user would like it if the the web page appeared ina
sheet in the existing application (Eigure 28.7).

Figure 28.7. Use WebView to Display Details

S

SOFTWARE CONSULTNG BOOKS

BEGINNING COCOA
In 7 challenging days, Beginning Cocoa Bootcamp will take you from complete novice to being '~

&
able to build your first Cocoa application. In addition, you'll become an active participant in the o

Iul 28 2011 Carna 1 Eranbfurt Qarmanu

The challenge, then, is to add a new window with a webview to your application. Bring the window onto the screen as a sheet.
You will need to add the WebKit framework to your project.

If you have a string representing a URL, you can get a webview to load that URL by sending it the following message:
- (void)setMainFrameURL: (NSString *)URLString;

That should be all you need. If you want a progress indicator, you will need to make your controller the “frame load delegate” of the webview:
[webView setFrameloadDelegate:self];

Then your controller can implement the following methods:

- (void)webView: (WebView *)wv
didStartProvisionallLoadForFrame: (WebFrame *)wf;

- (void)webView: (WebView *)wv
didFinishLoadForFrame: (WebFrame *)wf;

- (void)webView: (WebView *)wv
didFailProvisionallLoadWithError: (NSError *)error
forFrame: (WebFrame *)wf;

Chapter 29. Blocks

Let’s pretend that we’re writing a zombie game. Specifically, we're working on the zombie Al code. We want a method on our zombie object to find nearby
brains. So we start with this:

@implementation Zombie

- (NSArray *)brainsForFlags: (NSInteger)flags
{
return [[self game] allBrains];

}

@end

It's a good start, but it would be a lot more useful it if returned the brains in order of proximity to the zombie, that is, sorted by the distance between the
zombie and the brain. The zombie is hungry, after all. Nsarray’s sortedarrayUsingsSelector: is usually a great first choice for sorting. It calls the given
selector on the objects in the array in order to compare them with their neighbors. For example, Nsstring provides a compare: method. Thus, we can use
it to sort an array of strings:

NSArray *sortedStrings =
[theStrings sortedArrayUsingSelector:@selector (compare:)];

We might entertain adding a compareByDistanceToZombie: Method to the Brain class. But how would it know which zombie it's comparing the distance
to? The method sortedarrayUsingselector: doesn’'t provide any way to pass contextual information to the sorting process.

NSArray’S sortedArrayUsingFunction:context: SEEemMs like a better choice. We can write a C function and tell sortedArrayUsingFunction:context:
what function to use to compare the brains. Using it would look something like this:

NSInteger CmpBrainsByZombieDist (id a, id b, void *context)
{

Brain *brainA = a;

Brain *brainB = b;

Zombie *zombie = (_ bridge Zombie *)context;
float distA = [zombie distanceToBrain:brainA];
float distB = [zombie distanceToBrain:brainB];
if (distA == distB) return NSOrderedSame;

else if (distA < distB) return NSOrderedAscending;
else return NSOrderedDescending;

- (NSArray *)brainsForFlags: (NSInteger)flags
{
NSArray *allBrains = [[self game] allBrains];
return [brains sortedArrayUsingFunction:CmpBrainsByZombieDist
context: (_ bridge void *)self];

}

The void pointer context argument is used to provide additional data to the comparison function; we use this to pass the pointer to the zombie instance
(se1£). Note thatthe bridge casting is necessary to convert an object reference into a type out of ARC’s control.

We've got a workable solution now. After some playtesting, however, we decide that we want our zombies to have a more varied palette. If frenzy mode
is on, the zombies should seek out the brain with the highest IQ, no matter where it is in the game world. Now we need to supply multiple parameters to
CmpBrainsByZombieDist, but it all needs to be passed in through a single void pointer argument.

Perhaps you are starting to see that this approach has a number of downsides. Maintaining C functions for custom sorting forces our input parameters to
be awkwardly funneled through a void pointer. An Nspictionary or custom C struct will get the job done, but they add complexity. Additionally, the C
function must be separate from the code that calls it, making it more challenging to efficiently maintain the code.

There is, however, an elegant solution to this problem: blocks. You can think of blocks as functions that can be passed around just like an object. Consider
the following solution. The caret (*) in the following code is the start of the block:

- (NSArray *)brainsForFlags: (NSInteger) flags
{

NSArray *allBrains = [[self game] allBrains];

return [brains sortedArrayUsingComparator:” (id a, id b) {
Brain *brainA = a;
Brain *brainB = b;

float criteriaA, criteriaB;
if (flags & FrenzyMode)
{
criteriaA = [brainA iq]l;
criteriaB = [brainB iql;

else

{

criteriaA = [self distanceToBrain:brainA];
criteriaB = [self distanceToBrain:brainB];

}

if (criteriaA == criteriaB) return NSOrderedSame;

else if (criteriaA < criteriaB) return NSOrderedAscending;
else return NSOrderedDescending;
Pl
}

We'll get into the particulars of blocks syntax in the next section. Until then, let's look at some of the more interesting parts of this method. The
sortedArrayUsingComparator: Mmethod takes a block as its only parameter. You'll notice that blocks look quite a bit like C functions. They have
arguments and a body. Where they differ from C functions is that they do not have to be named (they are anonymous) and can be treated just like an
expression. In fact, they are objects.

This particular block takes two arguments (a and 1) and refers to variables that are defined outside the block (se1f and ri1ags). This is one of the more
useful aspects of blocks: They capture the value of variables from the scope outside the block. There’s generally no need to package up your variables to
squeeze into the argument list: You can simply use the variables that are in scope.

Blocks provide an elegant way to address such problems as nontrivial sort criteria, as well as much more sophisticated problems. Next, we’ll talk about
the particulars of using blocks.

Block Syntax

Blocks enable the developer to create objects that encapsulate instructions, inline with the rest of their code, which capture the values of variables that are
within scope. The resulting object can then be passed about and even copied, just like any other object.

The block syntax can be a little off-putting at first (it is not dissimilar from C function pointer syntax), but the benefits far outweigh the time you will spend
getting used to it. Let's define a simple block:

int captured = 1; // Local variable 'captured'

int ("offsetter) (int) = "~ (int x) { return x + captured; };
On the first line, we create a local variable: captured. Next, we declare a variable named offsetter, which is a block. Whenever we are creating or
defining a block, we use the # operator. This block returns an integer and takes an integer as its only argument.
On the right side of the equal sign, we define the block (note the ~, again). This part looks a lot like a C function definition. We specify that the integer
parameter will be called x, and then we provide the body of the block in braces. An annotated version is shown in Figure 29.1.

Figure 29.1. Anatomy of a Block

Block variable name Named block argumenis

Block retum type Block argument types Value of local variable ‘captured’ is captured
|
| |
int (~offsetter)(int) = ~(int x) { return x + captured; };
1] 1 I
' i

Daclare the block retumn typa and arguments Block body is defined

Aside from the magic of creating a block of code on the stack like this, two interesting things are happening here: First, our block definition does not
specify the return type of the block. The compiler is smart enough to figure it out from the return statement. Second, we refer to the variable captured
inside the block. A blocks programmer would say that we are capturing the value of captured in the block. This is a very powerful feature of blocks.

How do we call a block? As it turns out, it looks quite a bit like a C function call:

int answer = offsetter(2);

Note that answer is now 3 (2 + 1 = 3). What if we change the value of captured and call the block again?

captured = 64;
answer = offsetter(2);

The result is the same; answer is still 3 because the value of captured was captured when we defined the block. We cannot change captured from
outside the block, and as it happens, we can’'t change it from inside the block either. To do that, we need the b1ock type specifier.

By default, captured values are considered const within the block. If you need to modify a captured value from inside a block, you can add the _biock
type specifier:

__block BOOL modifiable = YES;

However, when a variable is marked with _n1ock, the compiler treats it as what is essentially a global variable. Any block that was created with it in

scope can change its value. Because it does come with some performance overhead, biock is not the default. Typically, it is more useful to capture
only the value of a variable.

Memory and Objects within Blocks

When a block is defined, it is created on the stack. When the method or function it was defined in exits, the block is removed from memory along with all
the other local stack variables. Sometimes, this is fine; we may wish to use the block only for the lifetime of that particular method call, as in our earlier
brain-sorting example. The block is not used after the method returns.

Other times, however, we want the block to live on well after the method returns. Because the block is created on the stack, we must copy it in order to
make sure that it is not deallocated with the current stack frame. For this reason, we recommend that you copy blocks when assigning them to instance
variables:

@property (nonatomic, copy) int (“arithmeticOperationBlock) (int);

Just like we can capture scalar values within blocks, we can also capture pointers to objects. When a pointer to an Objective-C object is captured by a
block, it is retained (a strong reference is formed). Any objects retained by the block are released when the block goes out of scope or is deallocated:

NSMutableArray *array;
array = [NSMutableArray arrayl; // retain count of 1, autoreleased

void ("simpleBlock) () = "{
[array addObject:Q@"Q"]; // array pointer captured, retained
bi

simpleBlock () ;

return; // simpleBlock is popped from stack, releases array

Note that variables with the _ b1ock specifier will not be retained by the block. This can be useful in preventing strong reference cycles. Note that this is
still the case under ARC; however, ARC still considers a _ b1ock pointer a strong reference and thus retains it, unless you mark the variable weak.

Consider the following code:

controller = [[MyController alloc] init];
controller.block = *{
[controller doSomething];

}i

This code creates a strong reference cycle. Do you see it?

MyController holds a strong reference to b1ock. The block, however, holds a strong reference to the instance of Mycontrolier! The simplest approachis
to use a temporary weak reference variable, since child objects (the block) should have only weak references to their parents (the controller).

controller = [[MyController alloc] init];
__weak MyController *weakController = controller;
controller.block = *{

[weakController doSomething];
}i

This resolves the strong reference cycle.

Availability of Blocks

Blocks are available beginning with Mac OS X 10.6 and iOS 4.0 and are an extension to the C language. Thus, you don’t need to be using Objective-C to
take advantage of blocks, but you do need a compiler that understands blocks, as well as runtime support. If you are targeting Mac OS X 10.5 oriOS 2.2,
PLBlocks from Plausible Labs provides a solution well worth looking into.

The first high-profile APl to make use of blocks was Grand Central Dispatch, a Mac OS X concurrency library. As such, many people think of blocks as
being useful only in multithreaded programming. We believe that blocks are extremely handy in a very broad range of programming settings. As you solve
problems in your own projects, you may find blocks to be a great fit in some unexpected places.

RanchForecast: Going Asynchronous

Our RanchForecast application works great in ideal circumstances. That is, with a speedy Internet connection. However, what if our Internet connection is
poor? Or what if we were loading a much larger XML document that might take several seconds (or worse) to download?

Our customers will complain, and rightly so, that the application looks as if it has frozen until the request completes and the table updates. The reason is
that we are running a synchronous request in the main thread, the very same thread thathandles Ul events. If we use NSURLConnection in the
asynchronous style, however, we can avoid blocking the main thread, and the Ul will be nice and responsive. Let's update our scheduleFetcher class to
do things the Right Way.

Recall that using NsuRLconnection asynchronously means that we will create the connection and specify a delegate, using initwithRequest:delegate:.
This call will return immediately, and the delegate will be called to handle various events during the connection’s lifetime. NsuRLConnection Works with the

run loop to make this possible.

In our application, scheduleFetcher Will act as the connection’s delegate and implement the three delegate methods needed to handle receiving data
and the successful and unsuccessful completion of the request:

- (void)connection: (NSURLConnection *)connection
didReceiveData: (NSData *)data;

- (void)connectionDidFinishLoading: (NSURLConnection *)connection;

- (void)connection: (NSURLConnection *)connection
didFailWithError: (NSError *)error;

Receiving the Asynchronous Response

If the response loading is taking place asynchronously and scheduleFetcher Will not block, how will RanchForecastappbelegate know when the class
schedule has been loaded or when an error has occurred?

We can accomplish this in several ways. The most obvious approach would be to add a pointer {0 RanchForecastAppbDelegate iN the ScheduleFetcher.
Once the schedule has been fetched, the fetcher would call a method on the app delegate (updatewithclasses:, perhaps). The downside of this
approach, however, is that we would have just made scheduleFetcher dependent On RanchForecastAppDelegate. If we wanted {0 use scheduleFetcher
in another project later on (and we will), we would need to edit its code, which then leaves us with multiple versions of scheduleFetcher.

Another approach is to use the delegate pattern. It works great for NSURLConnection; ScheduleFetcher could use it as well. We would define a
ScheduleFetcherDelegate Protocol, and RanchForecastappbelegate Would conform to the protocol and set itself as the delegate. This approach is very
reasonable; it decouples the classes, keeping scheduleFetcher reusable, but it feels somewhat heavy-handed for such a simple Web service response.

Yet another approach is to use our knowledge of blocks to apply the completion block design pattern. In this pattern, our fetch method on
ScheduleFetcher WouUld take a block as its only parameter. scheduleFetcher then calls the block later when it is ready to deliver the results or report an
error. Completion blocks are very compact; no additional methods are needed and they have the advantage of allowing us to keep the response-handling
code close to the place where the Web service call is initiated.

Let's modify scheduleFetcher to perform the request asynchronously and report the results using a completion block.

In scheduleFetcher.h, define the scheduleFetchrResultBlock type. Because the block syntax involves a good bit of punctuation, it is often helpful to
typedef block types so that they can be used more gracefully in the future.

#import <Foundation/Foundation.h>

typedef void (*ScheduleFetcherResultBlock)(NSArray *classes,
NSError *error);

Now add three new instance variables and the replacement for fetchclassesWithError: {0 ScheduleFetcher:

@interface ScheduleFetcher : NSObject <NSXMLParserDelegate> {
@private

NSMutableArray *classes;

NSMutableString *currentString;

NSMutableDictionary *currentFields;

NSDateFormatter *dateFormatter;

ScheduleFetcherResultBlock resultBlock;
NSMutableData *responseData;
NSURLConnection *connection;

}
- (void)fetchClassesWithBlock:(ScheduleFetcherResultBlock)theBlock;

@end
NOW, in scheduleFetcher .m, leMoOVe fetchClassesWithError: and implement fetchClassesWithBlock::
- (void)fetchClassesWithBlock:(ScheduleFetcherResultBlock)theBlock

I/l Copy the block to ensure that it is not kept on the stack:
resultBlock = [theBlock copy];

NSURL *xmlURL = [NSURL URLWithString:
@"http://bignerdranch.com/xml/schedule"];
NSURLRequest *req = [NSURLRequest requestWithURL:xmlURL

cachePolicy:NSURLRequestReturnCacheDataElseLoad
timeoutInterval:30];

connection = [[NSURLConnection alloc] initWithRequest:req
delegate:self];

if (connection)

{
}

responseData = [[NSMutableData alloc] init];

}

Note that theBlock is copied and the resulting pointer stored in resultBlock. We copy the block because it may still be on the stack of the calling
method. If so, the block will be deallocated when that method exits. Because we are starting an asynchronous request and the calling method is
guaranteed to return before the request completes, we need to be sure that the block’s memory will be valid until we call it with the results. If theBlock
were going to be used only within this method and not after we return, copying it would not be necessary.

The resultBlock, connection, and responseData Objects are created when the fetch is initiated. It's a good idea to clean them up when the request
completes. To reduce repetition, add a new method called c1eanup:

- (void)cleanup

{
responseData = nil;
connection = nil;
resultBlock = nil;

}

Stillin scheduleFetcher.m, implement the NSURLConnection delegate methods:

#pragma mark -
#pragma mark NSURLConnection Delegate

- (void)connection:(NSURLConnection *}theConnection
didReceiveData:(NSData *)data
{

[responseData appendData:data];

- (void)connectionDidFinishLoading:(NSURLConnection *)theConnection
[classes removeAllObjects];

NSXMLParser *parser = [[NSXMLParser alloc]
initWithData:responseData];

[parser setDelegate:self];

BOOL success = [parser parse];

if (Isuccess)

{
resultBlock(nil, [parser parserError]);
}
else
NSArray *output = [classes copy];
resultBlock(output, nil);
}

[self cleanup];

}

- (void)connection:(NSURLConnection *)theConnection
didFailWithError:(NSError *)error

resultBlock(nil, error);

[self cleanup];

}

Response data is collected in connection:didReceiveData: and then parsed in connectionDidFinishLoading:. We then call resultB1lock with the
results or error condition.

Now it's time to update RanchForecastAppDelegate {0 work with the new interface to scheduleFetcher. In RanchForecastAppDelegate.m, update
applicationDidFinishLaunching::

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification

{
[tableView setTarget:self];
[tableView setDoubleAction:@selector (openClass:)];

ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];

[fetcher fetchClassesWithBlock:*(NSArray *theClasses,
NSError *error) {
if (theClasses)
{
classes =theClasses;
[tableView reloadData];

}

else

NSAlert *alert = [[NSAlert alloc] init];

[alert setAlertStyle:NSCriticalAlertStyle];

[alert setMessageText:@"Error loading schedule."];

[alert setinformativeText:[error localizedDescription]];

[alert addButtonWithTitle: @"OK"];

[alert beginSheetModalForWindow:self.window
modalDelegate:nil

didEndSelector:nil
contextinfo:nil];

3
}

Build and run the application. Notice that the application appears more quickly now because the request is performed asynchronously.
Challenge: Design a Delegate
Earlier in this chapter, we discussed how we might use the delegate design pattern as a means for passing Web service data back to the interested

parties. Create a copy of this project and refactor it to use this pattern instead of blocks. Remember that delegate properties should be weak references
to prevent a strong reference cycle.

Chapter 30. Developing for iOS

Applications for the iPhone and iPad are written using Xcode and the Cocoa Touch Frameworks. Cocoa Touch comprises Foundation, Core Graphics,
and UIKit. UKit is analogous to AppKit, supplying the windows, events, views, buttons, and so on, for iPhone programmers. UIKit is, however, not the
same as AppKit. This chapter will get you started developing applications on iOS, with an emphasis on what is not the same.

In particular, you will not have the garbage collector, but you can use ARC on iOS 5 or, if you choose, manual reference counting (retain/release) for
memory management. You will use OpenGL ES instead of regular OpenGL. Windows and table-view cells are subclasses of uzview.

Porting RanchForecast to iOS
Most of the stuff that makes ranchrorecast work (table views, NsxMLParser, NSURLConnection) exists on iOS. Porting it all from Cocoa to Cocoa Touch

will give you a feel for many of the differences between the two platforms. You will use two common iOS features in your port: a navigation controller and a
table view. There will be two view controllers (subclasses of uiviewcontroller) (Figure 30.1).

Figure 30.1. RootViewController and ScheduleViewController

UlNavigationController

navigationBar
vigwControfiers

| NSArray |

view

RoaotViewController

LIACtivit yin dicator
aclivityindicator
UiButton
fetchButton

UlNavigationController

I
navigationBar viewControllers

= . NSArray
Baginning Cocoa
"B 105 Seminar

RootViewController

Cocoa Commuter Class in Spani..

i0S (iPhone/iPad)

Android *
SchedulaViewController

Beginning 10S (IPhone/iPad)

Django
Beginning Auby on Rails i UlTableView
table\iew
OpenGL
~ < _
- UlITableViewCell
-
=
UlLabel

View controllers are just what they sound like: controller classes that are responsible for a urview and its contents. In iOS view controllers are generally
used to represent one screen of information. We will discuss the role of view controllers in AppKit in the next chapter.

The navigation controller manages a stack of view controllers, animating them on and off the screen. The navigation bar, at the top, provides users with a
sense of their place within the stack, usually with a Back button on the left, a title in the center, and sometimes a button on the right. An iOS app has only
one window. View controllers are used extensively in conjunction with navigation controllers to create the sense of multiple screens.

In Xcode, create a new iOS Application using the Empty Application template (Eigure 30.2). Some versions of Xcode refer to this as a Window-Based
Application.

Figure 30.2. New iOS Empty Application

Choose a template for your new project:

W ios ———

-
L | P -
Framewark & Library =
Other] i
Master-Detail OpenCL Game Page-Based Single View
B Mac 05X Application Application Application
Application : :
| Framewark & Library \‘:
| Application Plug-in [] L
1 Systerm Plug-in
| Ogher Tabbed Application Uniliy Application Empty Application
|
|
]
= |
kel
=
| pameea
| i i Empty Application
beened
=
‘u:‘ This template provides a starting point for any application, It provides just an application
delegate and a window.

|

Cancel Previous tm

Name the project rRanchForecastTouch, set the Class Prefix to RanchForecastTouch, and set Device Family to Universal (Figure 30.3). This will create
more files, but it will be easier in the future to tailor your app for both iPhone and iPad devices.

Figure 30.3. Name the New Project

Choose options for your new project:

Product Name RanchForecastTouch
Company ldentifier com. bignerdranch

Bundle ldentifier com bior a R WForecastT

Class Prefix [Ran:hFDrc(aslTou:h]

Device Family | Universal 3

_| Use Core Data
| Include Unit Tests

Cancel Previous | [Sshexta]

ScheduleFetcher

You are going to use the same scheduleFetcher Cclass and scheduledciass model that you wrote inChapter 29. Drag scheduleFetcher.h,
ScheduleFetcher.m, ScheduledClass.h, and scheduledclass.m into this project. Be sure to check the Copy items into destination group’s folder check

box (Eigure 30.4).
Figure 30.4. Copy Files

Choose options for adding these files:

o

Destination ™ Copy items into destination group's folder (if needed)

Folders @ Create groups for any added folders
_ Create folder references for any added folders

Add to targets E J'h RanchForecastTouch

Cancel) (S Finish==)

RootViewController

Create a new ulviewController subclass called rRootviewcontroller. Check the option box labeled With XIB for user interface (Eigure 30.5).

Figure 30.5. New UlViewController Subclass

Choose options for your new file:

ot

—

< Subctass of | UiViewController -

] Targeted for (Pad
™ With XIB for user interface

r \ .)
Cancel) | Previous) E—-ﬁm—-a
i, -

OpenrootviewController.xib. Inthe Attributes Inspector for the view, under Simulated Metrics, set Top Bar to Navigation Bar (Eigure 30.6). This sets
the size of the view to be appropriate for a navigation bar.

Figure 30.6. Simulated Navigation Bar

ane ™ RanchForecastTouch - RootViewController.xib
CTO Tt | Elae clom D

:z. 4 » & : il Touch ontrofier b | View | a =] ﬂlflf O -
T Sumulated Metrids

= Orwentation | Portrait 3

(=]
i Stats Bar | Gray
—— -
Bottom Bar| None
X
Mode | Scale To Fil B
Mpha 100z
Barkground | 1 | Default Q

Tag olf

twawing B Opague [Hidden
' ¥ Ciears Graghics Contest
. Clip Subviens
B Autaresize Subviews .
4] rechng 0900 g0l v
0O | & =

0 T 1" |

lLabeI mll;:.mmtémmﬁ m

Bound Rect Button - lsteseps
boech events and tends an actian
message to a target obect when

Segmentid Comeal - Daglem
1| 2 | mubiple segments, gach of which
. Rmemisns na_n dins pate butin

Drag a button and activity indicator onto the view. Set the button’s title to Fetch Classes, and set the activity indicator to Hides When Stopped (Eigure
30.7).

