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About this book

Computational complexity theory has developed rapidly in the past three
decades. The list of surprising and fundamental results proved since 1990
alone could fill a book: these include new probabilistic definitions of classi-
cal complexity classes (IP = PSPACE and the PCP Theorems) and their
implications for the field of approximation algorithms; Shor’s algorithm to
factor integers using a quantum computer; an understanding of why current
approaches to the famous P versus NP will not be successful; a theory of de-
randomization and pseudorandomness based upon computational hardness;
and beautiful constructions of pseudorandom objects such as extractors and
expanders.

This book aims to describe such recent achievements of complexity the-
ory in the context of the classical results. It is intended to be a text and as
well as a reference for self-study. This means it must simultaneously cater
to many audiences, and it is carefully designed with that goal. Through-
out the book we explain the context in which a certain notion is useful,
and why things are defined in a certain way. Examples and solved exercises
accompany key definitions.

The book has three parts and an appendix.

Part I: Basic complexity classes: This part provides a broad introduc-
tion to the field and covers basically the same ground as Papadim-
itriou’s text from the early 1990s—but more quickly. It may be suit-
able for an undergraduate course that is an alternative to the more
traditional Theory of Computation course currently taught in most
computer science departments (and exemplified by Sipser’s excellent
book with the same name).

We assume essentially no computational background (though a slight
exposure to computing may help) and very little mathematical back-
ground apart from the ability to understand proofs and some elemen-
tary probability on finite sample spaces. A typical undergraduate
course on “Discrete Math” taught in many math and CS departments
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should suffice (together with our Appendix).

Part II: Lowerbounds for concrete computational models: This con-
cerns lowerbounds on resources required to solve algorithmic tasks on
concrete models such as circuits, decision trees, etc. Such models may
seem at first sight very different from the Turing machine used in Part
I, but looking deeper one finds interesting interconnections.

Part III: Advanced topics: This constitutes the latter half of the book
and is largely devoted to developments since the late 1980s. It includes
average case complexity, derandomization and pseudorandomness, the
PCP theorem and hardness of approximation, proof complexity and
quantum computing.

Appendix: Outlines mathematical ideas that may be useful for following
certain chapters, especially in Parts II and III.

Almost each chapter in Parts II and III can be read in isolation. This is
important because the book is aimed at many classes of readers.

• Physicists, mathematicians, and other scientists. This group has be-
come increasingly interested in computational complexity theory, es-
pecially because of high-profile results such as Shor’s algorithm and
the recent deterministic test for primality. This intellectually sophisti-
cated group will be able to quickly read through Part I. Progressing on
to Parts II and III, they can read individual chapters and find almost
everything they need to understand current research.

• Computer scientists (e.g., algorithms designers) who do not work in
complexity theory per se. They may use the book for self-study or
even to teach a graduate course or seminar. Such a course would
probably include many topics from Part I and then a sprinkling from
the rest of the book. We plan to include —on a separate website—
detailed course-plans they can follow (e.g., if they plan to teach an
advanced result such as the PCP Theorem, they may wish to prepare
the students by teaching other results first).

• All those —professors or students— who do research in complexity
theory or plan to do so. They may already know Part I and use the
book for Parts II and III, possibly in a seminar or reading course. The
coverage of advanced topics there is detailed enough to allow this. We
will provide sample teaching plans for such seminars.

We hope that this book conveys our excitement about this new field and
the insights it provides in a host of older disciplines.
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Introduction

“As long as a branch of science offers an abundance of problems,
so long it is alive; a lack of problems foreshadows extinction or
the cessation of independent development.”
David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by sim-
ply asking two questions: first, is it harder to multiply than to
add? and second, why?...I (would like to) show that there is no
algorithm for multiplication computationally as simple as that for
addition, and this proves something of a stumbling block.”
Alan Cobham, 1964 [Cob64]

The notion of computation has existed in some form for thousands of
years. In its everyday meaning, this term refers to the process of producing
an output from a set of inputs in a finite number of steps. Here are some
examples of computational tasks:

• Given two integer numbers, compute their product.

• Given a set of n linear equations over n variables, find a solution if it
exists.

• Given a list of acquaintances and a list of containing all pairs of indi-
viduals who are not on speaking terms with each other, find the largest
set of acquaintances you can invite to a dinner party such that you do
not invite any two who are not on speaking terms.

In the first half of the 20th century, the notion of “computation” was
made much more precise than the hitherto informal notion of “a person writ-
ing numbers on a notepad following certain rules.” Many different models
of computation were discovered —Turing machines, lambda calculus, cellu-
lar automata, pointer machines, bouncing billiards balls, Conway’s Game of
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life, etc.— and found to be equivalent. More importantly, they are all uni-
versal, which means that each is capable of implementing all computations
that we can conceive of on any other model (see Chapter 1). The notion
of universality motivated the invention of the standard electronic computer,
which is capable of executing all possible programs. The computer’s rapid
adoption in society in the subsequent half decade brought computation into
every aspect of modern life, and made computational issues important in
design, planning, engineering, scientific discovery, and many other human
endeavors.

However, computation is not just a practical tool (the “modern slide
rule”), but also a major scientific concept. Generalizing from models such
as cellular automata, many scientists have come to view many natural phe-
nomena as akin to computational processes. The understanding of repro-
duction in living things was triggered by the discovery of self-reproduction
in computational machines. (In fact, a famous article by Pauli predicted
the existence of a DNA-like substance in cells almost a decade before Wat-
son and Crick discovered it.) Today, computational models underlie many
research areas in biology and neuroscience. Several physics theories such as
QED give