Figure 30.7. Set the Activity Indicator to Hides When Stopped

ane 4 RanchforecasiTowch - RootViewController. xib
(>) (w) = site X @o= com -
| &n s Scheme Breakpaints. — = = =
= 4 » [ymanchoce 2 [} Ca.,, __mm._naymuwnm| n] u.q“p o

= v Aetivity Indicator Yaw _m

Styie | Gray 3

Betunior B Hides When Stapped

==
— =
T View

Mode | Seals Ta Fil =

Lo0 %]

Rackgroung 4
Tag

Orawing | Opague 8 Hidden
E Chears Graphics Context

B Autoresize Subviews

Sresching. 0.00 31 0.00 2]
X ¥ 2

: Fetch Classes a
L) B & = |
l objects [JET]

Activity Inicatar View - Proides

feedback o the progress of 4 bask or
process of unknown daration.

Now enable the Assistant Editor. This will simplify creating the outlets and actions that we need. Ensure that the Assistant Editor’'s jump bar is set to
Automatic; this will display rootviewcontroller.h in the editor.

Control-drag from the button to the Rootviewcontroller interface declaration in the Assistant Editor and create an outlt called fetchButton. See the
Storage to Weak (Eigure 30.8).

Figure 30.8. Control-Drag to Create the fetchButton Outlet

Repeat the process for the activity indicator: Create an outlet called activityindicator. Then Control-drag from the button to the properties section of
RootViewController and create an action called fetchclasses:. Note that the result of this process is the same as typing out the outlets and actions
manually, then Control-dragging between Connection panels and the interface objects. The same can be done in Mac and iOS projects alike.

Add a Navigation Controller

As our application stands, it will show a blank view on launching. We want the app to start out with the Rootviewcontroller, which has the Fetch Classes
button we just wired up. Furthermore, when the user touches Fetch Classes, the application should display a list of classes. As we mentioned earlier in
the chapter, iOS’s navigation controller provides an easy way to manage the display of our view controllers.

Open ranchForecastTouchAppbelegate.h and add an instance variable for the navigation controller:
#import <UIKit/UIKit.h>

@interface RanchForecastTouchAppDelegate : NSObject
<UIApplicationDelegate>
{

}

@property (nonatomic, strong) IBOutlet UIWindow *window;

UINavigationController *navController;

@end

The root-view controller is the lowest view controller on the stack and generally the first view controller that the user will see. In
RanchForecastTouchAppDelegate.m, instantiate the navigation controller as well as the root-view controller:

#import "RanchForecastTouchAppDelegate.h"
#import "RootViewController.h"

@implementation RanchForecastTouchAppDelegate
@synthesize window=_ window;

- (BOOL) application: (UIApplication *)application
didFinishLaunchingWithOptions: (NSDictionary *)launchOptions

RootViewController *rvc;

rvc = [[RootViewController alloc] initWithNibName:nil bundle:nil];

navController = [[UINavigationController alloc]
initWithRootViewController:rvc];

self.window = [[UIWindow alloc]

initWithFrame: [[UIScreen mainScreen] bounds]];
[self.window addSubview:[navController view]];
[self.window makeKeyAndVisible];

return YES;

Note that iOS has auiapplicationDelegate method, application:didFinishLaunchingWithOptions:, Which is very similar to Cocoa’s

applicationDidFinishLaunching:.
Build and run the application. It will launch in the simulator and you should see the Fetch Classes button. You can choose between launching your
application in the iPhone or iPad simulator using the Scheme popup on the Xcode toolbar.

ScheduleViewController

The second view controller, scheduleviewController, Will be used to display the schedule itself once the fetch has completed. Create a new
UIViewController Subclass, but this time set it to be a subclass of uriTableviewcontroller. Uncheck With XIB for user interface. Name it
ScheduleViewController. UITableViewController iS itself a subclass of uIviewController.

Open scheduleviewController.h and add two instance variables and a property:
#import <UIKit/UIKit.h>
@interface ScheduleViewController : UITableViewController {
NSArray *classes;

NSDateFormatter *dateFormatter;

@property (nonatomic, strong) NSArray *classes;

@end
In scheduleviewController.m, IMPOrt ScheduledClass.h, Synthesize c1asses and make some additions to initwithsStyle: and dealloc:

#import "ScheduleViewController.h"
#import "ScheduledClass.h"

@implementation ScheduleViewController
@synthesize classes;

- (id)initWithStyle: (UITableViewStyle)style
{
self = [super initWithStyle:style];
if (self)
{
dateFormatter = [[NSDateFormatter alloc] init];
[dateFormatter setDateStyle:NSDateFormatterLongStyle];
[[self navigationltem] setTitle:@"Schedule"];
}

return self;

}

Note that we are setting the title of this view controller’s navigation item. Each view controller has a navigation item, which determines what is displayed in
the navigation bar when that view controller is topmost. The title is shown in the navigation bar; it is also used to provide the title for the Back button when
the topmost view controller is directly above this one. It is also possible to configure within the navigation bar buttons (called bar button items) that are
specific to this view controller.

UlTableViewController

Table views, found in nearly every OS application from the iPod to Stocks, provide a highly customizable way of displaying ordered sets of information to
the user. After working with table views for a bit, you will quickly see that most of the attractive user interfaces in your favorite apps are simply table views.

UITableViewController iS @ subclass of urviewcController specifically designed to manage a uiTableView. UITableViewController automatically
creates the table view it manages. It is also the data source and delegate for the table view, so your urTableviewController subclass must override the
appropriate methods to get data on the table view. Consistent with data source and delegation methods in other Apple frameworks, you do not give the
table view data whenever you want. When ready to display data, the table view will ask you for the necessary information.

The Xcode template for auiTableviewController subclass includes the necessaryuiTableviewdDatasource methods. Fill them in for

ScheduleViewController.m:
#pragma mark - Table view data source
- (NSInteger)numberOfSectionsInTableView: (UITableView *)tableView

return 1;

(NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger) section
{
Il Return the number of rows in the section.
return [classes count];

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath

static NSString *Cellldentifier = @"Cell";

UlTableViewCell *cell =
[tableView dequeueReusableCellWithldentifier: Cellldentifier];
if (cell == nil) {
cell = [[UITableViewCell alloc]
initWithStyle:UlTableViewCellStyleSubtitle
reuseldentifier: Cellldentifier];

ScheduledClass *c = [classes objectAtindex:[indexPath row]];

NSString *details = [NSString stringWithFormat:@"% @ - % @",
[dateFormatter stringFromDate:c.begin],
c.location];

[[cell textLabel] setText:[c name]];

[[cell detailTextLabel] setText:details];
return cell;
}

UITableview WOrks very similarly to view-based table views in Cocoa. The table view asks its data source to provide a uiTableviewcell for each row.

The data source obtains a view cell (we will talk about that in a moment) and populates its controls (labels, in this case) with the data values from the
model.

Note that the view cell itself is obtained in one of two ways: through a call t0 dequeueReusablecellWithIdentifier: OF by creating one outright.
UITableview takes advantage of the fact that most table-view cells will have the same layout. Thus, when the user scrolls in the table such that a row is no
longer visible, the cell for that row is made available for reuse. In this way, the uiTableview keeps memory usage low and minimizes time spent

configuring the view cells. The table view uses identifiers to look up cells of a certain type. Thus, you can still take advantage of the cell reuse by using
unique identifiers for distinct cell layouts.

Pushing View Controllers

ScheduleViewController is ready to display schedule data in its table. We need to modify Rootviewcontroller to obtain the schedule data and then cue
ScheduleViewController to display it.

IN RootViewController.m, iMpOrt ScheduleFetcher.h and ScheduleviewController.h, and set the title of the navigation item:

#import "RootViewController.h"
#import "ScheduleFetcher.h"
#import "ScheduleViewController.h"

@implementation RootViewController

- (id)initWithNibName: (NSString *)nibNameOrNil
bundle: (NSBundle *)nibBundleOrNil

self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
if (self) {

[[self navigationltem] setTitle:@"Ranch Forecast"];
}

return self;

}

Now we are ready to fill in the code for the fetchciasses: action. We will use scheduleFetcher, which we copied directly from the Cocoa version of this
application, to obtain the results. The block we supply will be called once the results have been received or if an error has occurred. If we receive the
schedule, we will create a new instance of scheduleviewController and push it onto the navigation controller’s stack, thus presenting it to the user. If an
error occurs, we will display an alert.

Fill in the body of fetchclasses::

- (IBAction) fetchClasses: (id) sender
{
[activityIndicator startAnimating];
[fetchButton setEnabled:NOJ;

ScheduleFetcher *fetcher = [[ScheduleFetcher alloc] init];

[fetcher fetchClassesWithBlock:
A(NSArray *classes, NSError *error) {

[fetchButton setEnabled:YES];
[activityIndicator stopAnimating];

if (classes) {
ScheduleViewController *svc;
svc = [[ScheduleViewController alloc]
initWithStyle:UITableViewStylePlain];
[svc setClasses:classes];
[self.navigationController pushViewController:svc
animated:YES];

else

UlAlertView *alert;
alert = [[UlAlertView alloc]
initWithTitle: @"Error Fetching Classes™
message:[error localizedDescription]
delegate:nil
cancelButtonTitle:@"Dismiss"

otherButtonTitles:nil];
[alert show];

3
}

Build and run the application. Tap on the Fetch Classes button. Once the results are received, you will see the table-view controller being pushed onto the
stack and the upcoming class schedule displayed in the table view.

Challenge

Modify ranchForecastTouch SO that when the user taps on a class in the schedule, a Web view for that course is shown. Use the table-view delegate
method tableview:didSelectRowAtIndexPath: t0 detect the tap; then push a uiviewcontroller containing a urwebview.

Chapter 31. View Swapping

Often, instead of bringing up a new window, you will simply want to swap out a view and replace it with another. One easy way to do this is to change the
content view of a box.

Putting each view in its own XIB results in a more modular design. In Mac OS 10.5, Apple added the class Nsviewcontroller to Cocoa. We will make a
subclass of NsviewController for each view that we want to swap in.

This project will, in the next chapter, evolve into a relatively sophisticated Core Data application, so we will want each of our view controllers to have
access to an NsManagedobjectContext. Figure 31.1 shows where we are going.

Figure 31.1. Completed Application

AD Compasiy
Departments & Pt Ca
[Deparaments | eppnening _ e o
f Marager. | Richard Feynman el
| Sades Rr) Sicuwe Faynman o iy e
| uR [[FestRiama i Hame [vr—— |
| Fazilizies Lysnan Shissts Righard Feyneman llg.-,q., —
[l 3 I |
Daréel Plairview | Milcon Waddams Eacilities H
Larey Demas | Franis :'l."m man Sales
Max Fischar Max :u-m Engineering
Richard Feynman | Darsel tairrbew ﬁ.'ngu‘ wating
| Larey Demar Ergineering
Thamas Andurson Sales
i Lyman Sheats Engineering
i) | e

Add | [Remove.|

The pop-up button will enable the user to jump back and forth between the two views. In this chapter, you are going to make the jumping back and forth
part work. All the really useful parts of this app will be done in the next chapter.

The views (controlled by view controllers) will become the content view of a box. Menu items in the pop-up button will trigger the view swapping. Figure
31.2 is a diagram of the objects involved.

Figure 31.2. Object Diagram

target

i targel

MyDocument

/

" NSMenultem
- changeViewController: poplp — [NSPopUpButton | tfag=0
/ managedObjectContext ‘— \\. title ="Employees”
sl ‘\.\\‘
box NSManaged NSMenultem
i ObjectContext tag=1 _
tille ="Departments”
] \
NSBox managedObjectContext
- setContentView: - DepartmentViewControlier | NSView
- - E | |title="Departments’ £
s P
@
x> | [EmployeeViewController o NSView
L
= title =“Employees”

Get Started

In Xcode, create a new Cocoa Application. Name it pepartments, and enable Create Document-Based Application and Use Core Data. Set the Class
Prefix to my. OpenMybocument.xib and add a box (from the Library’s Cocoa -> Layout Views) and a pop-up button to the window. Set the box's title
position and border type to None (Figure 31.3). This will make the box invisible. As we are using the box as a container for our two views, which we will
be creating shortly, invisibility is fine.

Figure 31.3. Set the Box’s Title Position and Border Type to None.

%) Departments - MyDocument.xib

{ '_', = Departme.., © .-. Keode E |J. B r_m (=
Run en shame Breakpnty [diror Wiew Drgasirer
= s Ovpartmarts | Oepartmanty - MyDocumeetaib - MyDucumental, siWindow Bzvew Eifcx-Sox [O @ W S S & &
S
71 Macehokders m
Title B I
File's Dwear . - I
@ rirst Resssnder ANA Window Tise Positien | Kone =1
By Application — Bew Type Promary
5 Objecs Wy Besder Type | hone
2 Earder Lo IE—
a5 Window Ezrder Coin)

B2 View
= Pop Up Benon
Fop U Batton Cal

T Menu - DEhE{ViEwE

Fill Color | IE— -»:-l

Trassparen

§ ooect ey W

— Pop Up Betban - Costrsly 3 pog-up
Fie e 00 2 put-dowen men fram which
B SER AN SEUE B De

Pop U Benen Cell - Defiaes the
ekl B pRaningt of pap-ug Buisni
1t dnplaw sog-um or pull-gowm

Double-click the pop up button to open its menu. Remove all the menu items from the pop up button. You will create those programmatically.

In MyDocument . h, add two outlets, an array, and an action:

#import <Cocoa/Cocoa.h>

@interface MyDocument : NSPersistentDocument {
IBOutlet NSBox *box;
IBOutlet NSPopUpButton *popUp;
NSMutableArray *viewControllers;

- (IBAction)changeViewController:(id)sender;
@end

Back in MyDbocument . xib, control-click on File’s Owner to bring up the Connection panel, and set the two outlets.
Now Control-drag from the pop-up button to File’s Owner to set its target. The action should be changeviewController:.

Create the ManagedViewController Class

Create a new Objective-C class that subclasses NsviewController, and name it ManagingViewController. We are subclassing NSViewController SO
that each of our view controllers will have an NsManagedobjectcontext. Use the project navigator to delete the Managingviewcontroller.xib file that
Xcode created for us alongside the .nh and .m; we will create XIBs for our ManagingViewController subclasses. Edit ManagingviewController.h:

#import <Cocoa/Cocoa.h>

@interface ManagingViewController : NSViewController {

NSManagedObjectContext “managedObjectContext;
}

@property (strong) NSManagedObjectContext *managedObjectContext;
@end

INManagingviewController.m, remove the initializer created by the Xcode template, synthesize managedobjectContext:
#import "ManagingViewController.h"

@implementation ManagingViewController
@synthesize managedObjectContext;

@end

Create ViewControllers and their XIB files

Now you are going to create two separate views that will be swapped into the box you created. Each view has its own controller: a subclass of
ManagingViewController. Thus, you are going to do the same basic steps twice:

1. Create a subclass of ManagingViewController to act as File’s Owner.

2. Create a XIB file for the view.

One view will be for looking at departments in a company. The other view will be for looking at the employees of a company. You will do the pepartments
view first.

In Xcode, create anObjective-C class that subclasses ManagingvViewController, and name

it DepartmentViewController. In
DepartmentViewController.h, import ManagingViewController.h.

In Xcode, create a new view XIB (Mac OS X -> User Interface -> View). Name it DepartmentView. Open pepartmentview.xib. Put a few text fields and a

couple of butons on the view. (We aren’'t going to use these controls; we just want you to see something interesting when the view appears in the box.)

In the 1dentity Inspector, setthe class of File’s Owner to be pepartmentviewcontroller. Control-click on File’s Owner and drag to the view (labeled
Custom View) to set the view outlet. (The view outlet is defined in Nsviewcontroller.) Save the XIB file.

Figure 31.4. Introducing the View Controller to Its View

. L . — =
> D.: |m Elaos og =
.
Run og Schense Breakpoints = Editor Wiew Ovganzer
w4 » [Deparvments Depariments [DepammennVies. xib File's Dwmer
T Placeholders
=] File's Owmner
¥ Cutlers
-
¥ Referencing Outhets
e Refarmscing Ousier o] i
item 1

Back in pepartmentviewController.m, give the controller a XIB and a title in its init method:
- (id)init

self = [super initWithNibName: @"DepartmentView"
bundle:nil];

if (self) {
[self setTitle:@"Departments"];

return self;

}

OK? Good. Do it again for EmployeeViewController:
* Create a class called EmployeeViewController, and make it a subclass of ManagingviewController.
» Make a XIB file (named Employeeview.xib) with a view.
* Put a text view (or something else pretty) on the view.
* Set the class of File’s Owner to be EmployeeViewController.
* Set the view outlet of File’s Owner to point to the view.
* Add an init method to EmployeeViewController.m:
- (id)init
{

self = [super initWithNibName:@"EmployeeView"
bundle:nil];

if (self) {
[self setTitle:@"Employees"];

}

return self;

Add View Swapping to MyDocument

Now you need to create instances of the controllers in Mypocument and add them to the viewControllers array. Add this to MyDocument .m:

#import "MyDocument.h"

#import "DepartmentViewController.h"
#import "EmployeeViewController.h"
@implementation MyDocument

- (id)init

self = [super init];

if (self) {

viewControllers = [[NSMutableArray alloc] init];

ManagingViewController *vc;

vc = [[DepartmentViewController alloc] init];

[vc setManagedObjectContext:[self managedObjectContext]];
[viewControllers addObject:vc];

vc = [[EmployeeViewController alloc] init];
[vc setManagedObjectContext:[self managedObjectContext]];
[viewControllers addObject:vc];

}

return self;

}
Create the method that swaps the view in:
- (void)displayViewController:(ManagingViewController *)vc
Il Try to end editing

NSWindow *w = [box window];
BOOL ended = [w makeFirstResponder:w];

if (lended) {
NSBeep();
return;

}

/I Put the view in the box
NSView *v = [vc view];
[box setContentView:v];

}

Declare that method in Mybocument .n (also let the complier know about the class ManagingviewController):
@class ManagingViewController;

- (void)displayViewController:(ManagingViewController *)vc;

A pop-up button is basically a button with a menu. When the NIB file is loaded, you need to load the menu with an item for each controller. Add this code
{0 MyDocument . m:

- (void)windowControllerDidLoadNib: (NSWindowController *)wc
{

[super windowControllerDidLoadNib:wc];

NSMenu *menu = [popUp menu];

NSUinteger i, itemCount;

itemCount = [viewControllers count];

for (i =0; i <itemCount; i++) {
NSViewController *vc = [viewControllers objectAtindex:i];
NSMenultem *mi = [[NSMenultem alloc] initWithTitle:[vc title]
action:@selector(changeViewController:)
keyEquivalent:@""];
[mi setTag:i];
[menu additem:mi];

I Initially show the first controller
[self displayViewController:[viewControllers objectAtindex:0]];
[popUp selectitemAtindex:0];

}

Note that the tag of the menu item is set to the index of the controller in the viewcontroliers array that the menu item represents. We can use the tag in
the action method that the menu items trigger:

- (IBAction)changeViewController:(id)sender

{
NSUinteger i = [sender tag];
ManagingViewController *vc = [viewControllers objectAtindex:i];
[self displayViewController:vc];

}

Build and run the application. The pop-up button should enable you to jump back and forth between the two views.

Resizing the Window

What if the two views are radically different sizes? Wouldn't it be nifty if the window would stretch and shrink to make the box fit the view perfectly? You are
going to add that now.

Open the view XIB files and make the two views different sizes.

In MmyDocument . xib, select the box and use the Size Inspector to make it resize with the window (Eigure 31.5).

Figure 31.5. Size Inspector for Box

5 Departments - MyDocument.xib

"-' | Finished running Departmenis | - B E E Q IE l
B . Mo Ixsuas Wigw mw
b5 IDepartm MyDocu MyDvew 2= Window | B2 View | B3 Box - Box | [a = e S0 6 =
Ak 377 255 [3)
a N “ﬁl‘lﬂM Width He J|*|

- -[ﬂ

Aurosizing xample

Select the window. In the Attributes Inspector, prevent the user from resizing the window (Figure 31.6).

Figure 31.6. Disable Resizing for Window

Departments - MyDocument.xib

Finished running Departments w @Em .

No tssuas | View Ceganizer
imentxib » 7 MyDocumentxib (English) » &= Window | D . B ® &£ O & =
| v Window
s Title | Window
Window = = ==
Autosave | Autosave Name
E“ | Contrals M Close | Resize
&S Minimize
| Appearance [Textured E Shadow

\

Disable resizing

In MyDocument .m, add the following lines to the displayviewController: method:

- (void)displayViewController: (ManagingViewController *)vc

{
// End editing

NSWindow *w = [box window];
BOOL ended = [w makeFirstResponder:w];
if ('ended) {
NSBeep () ;
return;
}
NSView *v = [vc view];

Il Compute the new window frame

NSSize currentSize = [[box contentView] frame].size;
NSSize newSize = [v frame].size;

float deltaWidth = newSize.width - currentSize.width;
float deltaHeight = newSize.height - currentSize.height;
NSRect windowFrame = [w frame];
windowFrame.size.height += deltaHeight;
windowFrame.origin.y -= deltaHeight;
windowFrame.size.width += deltaWidth;

Il Clear the box for resizing

[box setContentView:nil];

[w setFrame:windowFrame
display:YES
animate:YES];

[box setContentView:v];

}

Build and run the app. When you change views, the window should resize to fit the new view.

Chapter 32. Core Data Relationships

It is time to delve a bit deeper into Core Data. In Chapter 11, you dealt with a single entity (car). In most applications, you will have multiple entities and
relationships between them. Core Data supports to-one relationships and to-many relationships (ordered or unordered).

In this exercise, there will be two entities: Employee and bepartment. An employee will work for one department. A department will have a set of
employees; one employee (chosen from its set) will be a manager. Thus, there are three relationships (Figure 32.1).

Figure 32.1. The Data Model

department
Department
deptName = @"Sales” o
P manager —____| Employee
firstName = @"Bamey”
employees 5 lastMame = @"“Jones”
=
g
B Employee
e firstName = @"“Mark"
a lastMame = @"“Kane”
department

Edit the Model

In this section, you are going to be extending the pepartments project that you started in the previous chapter. Open Mybocument . xcdatamodel. Add two

entities, Employee and Department.
An Employee Will have the two attributes firstname and 1astname, both strings, as well as a to-one relationship called department with bepartment. Add

these properties (Figure 32.2).
Figure 32.2. Employee Entity

ANH ™ Departments - MyDocument.xcdatamodel
= . 3 Bulld Departments: Succeeded | Today at 6:39 PM =11 Feil=1lE |
|'\:)' B0z Ll | | m_ra mif=]fm |
Run Siep Scheme Betakpairns ! Lt L Editar VW L]
R El:npa':meﬂu Deparements MyDocumentxcdatamadeld @ MyDocument xcdmamodel ﬂ Employes
bl ¥ ARtribwbes
@ Deparmenn Amibute & Type
& SRR, S— L H firsbiame String §
T B usthame String :
ONFICURATIONS +
@ Default
¥ Relationships
Ralationabip sl Deatingtion Imverse
[departmant Department 3 Mo lrverse |
+
== o o
Quntiine Style Add Entity Add Attribute Editoa

You can't set the inverse until
you have created a relationship
in the Department entity.

A Department Will have an attribute deptname, a string; a to-many relationship called employees with Employee; and a to-one relationship called manager
with Employee. Add these properties (Figure 32.3).

Figure 32.3. Department Entity

anf 2 Departments - MyDocument.xedatamodel

.:.:../,‘ B0t [m] [Build Depariments: Succeeded | Todayat6:39PM | EBlozl (ool (=

Run Swp Scheme Breakpoints =L Editor iew Organzer
= 4 = [5ocpartments Depanm., syDaocu... aMyDocu... - [Depanmen: lgemﬁnm:.i o B &

ENTITIE =T Relationatip
| E . Amribate wiled Tyne Name emnploytes

B tployee A deptrame String : Destination| Employee 3]

FETCH REQUESTS

@ Defaui

Redation: bigs
Reldtioaihin sl D Lindien Irvviri
dl emnpic péen B
[manager Employee & o Inverse *
ol & =
+ = — e
il Osgect Ubrary. k) (B b

Feiched Froperties

Fetched Popery & Brec Cabe Push Bution - [mnerceses moute - m

dirweh dvents 3nd ends an aiton
meLEage 10 & Earget chjecl when

Note that the department relationship of Empioyee and the empioyees relationship of pepartment are inverses. Be sure that the inverse is set for both of
these relationships (as is shown in the screenshots).

The manager relationship will not have an inverse. You may get a warning about this when you compile: Disregard the warning.

Create Custom NSManagedObject Classes

You will want to display an employee’s full name, so you are going to create a custom class to hold employee data. This class will be a subclass of
NSManaged Object.

A department can be managed only by an employee who works for that department. When an employee who is the manager leaves the department, you
will need to set the manager to ni1. This will be handled by the custom NsManagedobject subclass for the pepartment entity.

Make sure that your MyDocument.xcdatamodel file is open in the editor, and select one of the entities. In Xcode, select the Editor -> Create
NSManagedObject Subclass... menu item. Create classes for Employee and bepartment. (Figure 32.4)

Figure 32.4. Creating an NSManagedObject Subclass

ne ¥ Departments - MyDocument.xedatamodel

= ey [e Deparimens: Succeaded | Toawas20m | EESTC| () (o
(0. e] o =

Zop -Scheme Bregkpomis e Inan Edivor imw Orgaries

EE— D B|&
B8 = Ek L1 Departments W a P
[eparmen | i Degarmencs _____» | ' ' Oepartrarn
@ employee : ' s ' Department
FETT ACLS ! Abgeracn Ennity
CONFIGURATIONS F Desiaop gt St Erety i
(@ Default Documents
2% adarm & Waloe
o Apgticati =
.
Ll Projecs o - o .
3)& m
Group: - Depariments -+ Iisrary RT=
. b Button - intercests moge- 1
Add to targets; A Deparments n events and sends an actan
$3ge 10 2 carget object when
dient Rutton - iMetepts
se-doven events and sends an
N MESSEGE 00 3 target object
E = e nded Rect Button - Interepts .
| - nd 5
Dutling Seyln Add Envity _ Wew Folder _Cancel) Cremted) . -

Employee

In Employee.h, change firstName and lastName t0 be copy instead of retain, and declare the read-only property ful1name:

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Department;

@interface Employee : NSManagedObject {
@private

}

@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, retain) Department *department;
@property (nonatomic, readonly) NSString *fullName;

@end

In Employee.m, implement the method fuliName:

- (NSString *)fullName
{

NSString *first = [self firstName];
NSString *last = [self lastName];
if (first)

return last;

if (Nlast)
return first;

return [NSString stringWithFormat:@"% @ % @", first, last];
}

We are going to bind the column of a table to the fuiivame key. If firstName Or 1astName iS changed, it is important that observers of fuliname get
informed that it has also changed. You are going to override a class method to specify what keys cause changes in ful1Name:

+ (NSSet *)keyPathsForValuesAffectingFullName

return [NSSet setWithObjects: @"firstName", @"lastName", nil];
}

Department

In our model, a manager must be a member of a department. As such, if we are asked to remove an employee who is the manager of this department,
we want to set the manager to ni1. To enforce this, implement these methods in bepartment .m:

#import "Department.h"
#import "Employee.h"

@implementation Department

@dynamic deptName;
@dynamic manager;
@dynamic employees;
- (void)addEmployeesObject: (Employee *)value
{
NSLog(@"Dept % @ adding employee % @",
[self deptName], [value fullName]);
NSSet *s = [NSSet setWithObject:value];
[self willChangeValueForKey:@"employees"
withSetMutation:NSKeyValueUnionSetMutation
usingObjects:s];
[[self primitiveValueForKey: @"employees"] addObject:value];
[self didChangeValueForKey:@"employees™
withSetMutation:NSKeyValueUnionSetMutation
usingObjects:s];

- (void)removeEmployeesObject: (Employee *)value

{
NSLog(@"Dept % @ removing employee % @",
[self deptName], [value fullName]);
Employee *manager = [self manager];
if (manager == value) {
[self setManager:nil];

}
NSSet *s = [NSSet setWithObject:value];
[self willChangeValueForKey:@"employees"
withSetMutation:NSKeyValueMinusSetMutation
usingObjects:s];
[[self primitiveValueForKey:@"employees"] removeObject:value];
[self didChangeValueForKey:@"employees"
withSetMutation:NSKeyValueMinusSetMutation
usingObjects:s];

}

@end

Lay Out the Interface

Before you begin editing the XIB files, a warning: There are a lot of bindings to make in this exercise. Be patient. Remember: In this book, you will never
bind to a scroll view or a cell. You will, however, bind to table columns. Watch the title of the jump bar to be certain of what you are binding.

In pepartmentview.xib, put two buttons, two table views, and a pop-up button on the view. Place a label that says Manager above the pop-up. Embed the
label, the pop-up, and one table view in a box. Create three array controllers and label them Depts, ManagerPopUp, and EmployeelList (Eigure 32.5).

Figure 32.5. Basic Layout

LR 5 Depantments - DepartmentView.xib
N A T | Build Degariments: Swcceeded | Todsy at 6.3 PM ! =i = =1 =
(») (mifo. 3] [= , Elo[) (D[al0) (@
Bun %top Scheme Breakpoints. S Ve Editor Wiew Oeganizer
= - p :lDewmunu Depanments NIBs DepanmentView.wis B2 Custom View

) Maceholders

File"s Qe
@ First Responder Departments Box
o, Apglication Text Cell Manager-fiiem1]

i Chiects Ernployees
e e el Text Cell

B2 Scroll Wiew - Tabile Wiew
¥ Rownd Tewtured Button
" Rownd Tewtsned Burton
B2 Box - Box

& Depts

& managerPopup

@ EmployeeList

| Add | | Remove

Set the target of the two buttons to be the Depts array controller. The Add button’s action should be add:. The Remove button’s action should be remove:.

The Depts array controller should be in Entity mode and pulling from the pepartment entity. Check the box that says Prepares Content, forcing it to fetch
from the object store as soon as the NIB file is loaded (Figure 32.6).

Figure 32.6. Depts Array Controller Attributes

ane 5 Depantments - Departmentiew.xib [
|':E/|' | L:E.Ij'l l:_.l | Bulld Depariments: Swcceeded | Today at 639 PM | EJ'_Z_J |EJ?|;E lEJ
Bun fiop Scheme Breakpoints i Editor Wiew Dvganizer

=g e gmmmgnu Departments NiBs DepanmentView. s B8 Asray Controtier |D B B % = & & B
Array Controller

! Paceholders
st B Avoid Emnply Selection
File's Ownes : # Preserve Selection
W First Responder Depanmeray Box #f select imsermed Dbgects
T i -
oy Apglicatian Text Cell Manager: | fem 1 4 Ciear Filver Predicase O |
L = Aat Rearrange Content
T Objecs L
Employees 1 Adways Use Multl Yakue M.
IS Customn View Text Call Oibjert Contraler
B2 Scroll Wiew - Table Wiew
" Rownd Textured Bution SIOGH |- bty Hisre |
" Rownd Testersd Butien Entiry Mame: | Departrment
- 52 Box - Box # Prepares Cantesn
e T Uses Lizy Fetcking
@ Managerboplip ™ Editatie
@ Cmployeelist ferch Fredicane)

O i@ m

Use Table 32.1 to set the bindings. Bindings are set in the Bindings Inspector.

Table 32.1. Bindings for DepartmentView.xib (AC = Array Controller)

Object Binding To Controller Key Keypath

Depts AC Managed Cbject File's Qwner managedObjectContext
Context

ManagerPopUp AC Content Set Depts AC selection empl oyees

Employeelist AC. Content Set Depts AC selection employees

Departments Value Depts AC arrangedObjects deptMame

column

Remaowve button Enabled Depts AC canRemove

Employees column Value EmployeeList AC ~ arrangedObjects fullName

Pop-up Content ManagerPoplUp AL arrangedObjects

Pop-up Content values ManagerPopUp AC. arrangedObjects fullMame

Pop-up Selected object Depts AC selection manager

Box Title Depts AC selection deptMame

On the last binding, use no selection for the No Selection Placeholder. Use unnamed pepartment as the Null Placeholder.

You can build and run your app. You should be able to add and remove departments.

EmployeeView.xib

Open Employeeview.xib, and remove anything on the view. Add a table view with three columns. Drop a pop-up cell (from the Library's Cocoa->Views &
Cells->Cells) on the third column. Add Add and Remove buttons. Add two array controllers and label them Employees and DeptPopUp. See Figure
32.7.

Figure 32.7. Basic Layout

ang 7 Depariments - Employeeview.xib

(») (m)[o..:) (=] rished rannimg Departments [= [EE = =
Run g Scheme Breakpoints : 3 Editor Wiew Organazer

=l & : Departments Depanmints XIBs EmployeeVidw il | B2 Custom View 4

71 Placeholders

File's Owner
a First Responcer Tirst Mame Laat Name Department

A App n

Appicato Tt Cell Text Cell
% Objects
| - LAt |
B2 Scrofl View - Table View
" Rownd Textuned Button
B Bognd Textored Button
& Employees
& DeprPoplp

Add | | Remove

The Employees array controller should be in Entity Name mode and pulling from the Employee entity. The DeptPopUp array controller should be in Entity
mode and pulling from the pepartment entity. Both should automatically prepare content.

Make the Employees array controller the target of the two buttons. The Add button should trigger adda: . The Remove button should trigger remove:.

Set the bindings according to Table 32.2.

Table 32.2. Bindings for EmployeeView.xib

Object Binding To Controller Key Keypath

Employees AC. Managed Object Context File's Owner managedObjectContext
DeptPopUp A(. Managed Object Context File's Owner managedObjectContext
Remave button Enabled Employees AL, canRemove

“First” column Value Employees A, arrangedObjects FirstName

“Last” column Value Employees A(C arrangedObjects lastMame

“Dept” column Contant DeptPopUp AC arrangedibjects

“Depi” column Content values DeptPopUp AC, arrangedObjects deptanme

“Dept” column Selacted abject Employees AC arrangedObjects department

Build and run your app. You should now be able to add and remove employees. You should be able to set the manager of a department as well.

Events and nextResponder

The event methods (such as mousebown: and keyDown:) defined in NSResponder typically just forward the event on to the nextResponder. Thus, unhandled
events flow up the responder chain.

So, for example, when someone selects a row in a table view and presses the Delete key, that flows up the responder chain until it is handled. Let's
handle this case for the Employeeview Of the Departments project. The NsviewController is a subclass of NsrResponder, SO We can put it in the responder
chain and it can handle unhandled keyboard events. Add these lines to the end of displayviewController: iNn MyDocument .m:

[box setContentView:v];
/I Put the view controller in the responder chain
[v setNextResponder:vc];
[vc setNextResponder:box];
}

Add these two methods to EmployeeViewController.m:

Il Accept key events
- (void)keyDown:(NSEvent *)e
{

[self interpretKeyEvents:[NSArray arrayWithObject:e]];

I/l Take care of the delete key
- (void)deleteBackward:(id)sender

[employeeController remove:nil];

Now, if it gets a keyDown: event, the view controller will ask that the event be interpreted. If the key event was a Delete key press, deleteBackward: Will
be called, in which we send the remove: message to the array controller.

Now you need an outlet named employeecontroller. Add itin EmployeeviewController.h:
IBOutlet NSArrayController *employeeController;

Open Employeeview.xib. Control-click on the File’s Owner. Drag from the employeecontroller outlet to the Employees array controller.

Build and run the application. Select an employee and press the Delete key. The employee should disappear.

Chapter 33. Core Animation

As Mac OS X has evolved, it has used OpenGL more and more to utilize the power of modern graphics processors. To make some of these capabilities
convenient for all programmers, Apple created Core Animation in Mac OS X 10.5. Core Animation is extremely versatile, being useful not only for
animating Ul components but also as a tool for creating custom Ul elements from scratch.

The central class in Core Animation is caLayer, which you can think of as a building block. lts appearance can be configured in numerous ways through
its properties. Among them are position, size, image contents, background color, border, shadow, and corner radius. It's also possible to mask a layer
with another, as well apply a 3D transform. Most properties can be animated simply by setting a new value.

Layers are similar to views in some ways. Like views, layers are arranged in a hierarchy. A view can be covered with a layer, and that layer can have
sublayers. You can also draw into a carayer, not unlike a custom view. Unlike views, however, layers do not receive user input events (mouse, keyboard)
and are not part of the responder chain.

Manipulating a layer’s properties will animate it, but we sometimes need more control. caanimation and its subclasses let us fine-tune animations.
CATransaction Can be used to group and synchronize multiple animations, as well as to disable animations temporarily.

Scattered

Let's create an application that uses Core Animation to drive the interface. This particular application will load all the images it finds in a folder and
display them using carayer objects (Figure 33.1). For this exercise, we'll use dot notation for setting properties on Core Animation objects.

Figure 33.1. Completed Application

[z HaNs) Scattered

In Xcode, create a new project called scattered with a Class Prefix of scattered. Set it to not be document based. Since we will be using Core
Animation, add the QuartzCore framework. Switch to the project navigator and select the Scattered project item. In the project editor, select the Scattered
target and click the button below Linked Frameworks and Libraries. Select guartzcore. framework.

Next, open scatteredAppDelegate.h. Import guartzcore.h and add the following instance variables:

#import <Cocoa/Cocoa.h>
#import <QuartzCore/QuartzCore.h>

@interface ScatteredAppDelegate : NSObject <NSApplicationDelegate> {
IBOutlet NSView *view;
CATextLayer *textLayer;

}
@property (assign) IBOutlet NSWindow *window;

@end

OpenMainMenu. xib. Select the window in the Interface Builder dock to show the window, then drag a Custom View onto it. Size it to fill the window. Make
sure that it is reasonably large, at least 500 x 500.

Right-click on the Scattered App Delegate in the dock to show its Connections panel. Drag a connection from the view outlet to the custom view you
created (Figure 33.2).

Figure 33.2. Custom View in Window

A MO Scattered

Open ScatteredAppDelegate.m and make the foIIowing additions:
#import "ScatteredAppDelegate.h"

@interface ScatteredAppDelegate ()

- (void)addimagesFromFolderURL:(NSURL *)url;

- (NSImage *)thumblmageFromimage:(NSimage *)image;
- (void)presentimage:(NSIimage *)image;

- (void)setText:(NSString *)text;

@end

@implementation ScatteredAppDelegate
@synthesize window;

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification
{
srandom((unsigned)time(NULL));

Il Set view to be layer-hosting:
view.layer = [CALayer layer];
[view setWantsLayer:YES];

CALayer *textContainer = [CALayer layer];

textContainer.anchorPoint = CGPointZero;

textContainer.position = CGPointMake(10, 10);

textContainer.zPosition = 100;

textContainer.backgroundColor =
CGColorGetConstantColor(kCGColorBlack);

textContainer.borderColor = CGColorGetConstantColor(kCGColorWhite);

textContainer.borderWidth = 2;

textContainer.cornerRadius = 15;

textContainer.shadowOpacity = 0.5f;

[view.layer addSublayer:textContainer];

textLayer = [CATextLayer layer];

textLayer.anchorPoint = CGPointZero;

textLayer.position = CGPointMake(10, 6);

textLayer.zPosition = 100;

textLayer.fontSize = 24;

textLayer.foregroundColor = CGColorGetConstantColor(kCGColorWhite);
[textContainer addSublayer:textLayer];

/I Rely on setText: to set the above layers' bounds:

[self setText:@"Loading..."];

[self addimagesFromFolderURL.:
[NSURL fileURLWithPath:@"/Library/Desktop Pictures™]];
}

@end

Before we continue, let's discuss what we’ve done so far. When the application launches, we will seed the random number generator. Then we configure
the view to be layer-hosting by first assigning its layer property and then calling setwantsLayer: with ves. The order of these calls is important. If we had
not assigned the layer first, the view would have been configured as layer-backed, which is designed for animating views rather than Core Animation
layer hierarchies.

Next, we configure two layers: textcontainer and textLayer. The first layer, textcontainer, is aninstance of caLayer (the most basic layer type) and will
create a rounded rectangle filled black with a white border and a shadow. The second layer, textLayer, iS @ cATextLayer, Which not surprisingly can be
used to display text. (Note how properties are used extensively in Core Animation to configure the various graphical elements.)

The first layer, textcontainer is added to the view's layer, and textlayer is added to the textcontainer (Figure 33.3) . Note that the anchorpoint for
each layer is set to (0, 0), which equates to the lower-left corner. The default anchorroint for a layer is (0.5, 0.5), which is the center of the layer. The
anchorPoint governs the position of the layer relative to its position property.

Figure 33.3. Completed Application

NSView
CALayer
Layer-hosting view —|
view.layer
textContaingt {E}ALay&r =
exi-ontaine CATextLayer
textLayer |
| ¥

Next, setText: is called, which sets the bounds of the layers. The bounds describe the size of the layer; by default, layers have bounds of (0, 0, 0, 0).
Layers do have a frame property, like views, but it is more common to set the position and bounds independently.

Next, implement setText:, thumbImageFromImage:, and addImagesFromFolderURL:. While you may not be familiar with the specific APIs being used, you
should have a general idea of what they are doing.

- (void)setText:(NSString *)text
{

NSFont *font = [NSFont systemFontOfSize:textLayer.fontSize];

NSDictionary *attrs = [NSDictionary dictionaryWithObjectsAndKeys:
font, NSFontAttributeName, nil];

NSSize size = [text sizeWithAttributes:attrs];

/I Ensure that the size is in whole numbers:

size.width = ceilf(size.width);

size.height = ceilf(size.height);

textLayer.bounds = CGRectMake(0, 0, size.width, size.height);

textLayer.superlayer.bounds = CGRectMake(0, 0, size.width + 16,

size.height + 20);
textLayer.string = text;

}

- (NSImage *)thumblmageFromimage:(NSimage *)image

const CGFloat targetHeight = 200.0f;

NSSize imageSize = [image size];

NSSize smallerSize = NSMakeSize(targetHeight * imageSize.width /
imageSize.height,
targetHeight);

NSIimage *smallerimage = [[NSImage alloc] initWithSize:smallerSize];

[smallerimage lockFocus];
[image drawinRect:NSMakeRect(0, 0, smallerSize.width,
smallerSize.height)
fromRect:NSZeroRect

operation:NSCompositeCopy
fraction:1.0];
[smallerimage unlockFocus];

return smallerimage;

}
- (void)addimagesFromFolderURL:(NSURL *)folderURL
NSTimelnterval t0 = [NSDate timelntervalSinceReferenceDate];

NSFileManager *fileManager = [NSFileManager new];
NSDirectoryEnumerator *dirEnum =
[fileManager enumeratorAtURL:folderURL
includingPropertiesForKeys:nil
options:NSDirectoryEnumerationSkipsHiddenFiles
errorHandler:nil];

int allowedFiles =10;

for (NSURL *url in dirEnum)
{
Il Skip directories:
NSNumber *isDirectory = nil;
[url getResourceValue:&isDirectory
forKey:NSURLIsDirectoryKey
error:nil];
if ([isDirectory boolValue])
continue;

NSIimage *image = [[NSImage alloc] initWithContentsOfURL.: url];
if (limage)
return;

allowedFiles--;
if (allowedFiles < 0)
break;

NSIimage *thumbimage = [self thumblmageFromimage:image];

[self presentimage:thumblmage];
[self setText:[NSString stringWithFormat:@"%0.1fs",
[NSDate timelntervalSinceReferenceDate] - t0]];

}

Finally, implement presentImage: in scatteredappbelegate t0 animate the supplied image onto the view, starting from a tiny speck in the middle and
expanding out to a thumbnail version at a random point on the view:

- (void)presentimage: (NSimage *)image

CGRect superlayerBounds = view.layer.bounds;
NSPoint center = NSMakePoint(CGRectGetMidX(superlayerBounds),
CGRectGetMidY(superlayerBounds));

NSRect imageBounds = NSMakeRect(0, 0, image.size.width,
image.size.height);

CGPoint randomPoint = CGPointMake(
CGRectGetMaxX(superlayerBounds) *
(double)random() / (double)RAND_MAX,
CGRectGetMaxY(superlayerBounds) *
(double)random() / (double)RAND_MAX);

CAMediaTimingFunction *tf = [CAMediaTimingFunction
functionWithName:kCAMediaTimingFunctionEaselnEaseOut];

CABasicAnimation *posAnim = [CABasicAnimation animation];
posAnim.fromValue = [NSValue valueWithPoint:center];
posAnim.duration = 1.5;

posAnim.timingFunction = tf;

CABasicAnimation *bdsAnim = [CABasicAnimation animation];

bdsAnim.fromValue = [NSValue valueWithRect:NSZeroRect];
bdsAnim.duration =1.5;
bdsAnim.timingFunction = tf;

CALayer *layer = [CALayer layer];

layer.contents = image;

layer.actions = [NSDictionary dictionaryWithObjectsAndKeys:
posAnim, @"position",
bdsAnim, @"bounds", nil];

[CATransaction begin];

[view.layer addSublayer:layer];

layer.position = randomPoint;

layer.bounds = NSRectToCGRect(imageBounds);
[CATransaction commit];

}

That's it! Run the application. You should see ten images animate out from the center of the window.

Implicit Animation and Actions

Before we talk about what's going on in presentImage:, let's look at how the most basic animation is done with Core Animation. Imagine that you have a
caLayer called 1ayer thatis displayed on the screen. Suppose that you set its position:

layer.position = CGPointMake (50, 50);

This simple action animates the layer from its current position to the new position: implicit animation. Many properties of layers can be animated by
simply setting them. The setText: method uses implicit animation to change the size of the black status bubble.

What if we want to customize these animations? As it turns out, there are several styles for achieving customization, which can make Core Animation
rather confusing. The most straightforward method is by means of carayer’s actions property, which takes a dictionary. The actions dictionary
associates properties (string keys) with the animation (caanimation subclass) to be used when animating that property. The actions dictionary is used
by Core Animation to determine what to do when a property is assigned.

CABasicAnimation iS, well, the most basic animation class. It has two important properties: fromvalue and tovalue. By setting one or both of these, you
will influence the start and end values of the property you are animating. In presentImage:, you will note that we set only the fromvailue. Thus, later in the
method when we assignproperty and bounds, Core Animation can look in the actions dictionary to determine what animation to use for those
properties. Because only fromvalue is set, the properties will be animated from rromvalue to the value that we assigned. Specifically, we animate the
position from the center to a random point and the bounds from zero to the size of the thumbnail, simultaneously.

Note that to have the layer display the image, we simply assign it to the contents property. The contentscravity property affects how contents is scaled
(or not scaled). In this application, we have sized our layers to match the size of the image, so no scaling is necessary.

Last, our use of caTransaction iS notable. caTransaction enables us to group several changes to be executed at once by surrounding them in calls to
[CATransaction begin] and [CATransaction commit]. Try commenting out the surrounding begin/commit calls. You may notice some flickering in the
display as the layers are shown before the animation begins.

caTransaction has methods to affect changes on the actions within the current transaction, such as changing the duration, timing functions, or perhaps
most useful, disabling all actions, which turns off animations:

[CATransaction setDisableActions:YES];

You may have noticed that Scattered presently limits the number of files loaded to ten. If you comment out that limit, you'll see why. We’ll address that in
the next chapter.

More on CALayer

carayer allows you to control quite a bit about its appearance through its properties. But what if that wasn’'t enough: What if you wanted to do custom
drawing in a caLayer? The caLayerDelegate method drawLayer: inContext: allows you to do just that with Core Graphics/Quartz.

However, much of the time, you will simply want to control a few common things:
* Animage
» The background color
» Whether the corners are rounded and, if so, how much
» Animage filter to run the contents of the layer through
Subclasses of caLayer make particular kinds of drawing easier.
» As we saw, drawing text on a layer is easier if the layer is an instance of caTextLayer.
* cashapeLayer makes drawing a stroked and/or filled path simple.

* caGradientLayer displays a configurable gradient.

*» Getting OpenGL calls onto a layer is easier if the layer is a subclass of caopencLLayer

* The base layer of a view is aninstance of _NsviewBackingLayer (not a public class!) that knows to draw the contents of the view upon itself.

Challenge 1

Add a text layer to each image layer to show the filename of that image. You will need to supply an additional parameter to presentImage:. Experiment
with adding shadows and borders to the layers.

Challenge 2

Add a button and a text field to the window. When clicked, the button should reposition all the image layers but not the rounded black text container layer!
Use the numeric value from the text field to set the duration of this repositioning animation.

Chapter 34. Concurrency

Until now, all the applications we’ve written in this book have been single-threaded. In simplistic terms, this means that only one thing is happening in the
application at any given time, such as responding to a button click, updating the display, or counting the number of objects in an array.

Of course, in some cases, it's very useful to be able to do many things at once. In a modern operating system, each application is running in its own
process; this division gives each application its own memory space, but it also allows the task scheduler to create the illusion that many applications are
running at once.

Multithreading

Threads give this same power to individual processes. Each thread in a process has its own stack, meaning that each thread can be executing its own
code path and has its own stack variables. The heap, however, where objects are allocated, is shared among all threads, as are global variables. Each
process starts with one thread, referred to as the main thread. Additional threads, called background threads, can be created at any time and will be
scheduled to run concurrently with the other threads in the process. This is called multithreading.

In Cocoa, the display is always updated by the main thread, which is also responsible for handling events from the window manager. Thus, if your
application’s main thread is busy calculating the value of pi to 6 trillion digits when the user tries to resize the window, the window will appear to ignore the
mouse input until the main thread gets back around to processing events. Calculating pi is a great use for background threads. Hardware /O is an even
better candidate, as hard disks are notoriously slower than processors and RAM. If your application calls for synchronous network communication
(asynchronous will not do), a background thread will allow life to go on in your application’s other threads even amidst network hiccups. By using
multithreading, your application can remain responsive to the user even while it is deep in thought.

The emphasis on multicore processors over the past several years has led to a number of Mac OS X improvements, namely NsoperationQueue and
Grand Central Dispatch, that make multithreading much more accessible to developers. In this chapter, we will look at Nsoperationgueue and some other
methods for creating background threads.

A Deep Chasm Opens Before You

While multithreading can be essential in certain applications, it also opens up an entirely new category of bugs that are notoriously difficult to fix: race
conditions. It is for this reason that we suggest that you carefully weigh the benefits of multithreading against the significant costs.

Race conditions occur when code is modifying the same data in two or more threads. Consider the classic case of two threads incrementing a global
variable (Eigure 34.1). Here is the global integer variable:

int globalCount = 0;

Figure 34.1. A Classic Race Condition

Thread A Thread B
0 -=— 1. Load globalCount - 0
o - - 2, Load globalCount —= O
| 4. Add 1
Tima
4. Add 1
1 — 5, Store (o giobalCount —= 1 l
\ 1 = 6. Store to globalCount — 1

Now imagine the two threads executing this code concurrently:

for (int 1 = 0; 1 < 1000; i++) {
globalCount = globalCount + 1;
}

It looks like the programmer’s expectation is that g1obaicount will be equal to 2,000 when both threads have completed. Depending on how the threads
are scheduled, however, the final value of g1oba1lcount may be much less. Why is this? The reason is that the thread scheduler may interrupt any thread at
any time in order to run another thread, or it may even run multiple threads simultaneously on the cores of a multicore system. So it becomes somewhat
dangerous that the statement

globalCount = globalCount + 1;
is actually several instructions:
i. Load the value of g1obalcount into a CPU register.

ii. Add 1 to this value.

iii. Store the result back to gl1obalcount.

Consider the effects of two threads running these instructions over and over. The incremented value of giobalcount by one thread runs a very high risk of
being clobbered by the other thread. Worse, the results of such code can be inconsistent between runs on different systems or even the same system.

This is a rather low-level example of a race condition, but it illustrates the general problem with multithreading: You cannot make any assumptions about
when a thread will be scheduled, how long it will execute before being interrupted, what other threads might be running at the same time, or exclusivity as
far as access to data. Usually, a race-condition bug will have much more serious implications than a not fully incremented integer.

Fortunately, Cocoa provides some tools for dealing with these problems. They won’'t be solved magically, and you will need to use the tools with care, as
they can create their own set of problems, such as deadlocks. We will examine one of these tools at the end of the chapter.

If you plan to use multithreading in your application, take some time early on to consider how your data structures will be used, and try to minimize any
sharing of data structures. Careful design will save you a lot of headaches down the road when it comes time to debug.

Simple Cocoa Background Threads

Now that you are sufficiently wary of multithreading, let's look at one way to create a background thread in Cocoa. NsThread.nh has a very handy Nsobject
category with the following method:

- (void)performSelectorInBackground: (SEL)aSelector withObject: (id)arg;

We can use this category method to create a background thread with just a selector:

- (void)buttonClicked: (id) sender
{

[self performSelectorInBackground:@selector (backgroundOperation:)
withObject:nil];

- (void)backgroundOperation: (id)unused

// do background work
// the thread will end once this method returns.

}

Easy, right? Behind the scenes, an NsThread instance is created that runs the selector on the receiver object (in this case, se1r).

Typically, it's not much fun to do something in the background. More often than not, we would like to update the Ul with the results of our background work.
Remember, any updates to the Ul must be made on the main thread; we can use another Nsobject category method,
performSelectorOnMainThread:withObject:waitUntilDone:, for that. Let’s flesh out our backgroundoperation: method a bit more:

- (void)buttonClicked: (id) sender
{
[self performSelectorInBackground:@selector (backgroundOperation:)
withObject:nil];

- (void)backgroundOperation: (id)unused

@autoreleasepool {
NSArray *results = nil;
// do background work
// the thread will end once this method returns,
// so let's report our results:
[self performSelectorOnMainThread:@selector (updateWithResults:)
withObject:results
waitUntilDone:NO]J;

- (void)updateWithResults: (NSArray *)theResults

[self setResults:theResults];
[tableView reloadData];
}

The method performSelectorOnMainThread:withObject:waitUntilDone: is very similar to performSelectorInBackground:withObject: in form but has
an interesting additional argument: waituntilbone. The waitUntilbone argument optionally makes this method block until the selector on the main thread
has completed. In this case, it is not needed; the witnhobject: parameter (results) is retained by this method until after the selector is performed.

Note that we added an autorelease pool to our thread body by using ecautoreleasepool. Whenever you create a background thread, you must supply your
own autorelease pool.

Improving Scattered: Time Profiling in Instruments

Open the scattered project from the previous chapter and find addImagesFromFolderURL: iN ScatteredAppDelegate. Find the a11owedriles variable,

which is used to limit the number of files opened to ten. Remove all traces of a11owedriles and run the application.

You should see an unresponsive window for several seconds, followed by the images appearing and animating. It looks like loading the images is
blocking the main thread, which is a poor user experience. We have a pretty good idea that the problem is related to loading images, since we just
removed the limit, but let’s prove it to ourselves.

Introducing Instruments

Instruments is a tool for analyzing a running program. The tool has many different plug-ins, called instruments, that enable you to look at various aspects,
usually performance related, of the running application.

In Xcode, open the Product menu and select Profile. Xcode will use the Release build configuration (configurable in the Scheme Editor) to rebuild the
project and will then start Instruments. Under Mac OS X, CPU in the template chooser, select Time Profiler and click Profile (Eigure 34.2). Instruments will
then run scattered. Once the images have animated, click the red Stop button in Instruments to stop profiling.

Figure 34.2. Choose the Time Profiler in Instruments

Profile 'Scattered’

Choose Trace Template or Existing Document:

%T_. Maz 05 X o

(

Memarny a

File System

Blank Time Profiler Multicore Dispateh
Behavior

. | —
User —_—
]
At "
Al B |
n Document b

Opén
Recent

Activity Manitor Sysiem Trace

& Time Profiler

Perfarms low-owerhead time-based sampling of processes running on the System's CPUs.

Cancel | |[Rrofiless|

The Instruments interface has several parts. The key ones are the Instruments list at the upper left; in this case, only one instrument, Time Profiler, is being
run. To the right is the track pane, which displays graphical data over time related to each of the instruments being run. Looking at the graph for the Time
Profiler, we can see that there was a fair burst of activity, probably related to loading the images. Below the track is the detail pane, which displays tabular
data related to the selected instrument (Eigure 34.3).

Figure 34.3. Running Scattered under the Time Profiler

|ana Instruments3
0 @) () | M Scattered J (o]] a4a:00:28 o ﬂrﬁmﬂ'ﬂ) (9 iny ¢
S S — < Runlofl »| *
Rucard Target Inspection Range ew Soarch
1= = £ A Currs, ; i Processen : Al Torzads) m) |
InsLruments 526k ' ; X 4 Y L 1800 g

| Ml
1 | 0 e

[s 1 m
< Time Prodiler 3 = Call Tree & | Cail Tree
* Sampie Parspective Bunreng elfiy Symibol Kame
142.0ms 5.3% [»decompress_onepass
v Call Tree B6.0m: 24% [»_cg jpeg idct_ixl
Separate by Thread s7.0ms 21% [§ »_cp ipeg idct dxd
¥ iowvert Call Tree 50.0ms LBN Fhzerol VARIANT fasel
iide Missing Symbals 39.0ms L% | | »_boopy
lide Syzsem Libearies. 3zoms L2% [evCMMVecorConvertSBRCETORGE
Show Obj-C Only 28.0ms 10N b __Bzero
Flasten Recursion 26.0ms 0U9% (& resample_byte_h_3cpp_vedtar
» Cail Tree Consiraints 24.0ms 0.9% rOx7HIBSd1932a
> Spaciic.Dias Mining 230ms 08K | ememmaeSVARIANTS 1330
21.0ms 0.7% [CMMEERIChankoConvEntoder: innerDofncodelCMMERIs constl, CMMESitBulferS, unsigeed long”,
20.0ms O.7H FRMap_remove_range
20.0ms 078 [FCMMESRIChanNoConvDecoder-innerDoDecodelCMMEBIN cons1l, CMMBESitButier constl, unsigned

Time Profiler works by taking snapshots of the application’s call stack repeatedly while it is running. This enables us to tell where the application is
spending its time but does not, however, tell us how many times a particular method has been called, as it has only been taking snapshots and does not
know when methods are entered and exited.

In the detail pane, we see the symbols sorted by time spent. Note the disclosure triangles in the Symbol Name column. Try clicking through them to
navigate the stack, or use the keyboard arrow keys to explore the tree if you prefer. Note that Invert Call Tree is checked by default; this means that we
are seeing the deepest functions where the CPU spent most of its time. You can toggle Invert Call Tree off to see the individual entry points to the
application. Sometimes, this will make it faster to find the information you need.

If you dig down far enough, you'll see that all this time is being spent in thumbImageFromImage: (@ quick way to find this is to enable Hide System
Libraries). If you show the Extended Detail pane (using the View segments in the toolbar), you can see another view of the stack; this tends to be very
useful when using memory-related instruments (Eigure 34.4).

Figure 34.4. Show the Extended Detail pane

&naea Instruments3
1 M Scattered .] [d 00:00:28 o | | D IFHE] “
|
Tasger insppesinn Range |4 ENEEObE " View Serch
All Processes 2 ML T o

e TP T T T P TP T T PP T P T P T TP P T T T P A R P T e P PP e P e e e —
o ¢ m

w Time Prodiler $ = Call Tree & Call Tree

Runnimg Sellv Symibnl Mame 3 i 3 5

[REBUMS S6.0% [vimg_oaza jeck : 8

1488 0ms 56.2% [wCSimagetanalock E 1488.0 -[ScarreredAppDelegane th

14B8 Oms 56.2% wripe_Acquireimags 14850 -Teanereddseleingars &

14B8.0ms 56.2% | ¥ripc_Dramimage 14880 -|ScattereddpeDeicpate a

L4g8.0ms 56.2% vCCComextDrawimage 25 L r

1488.0ms 56.2% v_-[MSImageRep crawinRecr fromfedt operation fraction respectilipped hints

1488.0ms 56.2% v-{NSimageRen drawinRect framRect operation fraction;respeetilipped: hints

1488.0ms 56.2% ¥__-[Wilmage grawinRect fromRect operation Mraction respectilipped: kints

1482 0ms 56.2% v [NSImage usingBestRepresent ationforRect context hints bady |

1488.0m1 56.2% v-{NSimage crawialect fromiect operation fraction respectiipped hine

L4B8.0ms 56.2% v [Nilmage drawinkect: fromRect operaticn: fraction |

L488.0ms 56.2% N v -[SeateredApaDelegate thumbimageremimage |

L4Ba.0ms 56.2% 8 r-[SeanercdAppDeingate adedmagesiromToidenil |

L4B8.0ms 56.2% Y ¥-GeateredAgnbelegate soplicaticnDudFinishLaunthing |

L4BE.Oms 56.2% ¥__-|NSNosif Carter addObserver selecior name object:|

1488.0m3 §6.2% ¢ _CPXNotificationPast

At this point, it's pretty clear that quite a bit of time is being spent creating the thumbnails. Try double-clicking on the stack frame for
thumbImageFromImage:. The detail pane will change to show the source code of that method, with highlighting to show how much time is spent on each
line (Eigure 34.5). Use the jump bar control above the detail view to return to the Call Stack.

Figure 34.5. Source Code Display

ana Instrumentsd
11)(®)(e) | m scattered 4 D [d] 00:00:26 @ || D f.—-:f.si Q- 5
Riegaed Target Inspeeion Range L BHEEOT - View Seareh

Extenced Detail
¥ Annotations
¥ Source
BB 37 image drawielecr M5MakeRect
1.59% [seralierimage lockFocus)
1 1ff @ 0.14% frmalierimage unleckFocus]
¢ Time Profiler $# =% Call Tre [0 -IScarteredAppDelegate thumbimageFromimage:]
LW B
(NSImage e]lthushImageFromleage: (NSImage =) image
I
(GFloat target
Ni%ize imageSize &
NESize smallerSize = NSMake
imagesize. height,

getHeight & imageSize.width /

targetHeight];

NSImage =smallerImage = [(NSIsage alloc] initwWithSize:ssallerSizel;
[zmallerlrzage lockFocus]; 1.5%
iimage. orasloRpctiiSakefect (0, @, smallerSire.wiath, ssalierSize. O 580
heignt)
P rosd

BEcR, QRRTAT ban NALenoeRATRt o0, Trastisn: .00

Ismallor]s

smallerImage;
]

L e dimidisddTmssssEranBnldackiDl o (MEHE]L widalda il

Another useful feature of Instruments is constraining the Inspection Range. You can set the range by using the toolbar buttons, but it's much faster to hold
down the Option key, click, and drag over the timeline. The information in the detail view will be limited to the selected range of time. This is helpful when
focusing on a specific performance problem.

We've only scratched the surface of what's possible with Instruments. As we’ve seen, it can be useful as a time profiler, but it also has a number of tools
for dealing with memory issues, including tracking usage and detecting leaks and strong reference cycles in ARC. As you work to improve the
performance of your applications, you will want to read Apple’s documentation for Instruments. WWDC videos can also be a great resource for learning to
use Instruments.

Analysis

Now we know for sure where the problem is: generating thumbnails is time-consuming; even worse, we’re doing that work in
applicationDidFinishLaunching:, Which ties up the main thread while the directory tree is traversed and each thumbnail is created.

There are generally two categories of blocking problems like this: CPU-bound and /O-bound. /O-bound problems revolve around waiting for slower
hardware to do its thing and return control to us. In a CPU-bound problem, the CPU is the bottleneck; decompressing dozens of JPEG images relies

heavily on the CPU. As we saw in Chapter 28, /O-bound problems can sometimes be solved using asynchronous /O, but doing so in this case could be
complicated.

In this case, we appear to have a mixture of both problems: It is disk-intensive to load many megabytes of data and CPU-intensive to decompress and
draw scaled-down thumbnails. One hint that this is the case is that the CPU is not 100% utilized (if it were, the Time Profiler’s graph would be straight
across the top). The simplest solution in cases like this is to put the work on a background thread.

We could do that by using performselectorInBackground:withObject:, but that's just one thread, so we wouldn't be taking any advantage of a multicore
machine. Creating multiple threads in this fashion would get complicated very quickly. We need something more sophisticated.

NSOperationQueue

Frequently, multithreading is used for processing chunks of information in the background. In such cases, Cocoa’s NsoperationQueue provides a much
more mature framework for organizing the processing, compared to the rather informal performselectorinBackground:withObject: and even creating
threads manually using NSThread.

NSOperationQueue represents a collection of operations (encapsulated by Nsoperation) and manages the execution of those operations on one or more
threads. Every application has a main queue that represents the main thread; it is accessed by [nsoperationQueue maingueue]. If the application needs
additional queues, it can create and configure them simply by allocating and initializing a new NsoperationQueue.

By default, Nsoperationgueue Objects are configured to run several operations concurrently; the exact number is determined automatically by the system.
You can override this configuration by calling setMaxConcurrentoperationCount:. A maximum concurrent operation count of 1 results in a serial queue.
The main queue is always serial.

Multithreaded Scattered

Let's modify scattered to use Nsoperationgueue and try to improve it.

Open scatteredappbelegate.h and add an instance variable for the NsoperationQueue:

#import <Cocoa/Cocoa.h>
#import <QuartzCore/QuartzCore.h>

@interface ScatteredAppDelegate : NSObject <NSApplicationDelegate> {
IBOutlet NSView *view;
CATextLayer *textlayer;

NSOperationQueue *processingQueue;
}

@property (assign) IBOutlet NSWindow *window;

@end

Switch to ScatteredAppDelegate.m. We'll start by adding an init method:

- (id)init {
self = [super init];
if (self) {
processingQueue = [[NSOperationQueue alloc] init];
[processingQueue setMaxConcurrentOperationCount:4];
}
return self;
}

Now we’ll make use of the NsoperationQueue iN addImagesFromFolderURL:. Add six lines. Be careful to balance the blocks’ braces and the message
sends’ brackets:

- (void)addImagesFromFolderURL: (NSURL *)folderURL
{
[processingQueue addOperationWithBlock:*(void) {
NSTimeInterval t0 = [NSDate timelIntervalSinceReferenceDate];

NSFileManager *fileManager = [[NSFileManager alloc] init];
NSDirectoryEnumerator *dirEnum =
[fileManager enumeratorAtURL:folderURL
includingPropertiesForKeys:nil
options:NSDirectoryEnumerationSkipsHiddenFiles
errorHandler:nil];

for (NSURL *url in dirEnum)

{
// Skip directories:
NSNumber *isDirectory = nil;

[url getResourceValue:&isDirectory
forKey:NSURLIsDirectoryKey
error:nil];
if ([isDirectory boolValue])
continue;

[processingQueue addOperationWithBlock:*(void) {
NSLog (@"-- processing %@", [url lastPathComponent]);
NSImage *image = [[NSImage alloc]
initWithContentsOfURL:url];
if (!image)
return;

NSImage *thumbImage = [self thumbImageFromImage:image];

[[NSOperationQueue mainQueue]
addOperationWithBlock:*(void) {
[self presentImage:thumbImage];
[self setText:
[NSString stringWithFormat:@"%0.1fs",
[NSDate timeIntervalSinceReferenceDate] - t0]];
10
1

3}
}

That's it! Run the application and marvel at the new and improved user experience. You should notice a significant speed increase as well, depending on
your hardware.

Instead of explicitly creating Nsoperation Objects, we use NSOperationQueue’S addOperationWithBlock:, Which creates an NsB1ockoperation for us and
adds it to the queue. Note how minimal our changes were; the general flow of the application is practically unchanged. It won’t always be this clean to add
multithreading to an application, but you are seeing more of how blocks allow you to avoid a lot of boilerplate code by enabling you to reference variables
that are in scope.

Thread Synchronization

We didn’'t appear to worry about race conditions in our exercise. The reason is that the design of the application specifically avoided using any shared
data structures from within the background thread. Work in the background threads was limited to enumerating the folder, opening images, and creating
thumbnails. The only shared data in this case, the Core Animation layers, were modified from the main thread only. Multithreading is easiest when you
can avoid race conditions altogether.

Not all multithreading problems will be solvable using this approach, however. Oftentimes, you will need to protect a section of code (or multiple sections
of code) such that only one thread can be running it at a time. This is usually done with a mutex lock (mutually exclusive lock). Objective-C provides a
simple way—the esynchronized directive—to employ a mutex lock:

- (void)addImage: (NSImage *)image
{
@synchronized (images) {
[images addObject:image];
}
}

The esynchronized directive uses a mutex that is unique to the object that is passed to it. In this case, we are locking on images, an NSMutableArray.
Because NsMutableArray is not thread-safe (meaning that it has not been written to be modified from multiple threads), it is recommended to use a
mutex lock when modifying one in a multithreaded environment. The use of esynchronized guarantees that, for all esynchronized directives on a certain
object, only one thread will be able to execute the enclosed block at a time. So if two threads were attempting to call addimage: at the same time, the first
would obtain the lock and add the object and the other would block and wait for the lock to be released.

You may be wondering why NsMutableArray iS not thread-safe. One reason is that mutex locks have overhead associated with them, and thread safety
would make nsMutableArrays significantly slower. Another reason is that it is often more useful (and common) to lock a section of code, not just a single
method call, such as if you were moving objects from one data structure to another.

Cocoa provides a number of other tools for thread synchronization, such as NsLock and Nscondition. These tools, a more involved look at
NSOperationQueue, and Grand Central Dispatch are discussed in detail in Advanced Mac OS XProgramming.

For the More Curious: Faster Scattered

Our goal in this chapter was to make scattered a better-behaved application by moving heavy lifting off the main thread. We didn’t, however, fully
address the performance issues with this application. If you were watching closely, you may have noticed that in init, we limited the number of concurrent
operations in processinggueue to four. If you remove that constraint (by commenting out the line), you may find that scattered runs somewhat faster, or
you may find that it runs even slower. What's going on here?

One of the most useful features of Grand Central Dispatch (GCD), which Nsoperationgueue is built upon, is that GCD manages the number of running

operations (threads) based on the system’s hardware (number of cores) and the current system load. In higher-level terms, GCD will create as many
threads as it thinks the system can handle in order to process the operations in a queue as quickly as possible. If every queued operation is uniform as far
as its required resources, this works very well.

Consider how scattered works, however: Each operation starts by reading data (an image) from disk. Disk /O puts very little demand on the CPU, so
GCD sees that that the CPU isn’'t being utilized and starts another operation, which starts by reading data from the disk, and so forth. Perhaps you can
see how GCD would very quickly start a large number of threads to handle the operations in the queue.

When the image data for the first operation is fully read in, the image is decompressed, and a thumbnail is created, which is somewhat CPU-intensive
work. While this work is being done, the second thread finishes reading from disk and starts decompressing, and so on. Suddenly, the CPU is being
asked to do quite a bit of work!

In the exercise, we avoided this pile up by limiting the number of concurrent operations, but this approach is not ideal, because we are frequently wasting
CPU time while waiting on the disk: recall how hilly the CPU graph in Instruments was. The proper solution to this problem is to use two queues: one
queue to load image data from the disk, limited in the number of concurrent operations it can conduct (because disks are slow), and another queue to do
the work of creating the thumbnail. This is, however, quite a bit more complicated to do properly.

Challenge

Adapt scattered to use the proper solution outlined in the previous section. Because NsImage avoids doing disk /O until absolutely necessary, you will
need to read the data in manually and then create the image using that data. Nspata will read the image data. Check the documentation or header file for
NSImage to find a way to create animage from an nspata object.

Chapter 35. Cocoa and OpenGL

This chapter is not designed to teach you OpenGL. If you want to learn OpenGL, read The OpenGL Programming Guide. Rather, this chapter is intended
to show you how to do drawing with OpenGL in an application that is written using Cocoa. Like all other drawing in Cocoa, OpenGL rendering will be
done in a view. Until now, all your views have used an NsGraphicsContext t0 do drawing with Quartz (via NSImage, NSBezierPath, and
NSAttributedString).

NSOpenGLView iS an Nsview subclass that has an OpenGL drawing context. Just as you needed the focus locked on a view to do drawing with Quartz, so
the OpenGL drawing context must be active for any OpenGL drawing commands to have an effect.

Here are some important methods in NsopenGLView:

- (id)initWithFrame: (NSRect) frameRect
pixelFormat: (NSOpenGLPixelFormat *)format

The designated initializer.

- (NSOpenGLContext*)openGLContext

Returns the views in the OpenGL context.

- (void) reshape

Called when the view is resized. The OpenGL context is active when this method is called.
- (void)drawRect: (NSRect)r

Called when the view needs to be redrawn. The OpenGL context is active when this method is called.

A Simple Cocoa/OpenGL Application

Figure 35.1 shows the application that you will create.

Figure 35.1. Completed Application

ane Gliss

|

Create a new Cocoa Application project and call it Gliss (short for “GL Bliss”). Set the Class Prefix toc1iss. This will not be a document-based
application. Open the project editor by clicking on the project in the project navigator. Use the + button under Linked Frameworks and Libraries to add
the frameworks openGL. framework and GLUT. framework to the project. You will not be using the GLUT event model—just a couple of convenience
functions.

Create a new Objective-C class subclassing NsopenGLview, and name it Glissview. ING1issview.h, declare an outlet and an action:
#import <Cocoa/Cocoa.h>

@interface GlissView : NSOpenGLView {
IBOutlet NSMatrix *sliderMatrix;
}

- (IBAction)changeParameter:(id)sender;
@end

Lay Out the Interface

Open MainMenu.xib.

Drag an NsopencLview Onto the window as shown in Figure 35.2.

Figure 35.2. Drop an NSOpenGLView onto the Window

Build Gliss- Succeeded | Today 2t 6:63 Pt

N Wambe ot glshl - =z Window - Cliss - B2 View
@ Gliss File Edit Format View Window Help v View
Focus Ring | Detauit -
= Drawing] Hidden

e8| > @

&l

In the Identity Inspector, set the class of the view to be c1issview (Eigure 35.3).

Figure 35.3. Set the Class

ane %1 Gliss - MainMenu.xib =
_ IR I N—— S — ; e RN |
. e i iew Organae
MaimMe | WanMe <. Windew. . 2 Vew *D Bimw® ® 0 ¢

| Gliss File Edit Fermat View Window Help |7 Cusinas Cliis
7 =t Cluis | GRatViaw o

i Tool Ti Toal Tin

|7 Accessdbility identity

i Description Description

| Help Heln

|7 user Defined Runtime AlEributes
KeyPah Troe Value

88" >

8|

| ‘& operst

Select the Gliss window. In the Attributes Inspector, under the Memory section, uncheck One Shot.

Drop an nss1ider onto the window. Configure the slider to be continuous. In the Editor menu, choose Embed -> Matrix. In the Attributes Inspector, set the
matrix mode to Tracking and give it three columns (Eigure 35.4).

Figure 35.4. Matrix of Sliders

ans 3 Gliss - MainMenu.xib
f g Build Cliss: Swoceeded | Today at 653 P

o by

55 7| Gliss - m;_;w---ém:w:ﬂjw-:!: [} B \w # 0 6

| O Gliss File Edit Format View Window Help | b
[| ™ BT 0
| 3] | - _lm 22 Dnlwnn:_.
| Mode | Tracking
| Selection) Empty
| o Recsangular
Display | T | Default]
) Draws Background

| ‘m
I
|
!

i D illo =

Set the target of the matrix to be the c1issview, and set the action to be changeParameter:. Set the s1iderMatrix outlet of the cLissview to point to the
matrix. (Be sure to create connections in both directions.)

The first slider will control the X-coordinate of the light. Set its range from —4 to 4, and give it an initial value of 1. It should have a tag of 0. The Inspector
should look like Eigure 35.5.

Figure 35.5. Set Limit, Initial Value, and Tag for First Slider Cell

ane) Gliss - MainMenu.xib
| Build Cliss: Succesded | Today at 653 P

B s

_Gliss - MainM | MaeM. isWindo, EiVew Fhavix. SiderCel [0 B B (W ® © & B8

| Gliss File Edit Format View Window Help

The second slider will control the angle from which the scene is viewed. Set its range from —4 to 4, and give it an initial value of 0. It should have a tag of 1.
The third slider will control from how far the scene is viewed. Set its range from 0.3 to 5, and give it an initial value of 4. It should have a tag of 2.

Select the c1issview. In the Attributes Inspector, set the view to have a 16-bit depth buffer, as shown in Eigure 35.6.

Figure 35.6. Create a 16-Bit Depth Buffer

ans 3 Gliss - MainMenu.xib =)
/ . Bulld Cliss: Swcceeded | Today at 653 7M — T | [T _— =

(24 > Eycus [Giss - ManMeou Wil S Wdon e BV GV | D B 8 (W # O &

O Gliss File Edit Format View Window Help | ¥ OpeaGLview

| 4 suxiliary Depth Stancil
Bl [Double Bulfer

! N Palicy | Defaunt o |

Also, in the Size Inspector, make the c1issview resize with the window.

Inspect the nsMatrix. Setit to autosize its cells. Inthe size Inspector, make the matrix cling to the right edge of the window, as shown in Figure 35.7.

Figure 35.7. Matrix Size Inspector

ans 2 Gliss - MainMenu.xib

OO/ o T - (FF =)
| Bun Swp Scheme Breakpaints — . Editor Wew zer

W Lnasin

T 4 [ois: Ciss - Mansenub - MumMeaux, iz Window-Cliss BEView ok | D B @ % @ 0 & B8

= Gliss File Edit Format WView Window Help |7 Masiy R——
: Cetsae EFEl 320 f1]
o Widih Helght
anmnm Gliss. i Cell Spacing ol olff
Hosigoatal — Vedicsl
kesizing 9] Actomatically Besizes Cells
v Contrad
size { hegular L]
=B ® T View
- Show |_Frame Rectange =
‘ 385 13 201
% ¥
=l i =0
:ﬂe\. ® : = Width Helght
Ovigin
-
= I
e l —
: '_l= T
Autosizing Exarmple
. Arrange | Position View —5
.l L o xieim |
Ml Obsect Ubrary M eE

Write Code

Editclissview.h as follows:
#import <Cocoa/Cocoa.h>

@interface GlissView : NSOpenGLView {
IBOutlet NSMatrix *sliderMatrix;
float lightX, theta, radius;
int displayList;

}

- (IBAction)changeParameter: (id) sender;

@end

Next, editGlissview.m:

#import "GlissView.h"
#import <GLUT/glut.h>

#define LIGHT_X_TAG 0
#define THETA_TAG 1
#define RADIUS_TAG 2

@implementation GlissView
- (void)prepare
NSLog(@"prepare");

Il The GL context must be active for these functions to have an effect
NSOpenGLContext *glcontext = [self openGLContext];
[glcontext makeCurrentContext];

Il Configure the view
glShadeModel(GL_SMOOTH);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);

/l Add some ambient lighting
GLfloat ambient[] ={0.2, 0.2, 0.2, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);

Il Initialize the light

GLfloat diffuse[] = {1.0, 1.0, 1.0, 1.0};
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuse);
/I and switch it on.

glEnable(GL_LIGHTO);

Il Set the properties of the material under ambient light
GLfloat mat[] ={0.1, 0.1, 0.7, 1.0};
glMaterialfv(GL_FRONT, GL_AMBIENT, mat);

Il Set the properties of the material under diffuse light
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat);

}
- (id)initWithCoder:(NSCoder *)c

self = [super initWithCoder:c];

if (self) {
[self prepare];
}

return self;

}

I/l Called when the view resizes
- (void)reshape

NSLog(@"reshaping");

I/l Convert up to window space, which is in pixel units.
NSRect baseRect = [self convertRectToBase:[self bounds]];
/I Now the result is glViewport()-compatible.

glViewport(0, 0, baseRect.size.width, baseRect.size.height);
glMatrixMode(GL_PROJECTION);

glLoadldentity();
gluPerspective(60.0, baseRect.size.width/baseRect.size.height,
0.2,7);
}

- (void)awakeFromNib

[self changeParameter:self];

}

- (IBAction)changeParameter:(id)sender

lightX = [[sliderMatrix cellWithTag:LIGHT_X_TAG] floatValue];
theta = [[sliderMatrix cellWithTag: THETA_TAG] floatValue];
radius = [[sliderMatrix cellWithTag:RADIUS_TAG] floatValue];
[self setNeedsDisplay:YES];

}
- (void)drawRect:(NSRect)r

Il Clear the background

giClearColor (0.2, 0.4, 0.1, 0.0);

glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

I/l Set the view point
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(radius * sin(theta), 0, radius * cos(theta),
0,0,0,
0,1,0);

I/l Put the light in place

GLfloat lightPosition[] = {lightX, 1, 3, 0.0};
glLightfv(GL_LIGHTO0, GL_POSITION, lightPosition);
if (\displayList)

{

displayList = glGenLists(1);
gINewList(displayList, GL_COMPILE_AND_EXECUTE);

// Draw the stuff
glTranslatef(0, 0, 0);
glutSolidTorus(0.3, 0.9, 35, 31);
glTranslatef(0, 0, -1.2);
glutSolidCone(1,1,17,17);
glTranslatef(0, 0, 0.6);
glutSolidTorus(0.3, 1.8, 35, 31);

glEndList();
}else {
glCallList(displayList);
}
/I Flush to screen
glFinish();
}
@end

Note that the OpenGL calls are broken into three parts: prepare, all the calls to be sent initially; reshape, all the calls to be sent when the view resizes; and
drawRect, all the calls to be sent each time the view needs to be redrawn. Build and run the app.

Chapter 36. NSTask

Each application that you have created is a directory, and somewhere down in that directory is an executable file. To run an executable on a Unix
machine, like your Mac, a process is forked, and the new process executes the code in that file. Many executables are command-line tools, and some are
quite handy. This chapter, then, will be showing you how to run command-line tools from your Cocoa application by using the class NsTask.

NSTask iS an easy-to-use wrapper for the Unix functions fork () and exec (). You give NsTask a path to an executable and launch it. Many processes read
data from standard-in and write to standard-out and standard-error. Your application can use nsTask to attach pipes to carry data to and from the external
process. Pipes are represented by the class Nspipe.

ZIPspector

The tool /usr/pbin/zipinfo looks at the contents of a zip file. Find a zip file on your machine and try running zipinfo in the Terminal like this (1 is dash-
one, not dash-el):

lusr/bin/zipinfo -1 /lUsers/aaron/myfile.zip
greatfile.txt

swellfile.rtf

magnificent.pdf

You are going to create an application that uses zipinfo. Note that it will have to send some arguments and read from the process’s standard-out (Figure
36.1).

Figure 36.1. Completed Application

a0 [*| Combatants.zip

Filenames

Combatants/AppController.h

Combatants /AppController.m

Combatants/Combatant.h

Combatants/Combatant.m

Combatants/Combatants.xcode/
Combatants/Combatants.xcode/mmalc.pbxuser
Combatants/Combatants.xcode/project.pbxproj
Combatants/Combatants_Prefix.pch

Combatants/English.|proj/
Combatants/English.lproj/InfoPlist.strings

Combatants /English.lproj/MainMenu.nib/
Combatants/English.lproj/MainMenu.nib/classes.nib
Combatants/English.lproj/MainMenu.nib/info.nib
Combatants/English.lproj/MainMenu.nib/keyedobjects.nib A
Combatants/English.lproj/MainMenu~.nib/ Y

A
£

In Xcode, create a new Cocoa Application named ZIPspector, and enable Create Document-Based Application. Set the Class Prefix tomy. This
program will only view zip files, not edit them. In the Info panel for the target, set z1pspector to be a viewer for files with the UTl com.pkware.zip-archive
(Figure 36.2) (This is a system-defined UT], so it will know the extension, icon, and so on, for zip files.)

Figure 36.2. Setting the UTI

Aann 4 IPspector - 2IFspector xeodeprol —
(=]
Ovganizer

() (mifz:) (=] | ok N = EIE =]
Rum Sop Schere Breakpoints Editor Wiew

Susnmany Infe B Sertings Builld Phates Build Rules
B s
N SFaprtor Bundle creator 05 Type code i nm
TARCETS Bundle versicn 1
é it Sl v lioh + HMALDES_DEPLOYMENT _TARGET)
v — 7| Main nib file baze name I MainMenu
Principal claas it NSApplacation
* Detumant Types (1
.
v 1P Archive
Name 2IP Archive idesaifer | com. ploware sip-archive]
Class MyDacument - Eole | Viewsr B
Exlengiant Misme Types
kan ¢
- Additional SocueTent typs Hropertees (1)
» Exported UThs 00}
imported UTls {0 |
» URL Types 0}
Services (0]
Add Targe Ad

In MyDocument . h, create outlets for an NsTableview and an Nsarray for holding the filenames in the zip file:

@interface MyDocument : NSDocument

{
IBOutlet NSTableView *tableView;
NSArray *filenames;

}

@end

Open Mybocument . xib. Add a table view to the window, and set it to have one uneditable column with the title Filenames. Control-click on the table view
to bring up its Connection panel. Make the datasource outlet point to File’s Owner (Eigure 36.3).

Figure 36.3. Set dataSource Outlet

ot ZIPspector -
(p) (M) (2.3 (= | x
e
Table View Run Stop Scheme Brul_:_polrlls
Outlers w4+ [IPspector z M. M EEW B3V,) B Sero

ornervies

L Tal N

L | Filenames
Sent Actions : : Text Cell
selector b |
Accessibility
ek
1ithe
Referencing Cutlets
New Referencing Outlet

Received Actions
desaleceAl
perfarmCligk

tnkeObjectValueFrom: |
takeStringValueFram: |
Accessibility References
Wik
Tithe

Control-click on File’s Owner to bring up its connection window. Drag to set the tableview outlet (Figure 36.4).

Figure 36.4. Set tableView Outlet

() (W) (2.5 |(= Kenge | Blas OCE =

.
Rurn @op Scheme Breakpoints Ediror Wiew Dvganqer
= By apspector ZiPspector o [MyDocumestail [MyDooenene.xib [Englishy Fiesowner O B 8B + & @& £ 2
Lo s) Window
Filenamas
Text Cell

A D & =
(] Obpect Libwrary yimE
-.;: Table View - Duplays record -cremed

~.. dutain i table and allows the wsef ta

o v, edtvalues and resive and rearrange

3]), tabley

IN MyDocument .m, remove the default readFrombata:ofType:error: and override readFromURL: ofType:error: {0 create an NsTask that executes zipinfo.
Also, create an Nspipe and connect it to the standardout of the NsTask (Figure 36.5)

Figure 36.5. Object Diagram

NSTask] NSFileHandle

launchPath ="/usr/bin/zipinfo”

standardQLiiput fileHandleForReading

Here is the code:

- (BOOL)readFromURL:(NSURL *)absoluteURL
ofType:(NSString *)typeName
error:(NSError **)outError

I Which file are we getting the zipinfo for?
NSString *filename = [absoluteURL path];

Il Prepare a task object

NSTask *task = [[NSTask alloc] init];

[task setLaunchPath:@"/usr/bin/zipinfo"];

NSArray *args = [NSArray arrayWithObjects:@"-1", filename, nil];
[task setArguments:args];

Il Create the pipe to read from
NSPipe *outPipe = [[NSPipe alloc] init];
[task setStandardOutput:outPipe];

I/ Start the process
[task launch];

Il Read the output
NSData *data = [[outPipe fileHandleForReading]
readDataToEndOfFile];

/I Make sure the task terminates normally
[task waitUntilExit];
int status = [task terminationStatus];

Il Check status
if (status !=0) {
if (outError) {
NSDictionary *eDict =
[NSDictionary dictionaryWithObject: @"zipinfo failed"
forKey:NSLocalizedFailureReasonErrorKey];
*outError = [NSError errorWithDomain:NSOSStatusErrorDomain
code:0

userinfo:eDict];

return NO;

}

/I Convert to a string
NSString *aString = [[NSString alloc] initWithData:data
encoding:NSUTF8StringEncoding];

/I Break the string into lines
filenames = [aString componentsSeparatedByString:@"\n"];
NSLog(@"filenames = % @", filenames);

/l'In case of revert
[tableView reloadData];

return YES;
}

Now you need table view data source methods:
- (NSinteger)numberOfRowsInTableView:(NSTableView *)v
{
return [filenames count];

}
- (id)tableView:(NSTableView *)tv
objectValueForTableColumn:(NSTableColumn *)tc
row:(NSinteger)row

return [filenames objectAtindex:row];

}

Your application doesn’t save, so you can delete the method dataofType:error: if you wish. Also, you can open up the MainMenu.xib file and delete any
menu items that are concerned with saving.

Build and run your application. You should be able to see the contents of any zip file. (No untit1ea document will appear (this is a viewer) so you must
open an existing .zip file.)

Asynchronous Reads

As mentioned in Chapter 24, the run loop is the object that waits for events, which may be keyboard, mouse, or timer events. These are all run loop data
sources. You can also make a file handle a run loop data source.

In this section, we are going to fork off a process that burps up data occasionally. We will attach a pipe to standardout, but instead of trying to read all the
data from the file handle immediately, we will ask the file handle to read in the background and send a notification when data is ready.

You canuse /sbin/ping to check whether you can make an IP connection to another machine. Try running it in Terminal:

$ Isbin/ping -c10 www.bignerdranch.com

PING www.bignerdranch.com (69.39.89.150): 56 data bytes

64 bytes from 69.39.89.150: icmp seqg=0 ttl=50 time=35.579 ms
64 bytes from 69.39.89.150: icmp seg=1 ttl=50 time=35.099 ms
64 bytes from 69.39.89.150: icmp seq=2 ttl=50 time=34.546 ms
64 bytes from 69.39.89.150: icmp seqg=3 ttl=50 time=35.495 ms
64 bytes from 69.39.89.150: icmp seqg=4 ttl=50 time=35.685 ms
64 bytes from 69.39.89.150: icmp seqg=5 ttl=50 time=35.667 ms
64 bytes from 69.39.89.150: icmp seqg=6 ttl=50 time=36.435 ms
64 bytes from 69.39.89.150: icmp seqg=7 ttl=50 time=52.296 ms
64 bytes from 69.39.89.150: icmp seqg=8 ttl=50 time=36.142 ms
64 bytes from 69.39.89.150: icmp seqg=9 ttl=50 time=36.188 ms

--- www.bignerdranch.com ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max/stddev = 34.546/37.313/52.296/5.021 ms

If you want to end the program prematurely, press Control-C to send it a sigint signal. This will cause it to write out the stats and terminate.
iPing
Now you are going to write a Cocoa app that uses nNsTask to run ping (Figure 36.6).

Figure 36.6. Completed Application

8 MO iPing

www.bignerdranch.com | Start Ping
PING bignerdranch.com (209.20.82.22): 56 data bytes

64 bytes from 209.20.82.22: icmp_seq=0 ttl=42 time=58.025 ms
64 bytes from 209.20.82.22: icmp_seq=1 ttl=42 time=57.153 ms
64 bytes from 209.20.82.22: icmp_seq=2 tti=42 time=57.328 ms
64 bytes from 209.20.82.22: icmp_seq=3 =42 time=55.888 ms
64 bytes from 209.20.82.22: icmp_seq=4 ttI=42 time=56.946 ms
64 bytes from 208.20.82.22: icmp_seq=>5 ttl=42 time=55.841 ms
64 bytes from 209.20.82.22: icmp_seq=6 {tl=42 time=58.989 ms
64 bytes from 208.20.82.22: icmp_seq=7 it=42 time=58.151 ms
&4 bytes from 209.20.82.22: icmp_seq=8 ttl=42 time=56.953 ms
64 bytes from 209.20.82 22: icmp_seq=9 ttl=42 time=56.395 ms

-— bignerdranch.com ping statistics —
10 packets transmitted, 10 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 55.841/57.168/58.989/0.956 ms

In Xcode, create a new project, iring, of type Cocoa Application. Set the Class Prefix to iring. Uncheck Create Document-Based Application. In
iPingAppDelegate, add two outlets, pointers to the nsTask and the Nspipe, and an action:

@interface iPingAppDelegate : NSObject <NSApplicationDelegate> {
IBOutlet NSTextView *outputView;
IBOutlet NSTextField *hostField;
IBOutlet NSButton *startButton;
NSTask *task;
NSPipe *pipe;
}
@property (assign) IBOutlet NSWindow *window;
- (IBAction)startStopPing:(id)sender;
@end

OpenumainMenu.xib and drop a text view, a text field, and a button onto the window. The button should be put in Toggle mode. The title should be Start
Ping (Eigure 36.7), and the alternate title should be Stop Ping. Set the state to Off.

Figure 36.7. Button Attributes

Aane 2 iPing - MainMenu.xlb =,
- = f 2 1 ST R o T i
() (=] i Elos (0[Sl (5
s
Run Sop Scheme Breakpoints Editor Wiew Crganizer
= 4 ¢ [ipng _iFng MainM.. MainM... sz Windo.. | B View: FRusdTowrdiunos | 0 B B (&2 & & =
iPing File Edit Format View Window Help Bt
Stie | RoundTestured 18
Type | Toggle -
a oo L L :
iing ‘aual W Bordered
i = Transparesat
: e SAERIG U N |
% Ativas Mined
Title tart Ping
i Altemate | Senp Fing
Asghment| BE e mm m —
= Font Lucida Grande 110 i
s 1E
'.'- D (] & m
o m—
dll Otect Library e
. ——— Wrapping Text Field - Daplays
e ey | DT IBS1 the wser can select or edit

and that sends ity acton message

. 3 Taur View - Displays s

Make the iPingAppDelegate the target of the button; its action should be startstopPing:. Set the ocutputview, hostField, and startButton outlets to
point to the text view, the text field, and the button, respectively (Figure 36.8).

Figure 36.8. Object Diagram

NSTask | iPingAppDelegate
{ launchPath = “sbin/ping”]

| T
standardOutput pipe ! target
outputView
[

l hostField startBution

task

NSPipe Vel s i

fileHandleForReading

waw.bignerdranch com Start Fing

NSFileHandle

IN iPingAppDelegate.m, implement startStopPing:
- (IBAction)startStopPing:(id)sender

I'ls the task running?
if (task) {
[task interrupt];
}else {
task = [[NSTask alloc] init];
[task setLaunchPath:@"/sbin/ping"];
NSArray *args = [NSArray arrayWithObjects: @"-c10",
[hostField stringValue], nil];
[task setArguments:args];

I/l Create a new pipe
pipe = [[NSPipe alloc] init];
[task setStandardOutput:pipe];

NSFileHandle *th = [pipe fileHandleForReading];
NSNotificationCenter *nc;

nc = [NSNotificationCenter defaultCenter];
[nc removeObserver:self];
[nc addObserver:self
selector: @selector(dataReady:)
name:NSFileHandleReadCompletionNotification
object:fh];
[nc addObserver:self
selector: @selector(taskTerminated:)
name:NSTaskDidTerminateNotification
object:task];
[task launch];
[outputView setString:@""];

[fh readiInBackgroundAndNotify];

}

While the task is running, the file handle will be posting notifications when data is ready. Implement the method that will get called:
- (void)appendData:(NSData *)d

NSString *s = [[NSString alloc] initWithData:d
encoding:NSUTF8StringEncoding];
NSTextStorage *ts = [outputView textStorage];
[ts replaceCharactersinRange:NSMakeRange([ts length], 0)
withString:s];
}

- (void)dataReady:(NSNotification *)n

NSData *d;
d =[[n userinfo] valueForKey:NSFileHandleNotificationDataltem];

NSLog(@"dataReady:%Id bytes", [d length]);

if ([d length]) {
[self appendData:d];

Il If the task is running, start reading again
if (task)

[[pipe fileHandleForReading] readinBackgroundAndNotify];
}

When the process is done, we should do some cleanup:
- (void)taskTerminated:(NSNotification *)note
NSLog(@"taskTerminated:");
task = nil;
[startButton setState:0];
}

Build and run the application.

Challenge: .tar and .tgz files

A listing of files in a Zip file is given by zipinfo. You can get a similar listing for tar files by using the command-line tool tar:
lusr/bin/tar tf MyFiles.tar

If the tar file is also compressed, just add a z to the flags:
lusr/bin/tar tzf MyFiles.tgz

Extend ZIPspector to deal with . tar and . tgz files also.

Chapter 37. Distributing Your App

The time will come when you are ready for your app to leave its nest. You've crushed all the bugs you can find and tested for leaks in Instruments. It's high
time your app see the world! In this chapter, we'll talk about how to use Xcode to prepare your app for life outside the debugger.

Build Configurations

Up until now, we’ve been using debug builds for all our testing. Debug builds contain additional information that enables the debugger to show detailed
stack information. Debug builds are generally built with optimization disabled; if you're building for multiple architectures (32- and 64-bit), the debug build
is created only for the development system’s architecture.

These are all great settings for development. They make the debugger more useful, and builds are generated more quickly, but they're the opposite of
what you want in a build that you would release to customers: a release build. In a release build, optimizations are turned up, debugging symbols are
stripped (to reduce size and make inspecting the code more difficult), and all the architectures are built.

There is nothing particularly special about the debug and release build configurations. They are simply a convention, and all the settings for these
configurations are modifiable within Xcode. You can find the existing build configurations in the project editor, on the Info pane. You can also add new
build configurations there.

Xcode has several actions available: run, profile, analyze, and archive. A build configuration is associated with each of these actions. You can configure
this using the Scheme Editor to associate a build configuration with a particular action (Eigure 37.1). That build configuration will be used when building
the target for that particular action.

Figure 37.1. The Scheme Editor with the Debug Build Configuration Selected for Run

™ RanchForecast - RanchForecast xoodegpao|

:R M"'M Finished rumning RanchForetast E* ﬁ —
Imiz @ —
RanciForecast £ My Mai 64-ba + -

== ! scheme Destination Breakpoints

RanchFores

v Ranch#

[l Ranchfor | g Baid bnfo Argumants Optiony Ciagroaticy

! Ranchior 1 sarget

MainMen - £
Supportd (R 2 Buid Configuration | Debug £ r———
Rarschl » Ie!‘
Infopii g]
m maing | . frn‘ﬁle RanchFor.
h! Ranchl v
o Creciy | e g Anabvze
Debug
Frameworis
Products

Executable | o RanchForecastapp 2 thons et
tions Seq

Debugger | GDR

Lawnch {8 Automatically
Archive Wit foe BanchForecast.app 1o lunch
Release U mhop ppena @ you il manSy anoh vaw SpEiransn

Duplicate Scheme Manage Schemes.. Done Run

Preprocessor Macros and Using Build Configurations to Change Behavior

One common use of build configurations is as a means for hardcoding behavioral settings in your application. This is done using preprocessor macros.

In Chapter 3, we saw how to use the Ns_BLock asserTIONS macro to disable Nsassert. Open a project and click on the project in the project browser.
Select the target, and under Build Settings find the Preprocessor Macros line (Eigure 37.2).

Figure 37.2. Preprocessor Macros

ann 5 RanchForecast - RanchForecast. xcodepro)

o Xeode = =l = =
() R My M. - Blo=z @loO (=
Run Echeme Breaipoints Editer View [rp—
BZOA==@ |m | Ranchorscast
1, Summary Info Builld Settings Build Phases Build Rutes
g ey I RanchFarecast basic (D | CEITD Lewels |- preprocessor
Framesgris - Seming A RanchForecast
Produtts \ Packaging

info.plist Other Preprocessor Flags
info,plist Preprocessor Definitions
Info,plist Preprogessor Prefix File
Pripiodesd Info.plist File Ne &
Search Paths
Abwarys Search User Paths Ho 4
T Apple LLWM compiler 1.0 - Freprocessing
¥ Preprodessor Macnos

Release
Praprodessos Macnos Kot Used In Preca

o o

+ O Add Targat Add Build Setting

Note that Preprocessor Macros can be expanded to show Debug and Release. This allows you to define unique sets of preprocessor macros for debug
and release builds. In this example, the only macro defined is pesuc=1 in the debug configuration. This sets the pesuc macro’s value to 1. To check the
value of peruG in code, we can do something like this:

#if DEBUG

[self printOutEverything];
#else

[self printOnlyWhatsNeeded];
#endif

If you're not familiar with preprocessor macros, the concept is fairly simple: Before your source code is compiled, it is run through the preprocessor, which
processes your source code on a line-by-line basis. In our case, the code sent to the compiler in a debug build would be:

[self printOutEverything];

Note that the other code is completely omitted: There isn’'t even a branch to be evaluated when the program runs. You can, however, use macros in
branches if you wish. For example:

if (DEBUG) {
NSLog (@"Debug is %d", DEBUG) ;
}

One last note about preprocessor macros: They can be used to do a lot more than simply defining functions. You might want to log only certain statements
in your debug build. Our first thought might be something like this:

#if DEBUG

NSLog (@"This happened.");
#endif

But it would be much less obtrusive to simply use:
DebugLog (@"This happened.");

We could implement this by defining a pebugrog function. A preprocessor macro allows us to erase the logging code completely, however. The following
macro gives us a bebugLog macro, which looks just like a function but evaluates to nothing when pezuc is zero:

#if DEBUG

#define DebugLog(...) NSLog(VA ARGS)
#lse

#define DebugLog(...) do { } while(0)
#endif

An excellent place for such a macro is your precompiled header file, usually named projectnamePrefix.pch and found in the Supporting Files group.
This file is essentially included by every file in your project. Because modifying the precompiled header file (or any file it includes) triggers rebuilding the
entire project, we usually include only files that will change very rarely, such as framework headers.

Creating a Release Build

Now that you know about build configurations—enough to know that when you're distributing your app, you will want a release build—how do you create
one? The simplest way to do this in Xcode is by archiving your target. Note that in the Scheme Editor the Release build configuration is selected for the
Archive action. Select Archive in the Product menu. Your target will rebuild.

Xcode’s archiving feature is intended to assist with cataloging an application’s various release builds, as well as with maintaining its debug symbols for
use later on with any crash logs you might gather in the future.

Once your target is archived, it will appear in the Organizer on the Archives tab (Figure 37.3).

Figure 37.3. Archives in the Organizer

[RaNE] Organizer - Archives

1 8 & @

Dewices Repositoeies Projects. ' Archives | Documentation

RanchForecast
RanchForecast Vialid
b Creation Date: fune 24, 2011 8:07 PM -
74 Shai
Version: 1O -
identifier: com bignerdranch RanchForecast Subr
NKame Creation Date = Comment Starus

RarchForecast June 24, 2011 8:07 P9

You can then extract the app bundle from the archive by using the Share button. You will be prompted for the format to share it in. Choose Application to
share only the app bundle (Figure 37.4).

Figure 37.4. Sharing Your Application

Drganizer - Archives
E —
- = |

Select the content and options for sharing:

Contents: Mac 05 X App Store Package (. pka)
= Application
Archive

Identity:

Cancel | Maxt

Once Xcode has exported the app bundle, you can compress itin a ZIP archive and post it on your Web site, or send it to your beta testing team.

A Few Words on Installers

If you are new to Mac, you may be wondering how you are going to create an installer for your application. Our advice is: Don’t. Application installation on
a Mac is different from other platforms, and in most cases an installer adds unneeded complexity, and also hides its actions from the user. Most
applications are installed by simply having the user drag them from their downloads folder into /app1ications. This has the advantage of a very clear

uninstallation: Drag the application to the trash.

There are two common approaches for packaging an application for download. Many app bundles are simply compressed in a ZIP archive. By default,
Safari unarchives ZIP archives containing app bundles, making drag installation very easy for the user.

The second approach is to create a DMG (disk image), which has the advantage of displaying a Finder window with the contents of the image when it is
opened (mounted). This allows for the inclusion of files in addition to the app bundle itself, such as a readme, @ symbolic link to /applications (fo make
drag installation even more convenient), and an optional custom background. Configuring such a DMG is complicated enough that there are third-party
tools to help with the process.

Both approaches are not without their pitfalls. For example, users sometimes forget to drag the application to their /app1ications folder, leaving it in their
downloads folder or, worse, running it from the DMG. One solution some developers have implemented is to detect the app bundle’s location on startup
and offer to move it for the user.

Note that Mac App Store apps cannot use an installer.

Application Sandboxing

In the old days, an application had all the same rights of the user running it. If you trust all your applications, this sounds fine. However, most users don’t
have the luxury of running only apps they trust, and, more important, no user can run only bug-free applications. The unpleasant truth is that even a
trustworthy application can have an innocent bug that causes damage to a system or allows an attacker access to the user’s system. Sandboxing is a big
step toward mitigating this problem.

Sandboxing is a security method that constrains the means by which an application can interact with the system (filesystem, network). Applications on
iOS have been sandboxed for years now. With Mac OS X Lion, Apple is bringing sandboxing to the Mac and, furthermore, requires that all applications in
the Mac App Store be sandboxed.

Entitlements

Sandboxing requires a bit more thought on the part of the developer than simply turning on an Enable Sandboxing flag. The developer must specify the
application’s entitlements, a list of things it is allowed to do. The OS will then constrain the application to performing only those actions. You can think of
the entitlements as a contract between the application and the operating system: The application promises to perform only the listed actions.

For example, consider the requirements of the ranchrorecast project. It needs to create outgoing network connections and not much more. It doesn’t
need to read or write files on disk or use the camera or microphone or open a port for incoming network connections. By setting RanchForecast’s
entitlements to creating only outgoing network connections, we have severely limited any opportunities for mischief on the part of this application.

To specify an application’s entittlements, the p1ist can be edited, or you can use Xcode’s project editor (Figure 37.5).

Figure 37.5. Application Entitlements

P 4 RanchForecast - RanchForecast xcodepio]
- Archive sded | Today 41 807 Pu
> [r My M - ive Succeede i
4 L J
Run Stop Scheme Bresipoints

=i) RanchForecast
Summary Infe Build Seetings Buidd Phase Buhd Rules

Banchlorecast T Estitements

Mt — App Pretection (9 Erable Application Sandbaxing

Entilemams Filt | Ranchforecast

File System: || Allow Unmedisted Read
Allow Unmedated Write
Allgw Mediated Raad
Allow Mediated Wrie

Allow Dewnloads Write

Poemworic || Aliow Incoming Network Connections

o Wlew Chgaing Metwork Connecticns

Hardwane || Allow Camera Access
Mlow Microphone Acoess
Allow USE Access

diow Printing

Apps || Allow Address Book Dats Access
Allow Location Services Access
Allcus Cabemclar Data Acgess

Music Folder Acoess | Nome
Movies Folder Acoess | None

Pictures Folder Access | Nore

©

Add Target

E i o & 1 |NoSeecton

Sandboxed applications are provided with a container: a folder on disk in which they can store caches, preference files, and other resources. Mac OS X
changes the home directory reported to via AppKit API calls to return this container folder, which resides within the user’s Library.

Mediated File Access and Powerbox

Mediated read and write access is the preferred means of file access to applications. Mediated access includes access to temporary files, such as
those in the application’s container, and also read or read/write access to files that are explicitly opened by the user using a Mac OS X file-open dialog or
files dragged to the application. That is, when the user chooses a file via an NsopenPanel Or NSsavePanel, the application’s sandbox is automatically
expanded to include the selected file or directory.

This functionality is provided by a system daemon called Powerbox. When the developer uses NsopenPanel Or NssavePanel, the sheets are rendered by

the system daemon, providing a trusted means for file selection that is transparent to the developer—no code changes are necessary.

If an application that has the mediated read or read/write entittement is terminated and restarted, the sandbox is again expanded to include previously
open documents when Lion restores the prior state of the application by reopening those documents. The standard AppKit Open Recent menu provides
similar capabilities.

For a full description of the entittements available to applications, see the Mac OS X Developer Library document Code Signing and Application
Sandboxing Guide.

The Mac App Store

If you're writing a commercial app, there’s quite a bit of work to do beyond the writing the app itself, in order to release it. The Mac App Store has the
advantage of taking care of a lot of these aspects for you: purchasing, installation/packaging, and distribution are all handled for you. Much of licensing is
addressed, also. If you're an independent developer, working on such tasks can feel as though they're taking valuable time away from making your
product better.

The Mac App Store isn't for every app, however. If your application cannot operate in a sandboxed environment or doesn't conform to the review
guidelines, you will want to use more traditional means of distribution.

Most aspects of distribution in the Mac App Store are fairly straightforward and similar to the iOS App Store. You will need to use Xcode to sign your
application binary, provide a description of your application and screenshots, and, finally, submit the app by using Xcode’s Organizer.

Receipt Validation

Mac App Store apps differ from iOS apps in one key area, however: There is no operating system support for license checking. That is, without special
effort on your part, there is no copy protection. If copy protection is important to you, you will need to implement receipt validation.

When purchased from the Mac App Store, an application is downloaded to the user’s system. A file containing the application receipt will be placed in the
application bundle. The receipt contains the application’s bundle identifier, its version string, and a hash of the computer’s GUID. Receipts are
cryptographically signed by Apple.

By verifying the information in this receipt, your application can determine whether it is authorized to run on this system. The verification steps are:
1. Verify that the receipt is present.
2. Verify that the receipt is properly signed by Apple.
3. Verify that the bundle identifier in the receipt matches.
4. Verify that the version identifier matches.
5. Verify that the hash contained in the receipt matches this computer's GUID hash.

A few notes: although the bundle and version identifiers can be obtained from the info.plistfile (CFBundleIdentifier and
CFBundleShortVersionString keys, respectively), it is strongly recommended that these values be duplicated as constants within the application itself.
The reason is that the application’s 1nfo.plistfile is easily modified by users; by trusting this information, the application could be tricked into
accepting a valid receipt for another application on that system.

If validation fails, the application should terminate with a status of 173:

if (!'validated)
exit (173);

This instructs the system that validation has failed for this application.

The code for performing this verification process is, frankly, unpleasant for most developers. Low-level C programmers will feel right at home, although
working with cryptographic APIs can be daunting to most developers. You may be asking, “Why doesn’t Apple provide a reference implementation?”

The reason is that if Apple did provide a reference implementation, the vast majority of developers would use it, and a cracking tool could then be used to
disarm the protection in all applications that use this code. By asking developers to concoct their own methods for verifying this information, the problem
of cracking copy protection is made more difficult.

Apple has provided code snippets for performing parts of this process, as well as a sample receipt for testing purposes. This is an excellent use of build
configurations: Use the debug build configuration, or create a new one that directs your code to use the sample receipt for its validation process.

The aforementioned code snippets can be found in the Mac OS X Developer Library article “Validating App Store Receipts.” Be creative in your receipt
validation, and remember to use varying patterns between your applications.

Chapter 38. The End

When we teach a class, it always ends with the “Feel-Good Talk,” which delivers the following messages:
» The knowledge you have received from this experience never comes easy. You have learned a lot of stuff. Be proud.
* The only way to solidify what you have learned is to write applications. The sooner you start, the easier it will be.

* There is still much more to learn, but you have crossed the hump in the learning curve. Matters will be easier from here. Once again, the only way to
progress is to write applications.

* As a speaker, Aaron is available for weddings, parties, bar mitzvahs, and other events. We also offer five- and seven-day classes at the Big Nerd
Ranch. For a schedule, please see the Big Nerd Ranch Web site (www.bignerdranch.com/). Or use the RanchForecast exercise.

The final part of the “Feel-Good Talk” is a listing of resources that will help answer your questions as they arise. As with any programming topic, your
answers will be found in a hodgepodge of online documentation, Web sites, and mailing lists.

* If you have a question about Cocoa, the first place to check is in the reference documentation. All the classes, protocols, functions, and constants
are listed there.

« If you have a question about Objective-C, the first place to check is in the online Objective-C reference documentation.
« If you have a question about Xcode or Interface Builder, the first place to check is in the developer tools reference documentation.

» Mark Dalrymple wrote a book on the plumbing of Mac OS X from a developer’s point of view. If your code is going to do anything with the operating
system (such as multithreading or networking), we strongly recommend that you pick up a copy of Advanced Mac OS X Programming.

» Don’t be afraid to experiment—most questions can be answered by creating a tiny application. Creating this application will probably take you less
than 15 minutes.

» The Web site for this book (www.bignerdranch.com/books) has the answers to many questions and several fun examples.

« Stack Overflow (www.stackoverflow.com/) is an excellent place to find the answers to your questions, and has a strong Cocoa and iOS presence.
Chances are somebody has faced the same challenge you are facing.

» The CocoaDev Wiki (www.cocoadev.com/) is a good place to learn new tricks.

* Apple also has a mailing list for Cocoa developers. You can join the cocoa-dev mailing list at Apple’s list server (http://lists.apple.com/). The list is
archived at www.cocoabuilder.com/.

* If you have exhausted all other possibilities, Apple’s Developer Technical Support will answer your questions for a fee. The folks there have
answered lots of questions for us, and we find them to be consistently knowledgeable and helpful.

+» Join the Apple Developer Connection. It will give you access to the latest developer tools and documentation, as well as prior years’ WWDC
videos. The ADC Web site is http://developer.apple.com/.

* When you're ready to learn more about Cocoa, the forthcoming More Cocoa Programming for Mac OS X will help you take your Mac applications
to the next level, with an emphasis on more advanced topics such as custom controls and making your application scriptable using AppleScript.

Finally, try to be nice. Help beginners. Give away useful applications and their source code. Answer questions in a kind manner. It is a relatively small
community, and few good deeds go forever unrewarded.

Thanks for reading our book!

Index

Symbols

: (colon), method name with arguments, 36
@“...” construct, 47
¢ symbol
C strings vs. Nsstrings, 4041
Objective-C keywords, 27

Moperator, blocks, 372, 374

A

abstract class
defined, 160
NSCoder as, u
NSController as, 129-130
acceptsFirstResponder method, keyboard events, 272—275, ﬂ, ﬁ
accessor methods
declaring for new class, 50-51
defined, 50
implementing, 123—-125
actions
implicit animation and, 423-424
targets and. See target/action
actions
dictionary, 423
addobject method
add objects to end of array, 36
NSMutableArray, 46
addObjectsFromArray: method, NsMutableaArray, 46
addOperationWithBlock: method, NsoperationQueue, 436—437
Alert panel
as modal window, 336—337
overview of, 229-230
using string table, 241
alloc method
coupling with init message, 43—44
retain-count rules for ownership, 76
retain count using, 69
AppKit framework.
classes with delegates in, 112
defined, 6
UKit vs. See iOS development
applications
debugging hints, 98
as directories, 172
distributing your. See distributing your application
ARC (automatic reference counting)
benefits and limitations, 68—69
defined, 68
disabling, 63—64
overview of, 80—81
stronq references. 81

weak references, 81-82
archiving
automatic document saving, 174
document architecture, 163—-167
Ioading and NSKeyedArchiver, 168-169
NSCoder and NSCoding, 160-163
overview of, 159-160
preventing infinite loops, 172—173
saving and NSKeyedArchiver, 167-168
arguments
initializers with, 56—-58
methods taking, 36—37
arrangedobjects controller key, array controller, 136

array controllers

NSArrayController. See NSArrayController
arrays

methods implemented by nsarray, 45

methods implemented by NsMutablearray, 46
asserts, debugging with, 61-62
assign attribute, properties, 125
Assistant Editor

editing implementation file, 27

layout XIB file, 91

making connections, 92-94
asynchronous connections

NSURLConnection, 362-363

receiving response, 377—381

solving /O- bound problems with, 434
asynchronous reads, NsTask, 456
attributed strings. See NsatrributedString
attributes

NSAtrributedString, 287—288

iNn NSManagedObjectModel, 178—179
Attributes Inspector. See attributes
automatic document saving, 174
automatic reference counting. See ARC (automatic reference counting)

autorelease Message

accessor methods for instance variables, 79

overview of, 74-76

retain-count rules, 76—77
autorelease pools

background threads, 430—431

simplifying release of objects, 74—76
autosavesInPlace method, Nsbocument, 174
autoscroll: method, 268—269
autoscrolling

adding timer to, 328

adding to application, 268—-269
Autosizing, Size Inspector, 244, 445
awakeFromNib message

chronology of applications, 32

overview of, 30—31

B

background color

table views, 216-217
background threads
overview of, 427-428
race conditions in, 428—429
using NSOperationQueue, 435-438
becomeFirstResponder method, 272-275, 281
Behaviors in Preferences panel, configuring to show log in, 29
bindings
attaching value transformers to, 351
on cell-based vs. view-based table views, 191
Core Data, 177, 183-188
creating programmatically, 127
removing, 127
using key-value coding, 119-120
Bindings Inspector. See bindings
_block type specifier, 374-375
blocks
availability of, 376
memory and objects within, 375-376
overview of, 371-373
receiving asynchronous response, 377—381
syntax for, 373-375
bold, drawing text with attributes, 294
BooL, defined, 26
box
binding, 187—188
view swapping. See view swapping
breakpoint navigator, 60
breakpoints, 58—61
build configurations
assertion checking, 62
changing behavior, 462—-464
changing to Release configuration, 62
distributing app, 461-462
bundles. See NSBundle
buttons
NSButton, 85—-86

target and action of, 83—-84

C

C++ language, Obijective-C vs., 2
C programming language
assertion checking, 62
interaction with ARC, 82
strings in Objective-C vs., 40—41
CAAnimation class, 417
CABasicAnimation class, M
caLayer class, Core Animation
configuring project, 417—423
custom drawing, 425
implicit animation and actions, 423-424
overview of, 417
CAOpenGLLayer, 425
case sensitivity, 7-8, 21
caselnsensitiveCompare: method

NSString, ﬂ

sorting with array controllers, 140-141
CAShapelayer, ﬁ
categories

adding method to nsstring, 307—309

creating, 307

declaring private methods, 309
CATextLayer, Core Animation, 420-421, 425
CATransaction, Core Animation, 417, 424
cell-based table views

bindings in, 183

limitations of, 180

view-based table views vs., 191
center-justify button, text field Attributes Inspector, 19
changeBackgroundColor: message

adding panel to application, 204

editing defaults, 214-215

notifications, 224-227
characters method, NSEvent, m
characters with accents

Option key, 235, 237
clang/LLVM open source compiler projects, 35
class method, 54
classes

creating in Interface Builder, 20—22

creating own. See Objective-C, creating own classes

creating/using existing. See Objective-C, using existing classes

declaring in Objective-C vs. Java, 25-26

denoting with ns prefix, 43

framework as collection of, 6

implementing protocols, 160-163

overview of, 5

typographical conventions for, 7
clearContents method, NSPasteboard, 296
close button, panels, 194
Cocoa Touch

defined, 3

developing for iOS. See iOS development
Cocoa, understanding

common mistakes, 8

frameworks, 6

history of, 1-3

how to learn, 8—9

language, 4-5

objects, classes, methods, and messages, 5-6

tools, 3—4
Code Signing and Application Sandboxing Guide, 468
colon (:), method name with arguments, 36
command line tool, creating, 37-41
compare: method, sorting array controllers, 140—141
compositing image onto view, 264—265
concludeDragOperation: message, drag destination, 316, 318
concurrency

multithreading, 427—429

NSOperationQueue and, 435-438

overview of, 427

simple background threads, 429—431

time profiling in Instruments, 431-435
Connection panel

make connections in Interface Builder, 93—95
Connection to Action, 92
Connection to Outlet, 92—-93
connections

Interface Builder, 15, 22-25

console, debugging with, 29, 98

constants, Objective-C, 26

containsObject method, NSArray, 4_5

content view, view hierarchy, 241-243
contentsGravity property, Core Animation, 423
context pointer, using defensively, 153
contextInfo, sheets, ﬁ, 335-336

continue button, debugger bar, 60

controller classes

NSArrayController. See NsArrayController

NSController, 129
NSObjectController, 129—-130
controls
layout XIB file, 90—94
NSButton, 85—-86
NSSlider, 86—=87
NSTextField, 87—89
setting target programmatically, 96
target/action of, 83
Convert to Objective-C Automatic Reference Counting, 82
coordinate system, views, 266—268
copy. See also drag-and-drop
blocks, when assigning to instance variables, 375
copy attribute, properties, 125
copy method, retain-count rules for ownership, 76
Core Animation
CALayer, 425
implicit animation and actions, 423-424
overview of, 417
creating custom nsManagedobject classes, 409—411
editing model, 407—408
Core Data framework
creating applications, 130
defined, 6
NSManagedObjectModel, 177-179
overview of, 177
Core Graphics framework. See Quartz
count method, NSArray, 4_5
currentContext, drawing to screen, 358
currentEvent method, NSApplication, m
cut, adding, 298-300

D

dataOfType:error: method, 168, 455
dataSource outlet, NSTableView

make connections, 109
date method, NSDate, 54-55

dateByAddingTimelInterval method, NSDate, ﬁ

dealloc method
in ARC, 81
overview of, 72—-73
deallocating objects, debugging hints, 98
Debug build configuration
using in development, 98
assertion checking, 62
overview of, 461
Debug navigator, 59
debugger (gdb)
adding exception breakpoints, 60—61
console, 29
debugger bar, 59-60
defined, 5
hints for, 98
print-object feature, 60
using NSAssert () ,ﬂ
debugging, with static analyzer, 63—64

Debuglog function, preprocessor macros, 463—464
decoding data, Nscoder, 162—163
defaults. See user defaults
defaults tool, 217-218
delegates
AppKit framework classes, 112
creating, 114
creating helper objects, 100-104
designing, 381
errors in implementing, 112
notifications and, 227
of NsControl, 347-348
NSTableview and, 104—107
pasteboards, nil-targeted actions and, 301
understanding, 113-114
dequeueReusableCellWithIdentifier: method, urTableview iniOS, 393
description method
autoreleasing objects, 73—-74
implementing, 52-53
NSObject, 44
printing in debug console, 60
designated initializer, 57
destination, drag, 315-319
dictionaries, 208—209
disk image (DMG), packaging application for download, 466
distributing your application
application sandboxing, 466—-468
build configurations, 461-462
Mac App Store, 468-470
preprocessor macros and changing behavior with build configurations, 462—464
release build, 464—466
DMG (disk image), packaging application for download, 466
dock, Interface Builder, 20
document architecture
defined, 131
Info.plist and NSDocumentController, 163-164
NSDocument, 164-167
NSWindowController, ﬁ
overview of, 163

document controller, 163—164
document type information, setting, 170
Documentation and APl Reference, 31
documents. See also NsDocument

applications based on, 131

suppressing creation of untitled, 215-216
domains, setting precedence of defaults, 212
dot notation, accessors, 124
drag-and-drop

drag destination, 315-319

drag source, 312-315

operation mask, 319

overview of, 311-312
draggingEntered: Mmessage, 316-317
draggingExited: message,ﬁ,m
draggingSourceOperationMaskForLocal: mMessage, 312-317, 319
draggingUpdated: Mmessage, 31_5, m, m
drawInRect: method, NSAttributedString, @
drawLayer:inContext:, CALayer, ﬂ
drawRect: method

adding highlighting, 316—-317

adding printing, 355

compositing of image, 265

coordinate system of views, 268

drawing text with attributes, 291

getting view to draw itself, 246-248

getting view to generate PDF data, 291-293

rollovers, 283

using keyboard events, 280

E

encodeWithCoder: method, NSCoder, 160-161
encoding data

NSCoder, 160-161

preventing infinite loops, 172-173
endSheet: method,ﬁ
en.1lproj directory, localizing app in English, 233, 237
entities

Core Data model, 180, 407

editing model, 407-408

iNn NSManagedObjectModel, 177-179
equality, innsobject, 44
events

images and mouse. See images and mouse events

keyboard. See keyboard events

nextResponder and, 414-415

role of window server, 33

timer. See NSTimer
exceptions

adding breakpoints, 60—61

debugging hints, 98

key-value coding and ni1, 139-140
exported UTls

configuring, 170-171

customized, 303

storing in UTExportedTypeDeclarations, 175
Extended Detail pane, Instruments, 433
extensions

Objective-C, 40-41

setting for file types, 170-172

F

file formats
copying data onto pasteboard, 295
File Inspector, 234, 237-238
file system, NSUserDefaults and, 210-211
file wrappers, 165-167
File’s Owner
dock icon, 20
NIB files and nswindowController, 198
First Responder, dock icon, 20
flagsChanged event, NSResponder, m
floats, nil value and, &
fonts
NSFont. See NSFont
NSFontManager, &
typographical conventions in this book, 7-8
format strings, explicit ordering of tokens in, 240
formatters. See also number formatters
creating. See NsFormatters
NSTextField, 88
overview of, 339-340
forwardInvocation: method, 145
Foundation framework
creating command-line tool, 38—41
defined, 6
.framework extension, Q
fr.1proj directory, localizing app in French, 233-238, 237-238
fromvalue property, CABasicAnimation, 424

focus ring, fuzzy blue box, 284
G

garbage collector, 67—68
gcc (GNU C compiler), 35, 58-59

GCD (See Grand Central Dispatch)
and blocks, 376

faster performance and, 439

gdb. See debugger

general pasteboard, 296

generalPasteboard method, NSPasteboard, &

genstrings tool, 239

global variables
creating keys for names of defaults, 212
NSAtrributedString, 287—288
NSPasteboard, &
notifications, 225

GNU C compiler (gcc), 35, 58-59

gradients, cacradientLayer, 425

Grand Central Dispatch (GCD)

and blocks, 376
faster performance and, 439
graphics. See Core Animation

H

header file
creating classes, 20
creating new class, 50
in Objective-C, 26—27
helper objects
classes with delegate outlets, 112
delegates, 100—-104
errors implementing delegates, 112
how delegates work, 113-114
making connections, 109
NSTablevView and its dataSource, 104—107
overview of, 99
hidesOnDeactivate variable, windows, m
hierarchy, views, 241-243
highlights
for color well, 204
for erroneous line of code, 28
drag destination, 316-317
for rollovers, 283
HTTP, Web services, 359

IBAction
adding cut, copy and paste, 300
defined, 26
making connections, 92
IBOutlet, 26
ibtool command, 239-240
.icns file, 170-172
icons
copying into project directory, 170
dock, 20
setting for file types, 170-172
id, 26
identifier
interface layout for Web service, 367
setting document type in archiving, 170
setting for defaults, 212
Identity Inspector
instance of view subclass, 244
labeling objects, 180
image view
binding, 186—187
view-based table views, 181-184
images and mouse events
autoscrolling, 268—269
composite images, 264—-265
getting mouse events, 259
NSEvent, 257-258

NSImage,&

NSOpenPanel, 259-264
NSResponder, Zﬂ
view’s coordinate system, 266—268
immutable, nsarray as, 45
implementation file
creating classes, 20
editing, 27-28
#import
creating keys for names of defaults, 212
header file and, 26-27
Info.plist, NSDocumentController, 163-164
inheritance
“inherits from”, vs. “uses” or “knows about”, 48
NSControl and, M
in Objective-C, 26
in Objective-C vs. C++, 48
init method
creating and using instances, 36
as designated initializer for nsobject, 57
initializers with arguments and, 56-58
NSObject, 43
writing initializers, 55-56

initialFirstResponder method, keyboard events, 276-278
initialize method, registering defaults, 213
initializers. See also init method

with arguments, 56-58

conventions for creating, 57-58
initWithCoder: method, NSCoder, @, u
initWithFormat method, NSString, ﬂ
insertObjectlnethOd,NSMutableArray,iﬁ
Inspection Range, Instruments, 433
Inspector panel, 16
installers, 464—-466
instance variables

adding to classes, 21

archiving, 159

defined, 5

designing classes with, 148-149

enabling accessor methods for, 77—80

header files in Objective-C and, 26-27

isa pointer, 65—66

naming conventions for, 22

protected in Objective-C, 27
instances, creating, 5, 22, 35-37
Instruments

time profiling in, 431-434

defined, 4
Interface Builder

common mistakes, 8

creating an instance, 22

creating class, 20—-22

dock, 20

functionality of, 15-16

interface layout, 17-19

making connections in, 22-25, 91-94

XIBs and NIBs, 17

interface layout
in Interface Builder, 17-19
overview of, 17-19
panels, 201-202
sheets, 331-334
International pane, System Preferences, 235
interpretKeyEvents method, NSResponder, 281
Invert Call Tree, Time Profiler, 433
invocations, 145-148
iOS development
adding navigation controller, 388—-390
overview of, 383
pushing view controllers, 393—395
UITableViewController, 391-393
iOS SDK, 3
iPad apps, 383
iPhone apps, 383
isa pointer, messaging, 65—66
isARepeat method, NSEvent, m
isEqual: message, NSArray, 45
isEqual: message, Nsobject, 44
isFlipped, flipping views, 255
isopaque method, project with keyboard events, 280
Issue navigator, 28
italics, drawing text with attributes, 294

J

Jump to Next Counterpart command, editing implementation file, 27

K

key paths
key-value observing, 127
overview of, 126—127
sorting people, 142
key-value coding
for bindings, 119-120
making keys observable, 123
and ni1, 139-140
overview of, 117-119
to-many relationships and, 148—152
key-value observing
enabling undo for edits, 152—153
key paths, 126127
making keys observable, 121-123
overview of, 120-121
properties, 124-126
understanding, 127
key-value pairs
dictionaries, 208
string table as collection of, 236
keyboard events
nextResponder, 414-415
NSEvent, 273-274
NSResponder, &

overview of, 271-272

keyCode method, NSEvent, 274
keyDown event, 273, 281

keyUp event, NSResponder, m
keywords, Objective-C, 27
KITT the super car, 99

Knight Industries, 99

» o

“knows about”, “inherits from” vs., 48
KVC. See key-value coding

L

labels
objects in Interface Builder editor, 180
language
Objective-C, 4-5
Objective-C vs. C++, 2
Language and Text pane, System Preferences, 236
lastObject method, NSArray, 4_5
layers
Core Animation, 417, 419-421
implicit animation and actions, 423-424
lazy copying, drag and drop, 295-298, 304—-305
length member, NsSRange, 286
level indicator, 181-184
libraries. See framework
library of code, bundles, 205
Library panel, 17-19
LLVM (Low Level Virtual Machine) compiler
compiling Objective C-2, 5
defined, 35
static analyzer using, 63—64
loading
NIB files. See NIB files and nswindowController

NSKeyedUnarchiver and, 168—169

using NSbocument, 166—167
Localizable.strings, 236—238
localization

explicit ordering of tokens in format strings and, 240

ibtool and, 239—240

Nib file and, 234—236

overview of, 233-234

string tables and, 236-239
location member, NSRange, 286
lock focus on view, drawrect, 246—247

Low Level Virtual Machine. See LLVM (Low Level Virtual Machine) compiler

Mac App Store
distributing app, 468—469
for Mac developers, 3
receipt validation, 469-470
Mac OS X
Developer Tools, 3—4
macros
hardcoding behavioral settings with preprocessor, 462—464
using string table, 238—239
main function
changing, 51-52
creating command-line tool, 38—41
initializers with arguments, 56-58
overview of, 15

MainMenu.xib
menu item setup for adding panels, 197
Interface Builder, 15
man command, for ibtoo1, 240
managed object model, NsManagedobjectModel, 177-181, 189
manual reference counting
ARC working with, 82
autoreleasing objects, 73—-76
dealloc method,M
iniOS 5, 383
limitations of, 68
memory management, 67
overview of, 69-70
retain-count rules, 76—77

matrices, creating with cells, 253—-254
mediated file access, and Powerbox, 468
memory management
accessor methods, 77-80
ARC, 80-82
within blocks, 375-376
iOS 5, 383
manual reference counting. See manual reference counting
overview of, 67—69
static analyzer troubleshooting, 63—-64
thinking locally for, 77
menu items, target/action of, 95
messages
calling methods by sending objects, 6
handling, 65-66
sendingto ni1, 41-42
syntax for, 35-37
method name (selector)
adding colon when taking arguments to, 36-37
methods indexed by, 65-66
methods
adding to class, 21
adding to nsstring, 307—309
calling by sending objects messages, 6
conventions for naming, 22
declaring in new class, 50

declaring private, 309
misspelling when implementing delegates, 112
NSAtrributedString, 289
NSDictionary, &
NSFont, 285-286
NSMutableDictionary, 209
NSNotificationCenter, 222-224
NSOpenGLView, ﬂ
NSPasteboard, 296—298
NSResponder, m
NSString, 289
NSUserDefaults, 210-211
NSView, 241-243
as public in Objective-C, 27
retain-count rules for, 7677
taking arguments, 36—37

modal windows, 336—-337

model classes, 129

Model-View-Controller design pattern
Cocoa and, 129-130
document architecture relating to, 163

in object-oriented programming, 129
modifierFlags method, NSEvent, m
mouse events

autoscrolling, 268—269

composite images, 264—265

nextResponder, 414-415

NSEvent, 257-258

NSResponder, E

rollovers, 282—283

view's coordinate system, 266—268
mouseDown: method

adding timer to autoscrolling, 328

coordinate system of views, 267

getting mouse events, 259

NSResponder, 257
mouseDragged: method

adding autoscrolling, 268—269

adding timer to autoscrolling, 328

coordinate system of views, 267

getting mouse events, 259

NSResponder, E
mouseEntered event, roIIovers, &
mouseExited event, rollovers, 283
mouseMoved event, rollovers, 282—-283
mouseUp: method

adding timer to autoscrolling, 328

coordinate system of views, 267

getting mouse events, 259

NSResponder, 257
multicore processors, and multithreading, 428
multithreading

time profiling, 431-435

faster performance and, 438—439

overview of, 427-428

race condition problem in, 428—429

simple Cocoa background threads, 429-431
using NSOperationQueue, 435-437
mutableCopy method, NSArray, ﬁ
mutex locks, thread synchronization and, 438

N

naming conventions
delegates and notifications, 227
keys for names of defaults, 212
methods and instance variables, 22
navigation bar, 386—387
navigation controller, iOS
adding, 388—390
pushing view controllers, 393—395
New File menu item, creating classes, 20
new method, retain-count rules for ownership, 76
New Project, create new project, 12-14
nextKeyView, project with keyboard events, 276-278

nextResponder
and events, 414-415
pasteboards and nil-targeted actions, 300
NeXTSTEP, 1-3
NIB files
awakeFromNib called automatically, 30-31
chronology of applications, 32
localizing, 234-235
overview of, 17
NIB files and nswindowController
adding panel to application, 194—196
menu item setup, 197
NSBundle, 204—-205
overview of, 193

ARC setting weak references to, 81-82
defined, 26
key-value coding and, 139-140
not adding to arrays, 46
representing nothingness in array with nsxu11, 46
sending messages to, 41-42
nil-targeted actions, pasteboards and, 300-302
NO, 26
nonatomic properties, 125

notifications
delegates and, 227
handling upon arrival, 226
NSNotification, &
NSNotificationCenter, 222-224
overview of, 221
passing between applications, 222
posting, 224225
registering as observer, 225-226
userInfo dictionary and, 226-227
vs prefix, defined, 43
NSApplication Object
chronology of applications, 32—33
defined, 20

suppressing creation of untitted documents, 215-216
NSApplicationMain () function, 15, 32
NSArray, 45,212, 371
NSArrayController

add sorting, 140-141

binding view-based table views, 183—-188

key-value coding and ni1, 139-140

overview of, 129-130

rewriting RaiseMan without using, 142—-144

sorting without, 141-142

NSAssert(),ﬁl
NSAtrributedString

drawing text with attributes, 286—-288

drawInRect: as category for, 309

formatters returning attributed strings, 350

methods for drawing onto view, 289
NSBezierPath,247—250

NS_BLOCK_ASSERTIONS macro, 62, 462—464
NSBox

subviews of, 241-242
view hierarchy, 242

in view swapping, 398—-399
NSBundle

creating string tables for localization, 236
using string table, 238—239

working with, 204—-205
NSButton

creating views programmatically, 252—253
first responders, 302
keyboard events, 271
NSButtonCell, 253
overview of, 85-86
as subclass of nscontrol, 83—84
as view, 241
view hierarchy, 242
NSButtonCell, 253
NsCassert (), assertion checking in C, 62
NSCoder
decoding data, 162—-163
encoding data, 160—161
overview of, 160

NSCoding protocol, 160-163
NSColor

creating with basic formatter, 341
registering defaults, 213
using NSColorList, 344—345

NSColorList, 341, 344—-345
NSColorWell

as subclass of nscontrol, 83

as view, 241

view hierarchy, 242
NSComparisonResult,NSDate,§§

NSCondition, thread synchronization, 438
NSControl

commonly used subclasses of, 85-89
delegate of, 347-348
inheriting from nsview, 253

overview of, 83—-85
setting target programmatically, 96
NSControlKeyMask, 258
NSController, 129—130
NSData Object
loading using NSpocument, 166—167
as property list class, 212
saving and NskeyedArchiver, 167—168
saving using NsDocument, 165—166
user defaults, 213-214

Web services, 359-362, 363—364
NSDate

create, 54-55

current time, 30—31

formatter, 88

initializers with arguments, 56-58
methods, 54-55

as property list class, 212

NSDateComponents, 51—52, m
NSDateFormatter

attaching to text field, 88
overview of, 339-340
NSDatePicker, 112, 181-183

NSDecimalNumber, 139-140
NSDictionary

drawing text with attributes, 288
NSPasteboard using, &
NSUserDefaults and,;LLl
overview of, 208—209

as property list class, 212
userInfo dictionary and, 226—227

NSDistributedNotificationCenter, 222

NSDocument
automatic document saving, 174
defined, 163
document architecture, 164

document-based applications without undo, 175

loading document, 166—167
nil-targeted actions and, 301
printing documents, 353
saving document, 164—166
undo manager for, 148
NSDocumentController, 163—-164
NSDraggingInfo protocol, 315, 317-319
NSDragOperationCopy, 312-317, 319
NSDragOperationDelete, 312, 315
NSDragPboard, 296
NSEntityDescription, 189

NSError Object, 165-167
NSEvent

defined, 257

keyboard events, 273-274

mouse events, 257-258

NSResponder methods, 273
NSFileHandleNotificationDataItem, 459
NSFileWrapper Object, 165167

NSFindPboard, 296

NSFont
drawing text with attributes, 285-286
NSAtrributedString,287—288
NSFontManager,2§§

NSFonthoard,296

NSFormatters
checking partial strings, 348—350
defined, 88
implementing, 345-347
NSValueTransformerVSq§§l
overview of, 339-341
returning attributed strings, 350

NSGeneralPasteboard,296

NSGraphicsContext
drawing with Quartz using, 441
printing, 358

NSImage
compositing image onto your view, 264—265
coordinate system of views, 266—268
representations of, 269
using, 269

NSImaqeRep,Zﬁg
NSImageView

binding, 186-187

view-based table views, 181-184
NSInputManager,2g§
NSInvocation,NSUndoManager,J_ji
NSKeyedArchiver,167—168
NSKeyedUnarchiver, 168—169
NSLevelIndicator, View-based table views, 181-184
NSLock, thread synchronization, 438
NSLog () function

defined, 40

NSManagedObject,409—411
NSManagedObjectContext

accessing for view swapping, 397
creating, 178

defined, 177

how Core Data works, 189
interface, 179-180

NSManagedObjectModel, 177—181, 189
NSMatrix

working with cells, 253—254

NSMenuItem,gﬁ
NSMutableArray

in compositions, 48

defined, 45

instances, 35-37

methods, 46

sorting with, 141-142

thread synchronization and, 438

NSMutableAtrributedString, 286—288
NSMutableDictionary

overview of, 208—-209
NSMutableString,ﬂQ
NSMutableURLRequest class, 361-363

NSNotification,222

NSNotificationCenter,221—224

NSNull, 46
NSNumber

as immutable, 45

key-value coding, 118

key-value coding and ni1, 139-140
as property list class, 212

NSNumberFormatter,340
NSObject

creating class, 20—22

header files and, 26—27

init as designated initializer for, 57

isa pointer and, 65-66

as root of Objective-C class hierarchy, 43
NSObjectController, 129
NSOffState, buttons, 86

NsonState, buttons, 86
NSOpenGLView

working with OpenGL, 441
NSOpenPanel

using, 263-264
mediated file access and Powerbox, 468

NSOperationQueue

overview of, 435

thread synchronization, 437—438
NSOrderedAscending,iZ

NSOrderedDescending,ﬂZ
NSPanel

creating, 193-194
NSPasteboard

adding cut, copy and paste, 298-300
methods, 296—-298

overview of, 295
NSPasteboardItem

lazy copying, 304—-305

creating custom UTls, 303

defined, 297
NSPasteboardReading protocol, 297, 299, 303
NSPasteboardWriting protocol, 297, 29
NSPersistentDocument,11&,1&&
NSPersistentStoreCoordinator,1§Q

NSPipe, NSTask, 453—-454, 456—-460

NSPoint

coordinate system of views, 266—268

drawing with NsBezierpath using, 248—-250

drawRect: method, 24_7
NSPrintOperation,353—357

NSProgressIndicator,321,324—325
NSRange

dealing with range of numbers, 286
searching strings for substrings, 344-345

NSRect, 247-248
NSResponder

keyboard events and, 273
NSRuleeroard,Zﬁﬁ
NSRunAlertPanel () function, 229-230

NSRunApplication(),in

NSSavePanel, 68
NSScrollView, 2 2, 250-252
NSSecureTextField,&

NSSize, 247
NSSlider

NSSliderCell, 253

overview of, 86—87

as subclass of Nscontrol, 83, 85
NSSortDescriptor Objects, 141-142
NSSpeechSynthesizer

delegate methods of, 100—104
NSSpeechSynthesizerDelegate protocol, 100-102, 106
NSSplitView, 242
NSSRunLoop, 328
NSString

converting strings to other objects. See NsFormatters

defined, 47

as immutable, 45

methods, 47

methods for drawing onto view, 289

NSMutableString, 45

overview of, 40-41

as property list class, 212

using compare: to sort strings, 371
NSTableCellView

binding view-based table views, 185

creating view-based table views, 181

defined, 254
NSTableDataSource, 104—107
NSTableView

connections, 109

dataSource Of, 104-107

view hierarchy, 241-243

NSTableViewDataSource methods, 368
NSTask

asynchronous reads, 456

overview of, 451
NSTextField
binding view-based table views, 187—-188
creating view-based table views, 181
first responders, 271-274, 302
keyboard events, 271
NSTextFieldCell View, 253
overview of, 87—89
as subclass of Nscontro1, 83, 85

view hierarchy, 241-242
NSTextView
first responders, 302
inheritance diagram for nscontroi1, 85
keyboard events, 271
NSUndoManager and, 158
NSThread, 429-431
NSTimeInterval, NSDate, 54—55
NSTimer
NSSRunLoop used With, 28

overview of, 321-323
NSUndoManager

document-based applications without, 174
for edits, 153—-155

how it works, 146—148, 189

key-value observing, 152—153
NSInvocation and, &

overview of, 145

windows and, 158

NSURL class, 359
NSURLConnection

fetching data from Web service, 361-363
asynchronous, 377-381
NSURLRequest, 359, 361-363
NSUserDefaults, &, 210-211
NSUserDefaultsController, 217

NSValueTransformer, 351

NSView
with cells, 253-254
custom views with, 241
drawing with NsBezierpath, 248—250
drawRect, 246-248
generating PDF data, 291-293
inheritance diagram for nscontro1, 84—85
inheriting from NsrResponder, 257
keyboard events. See keyboard events
Size Inspector, 244—-246
starting drag, 312-313

NSViewController, ﬁ, ﬁ, ﬂ
NSWindow

sheets. See sheets

becoming firstResponder, 271272
initialfirstresponder outlet, %
view hierarchy, 241-242

NSWindowController
defined, 163
document architecture, 167
loading NIB file without, 205
loading NIB files with. See NIB files and nswindowController
pasteboards and nil-targeted actions, 301
NSWorkspace, @
NSXMLDocument, 359-360
NSXMLNode, 359-360
NSXMLParser, 360, 363-366

NSXMLParserDelegate, 362, 364—366

(0

Object Library, 17-18
object-oriented programming, Cocoa as, 5-6
object relationships, as focus of ARC, 81-82
objectAtIndex method, NSArray, ﬂ
Objective-C
awakeFromNib method, 30—-31
declaring classes in, 25
editing implementation file, 27-28
header file, 26-27
how messaging works, 65-66
instances, 35-37

Objective-C 2 features, 4
overview of, 35
single inheritance in, 26
static analyzer, 63-64
types and constants in, 26
Objective-C, creating own classes
implement description method, 52-53
initializers with arguments, 56-58
overview of, 48—49
initializers, 55-56
objects
archiving. See archiving
within blocks, 375-376
creating, sending messages to and destroying, 35-37
overview of, 5-6
retain count system, 69-70
observers
defined, 221
NSNotificationCenter methods, 222-224
one-to-one relationship in Core Data 407—408
Open Menu item, Nsbocument, 166—167
Open Recent MenuU item, Nspocument, 166—167
OpenGL
Core Animation. See Core Animation
overview of, 441
OpenOffice, NsatrributedsString file format, 288
OpenStep, 2-3
operators, in key paths, 126—-127
opt-in garbage collector, Objective-C 2, 4
@optional, protocol, 173
ordered to-many relationships, key-value coding, 148—149
outlets
defined, 21
making connections, 23—25, 91-94
ownership, object, 76

P

pagination when printing, 353-357
panels
adding to application, 194—196
general windows vs., 193-194
parse method, NsxMLParser, 365—366
parse XML document, Web services, 359-360
partial strings, formatter that checks, 348—350
paste, 298-302. See also drag-and-drop
pasteboards
lazy copying, 304—-305
nil-targeted actions and, 300—-302
NSPasteboard, 296—298
overview of, 295-296
UTls and, 303
PDFs
copying image on pasteboard as, 295
getting your view to generate, 291-293
printing, 353
Quartz generating, 2

using Cartesian coordinate system, 255
performance overhead

autorelease message,ﬁ

garbage collector, 68
performDragOperation: message, 316,318
performSelectorInBackground:withObject: method, 430-431 , ﬂ
performSelectorOnMainThead:withObject: waitUntilDone: method, 430-431
placeholder string, text fields, 87—89
plist

dumping localized strings into, 239-240

specifying application entitements, 467
PNG image, copying data onto pasteboard as, 295
po (print-object)

debug console, 60

NSObject, 44
pointer

nil value and, 139

NSArray aS list Of, 4_5

using contextInfo When starting sheet as, 335-336
Pop-up button, 397-399, 402—403
posting notifications, 224—227
Powerbox, and mediated file access, 468
#pragma, 259

Preferences panel, creating

adding to application, 194—-196

user defaults. See user defaults
prepareForDragOperation: Message, 315-318
prepareWithInvocationTarget: method, NsundoManager, 146—147
preprocessor macros, 62, 462—464
print-object (po)

debug console, 60

NSObject, 44
printing

drawing differently on screen, 358

overview of, 353

pagination when, 353-357
printOperationWithSettings:error: method, 353, 357
private methods, declaring, 309
programmatically creating custom views, 252
project directory, 13
Project Navigator, 27, 62
projects, creating new, 12—-14
properties

attributes of, 125-126

eliminating code with, 124

in NSManagedObjectModel, 177-179
eproperty, declaring properties, 125
property list classes, registering defaults, 213
protocols

creating own, 173-174

as lists of method declarations, 160

NSCoding, 160—-163
Python, 4

Q

Quartz, 2
QuartzCore framework, 418
ouit command, 33

R

race conditions
problems in multithreading, 428—-429
thread synchronization and, 437-438
random function, 51
readFromData:ofType:error: method
loading and NskeyedArchiver, 168—169
readFromPasteboard: method, 299, 308
readFromURL:ofType:error: method, NSTask o,@
reading and writing defaults, 210-214, 217-218
readonly attribute, properties, 125
readwrite attribute, properties, 125
receipt validation, Mac App Store, 469-470
Received actions panel, connections, 25
Redo stack, NSUndoManager, 146-147
registerForDraggedTypes: method, 315-316
registering
defaults, 210-213
as observer, 222—-226
relationships
Core Data. See Core Data relationships
in NSManagedObjectModel, ﬂ
Release build configurations
blocking assertion checking, 62
changing current build configuration to, 62
creating, 464—466
overview of, 461-462
release Message
autoreleasing objects, 73—-76
calling deal1oc method, 72-73
deallocating objects, 70-71
decrementing retain count, 69
enabling accessor methods for instance variables, 78-79
retain-count rules, 76—77

removeObject method, NSMutableArray, 46
removeObjectAtIndex method, NSMutableArray, ﬁ
resignFirstResponder method, &, &, &
resources, Xcode tracking application, 12
responder chain, 300—-301
respondsToSelector: method, delegates, 113-114
retain counts, 64, 81-82. See also manual reference counting
retain cycles, 68—69
retain message
accessor methods for instance variables, 78—79
incrementing retain count, 69
memory management, 71-72
retain-count rules, 76—77
Revert To Saved menu item, NSDocument, 166-167
Rich Text Format (RTF), 288
Rich Text Format with attachments (RTFD), 288
RoboCop, 99

rollovers, 282—283

RTF (Rich Text Format), 288

RTFD (Rich Text Format with attachments), 288

Ruby, 4

Run action
changing current build configuration to, 62
run application, 28—-29

Run toolbar, 13

S

sandboxing, application

mediated file access and Powerbox, 468

overview of, 466

specifying entittements, 467—468
Save All menu item, NSDocument, 165-166
Save As menu item, NSDocument, 165—166
Save menu item, NSDocument, 165-166
saving

automatic document, 174

and NSKeyedArchiver, 167-168

PDFs, 292

using Nspocument, 164—166
Scheme Editor

build configurations, 461-462

changing build configuration, 62

creating release build, 464-466
scroll view

hierarachy, 242

resizing with window, 250—-252
security, and application sandboxing, 466—468
selector table, 65
self, writing initializers, 55-56

setAcceptsMouseMovedEvents: message, rollovers, 282
setEnabled message, buttons, 86
setFloatvalue methods, sliders, 86
setImage: method, NSImage, 268
setNeedsDisplay: message, redrawing view, 246—248
setNeedsDisplayInRect: message,m
set NilvalueForKey: key-value coding, 140
setState message, buttons, 86
setstring: method, drawing text with attributes, 290
setValue: forKey method

bindings, 120

key-value coding, 117
setWantslayer, Core Animation, 419-420
shadows, 293
shapes, CAShapelayer, 42_5
Share button, Release build configuration, 464—465
sheets

adding, 330

code for, 334-335

creating modal windows, 336—337

defined, 329

interface layout, 331-334

NSApplication methods, 329

outlets and actions for, 331
using contextInfo, 335-336
showWindow, panels, 203
simple attributes, key-value coding for, 148—149
Size Inspector
customizing views, 244246
resizing NsscrollvView, 251252
sliders. See also NSSlider
binding value of, 119-120
making keys observable, 121-123
for sheets, 332-334
Smalltalk, 35
sort descriptors, 141-142
sortedArrayUsingSelector: method, 374
sortedArrayUsingFunction: context: method, 371
sortedArrayUsingSelector: method, 371
sorting
add to NSArrayController, 140-141
people, based on names, 142
with sortedarrayUsingSelector:, 371
using blocks, 372-373
without NSArrayController, 141-142
source code display, Instruments, 433—434
source, drag, 312-315
split view, hierarachy, 242
state message, buttons, 86
static analyzer, 63—-64
step-over button, debugger bar, 60
string tables
creating, 237-238
localization using, 236
using, 238-239
stringByAppendingString method, NSstring, 47
strings
converting with formatters. See NsFormatters
drawing strings and attributed, 289
explicit ordering of tokens in format, 240
NSAtrributedString, 286-288
Objective-C vs. C, 40-41
searching for substrings, 344—-345
translated, getting into XIBs with ibtoo1, 239-240
.strings extension, string table, 236
stringWithFormat, NSString, M
strong attribute, properties, 125
strong references
in ARC, 81-82
in manual reference counting, 72
subclasses
creating instance of view, 243-244
“inherits from” vs. “uses” or “knows about” and, 48
NSControl, 85—-89
NSImageRep, 269
substrings, searching strings for, 344-345
subviews, view hierarchy, 241-243
superview, Size Inspector, 244—-246
symbols, Time Profiler, 432-433

synchronous connections
multithreading in, 427428
NSURLConnection, 361-363

@synthesize
accessor methods, 124-125
connections in Interface Builder, 93
as Objective-C keyword, 27
property attributes, 125—-126

T

tab view, hierarachy, 242-243
table selector, 65
table view. See also view-based table views
NSTableView and its dataSource, 104-107
setting background color, 216-217
UITableViewController, 392—393
.tar files, 460
target/action
debugging hints, 98
defined, 21, 83
making connections, 24-25
NSMatrix,zéi
NSTimer,§2§
overview of, 83-85
pasteboards and nil-targeted actions, 300—-302
set target programmatically, 96
target, defined, 83
targeted actions, pasteboards and nil-, 300-302
terminate: Message, 33
text, drawing on layer with caTextLayer, 425
text, drawing with attributes
bold and italics, 294
getting view to generate PDF, 291-293
giving shadows to letters, 293
making letters appear, 289-291
NSAtrributedString, 286—288
NSFont, 285—286
NSFontManager,22§
overview of, 285
strings and attributed strings, 289
text fields. See also nSTextField
awakeFromNib and, 30-31
create outlet connection for, 92-93
creating basic formatter, 342-344
Text Table Cell View, 181-182
.tgz files, 460
Objective-C language, 5, 35
threads, 427-429
Time Profiler, 431-435
timeIntervalSinceDaternethOd,NSDate,éﬂ
timeIntervalSinceReferenceDaternethOd,NSDateLQQ
timers. See NSTimer
title
changing button, 18
to-many relationships
Core Data, 407

key-value coding for, 148—-152
tokens, format strings, 40, 240
Tool project, 12
tools, 3—4
tovValue property, CABasicAnimation, ﬂ
troubleshooting, common problems, 98

types

in Objective-C, 26
U
UIKit, 383

UINavigationController, iOS, ﬂ
UlTableView, iOS, 391-393
UITableViewController, iOS, 391-393

UITableViewDataSource methods, UlITableViewController, 392
UIViewController

creating RootViewController Subclass, 386—387
creating Web view, 395
porting RanchForecast to iOS, 383-385
UTWebView, iOS, 395
unarchiveObjectWithData: method, loading and NskeyedArchiver, 168—169
unarchiving, 159, 168-169
unbind method, ﬂ
undo manager. See NsundoManager
Undo stack, NSUndoManager, 146-147
Unicode (UTF-8) file encoding, 238
universal type identifiers. See UTls (universal type identifiers)
Unix processes, 1-3
NSTask and, 451
unordered to-many relationships, key-value coding, 149—150
untitted documents, suppressing creation of, 215-216
updateChangeCount method, NSDocument, ﬂ
uppercaseString, NSString, H
URLs
adding webview to application, 369—370
opening for Web service, 368—369
user defaults
enabling user to edit, 213-215
NSUserDefaults, 210-211
NSUserDefaultsController, 217
overview of, 207-208
precedence of types, 211
reading and writing from command line, 217-218
setting, 212-213
user interface. See interface layout
userInfo dictionary, 226227
“uses”, “inherits from” vs., 48
UTExportedTypeDeclarations key, exported UT|S, i
UTF-8 (Unicode) file encoding, 238
utility area, Interface Builder, 16
UTls (universal type identifiers)
configuring exported, 170-171
customizing, 303
pasteboards and, 297-300, 303
understanding, 175

Vv

value transformers, 351
valueForKey method
bindings, 120
key-value coding, 117
key-value observing, 122
variables
inside objects, 5
reading and setting with accessor methods, 50
viewing in debugger, 59-60
view-based table views
bindings, 183—-188
vs. cell-based, 191
view classes, object-oriented programming, 129
view controllers. See view swapping
view controllers, iniOS
overview of, 383—-385
pushing, 393-395
UITableViewController, 391-393
view swapping
creating view controllers and XIB files, 400—401
overview of, 397—-398
resizing window, 403—-405
viewDidMoveToWindow, roIIovers, &
views
drag-and-drop to. See drag-and-drop
images and mouse events. See images and mouse events
layers vs., 417
views, custom
cells, 253-254
creating programmatically, 252
drawing with NzBezierpath, 248—250
flipping with isF1ipped, 255
keyboard events, 274
overview of, 241
that draw themselves, 243-248
view hierarchy, 241-243

w

weak attribute, properties, 125
_weak variable, blocks, 375-376
__weak qualifier, ARC, 82
weak references
ARC, 81-82
manual reference counting, 72
platforms not supporting ARC, 82
Web services
NSURLConnection class, 361-363
overview of, 359-360
Web view, 369-372, 395
Window Inspector, setting hidesonbeactivate, 194
window server, 2, 33
windowControllerDidLoadNib: method, 166-169
windowDidLoad method, 203, 214-215

windows
adding sheets to. See sheets
collection of views for, 241
firstResponder of key, m
iOS app, 383-384
NSUndoManager and, 158
NSWindowController, 167
panels vs.main, 193—194
Word, NsatrributedString file format, 288
write code, keyboard events, 278—282
writeObjects method, NSPasteboard, 297
writeToPasteboard: method, 298

X

X window server, 2
Xcode
creating new project, 12-14
getting started, 11-12
Interface Builder editor, 4
iPhone and iPad apps using, 383
overview of, 4
XIB files
creating NsFormatters, 342—344
defined, 15
Interface Builder, 17
overview of, 17
translating strings, 239-240
view swapping, 400—401, 403—405
XML parsing
Web services, 359-360

Y

YES
defined, 26
NSArray, ﬂ
NSObject, 44

Z

ZIP archives

listing tar files with .tar and .tgz vs., 460
packaging application for download, 466
zombies, debugging hints, 98

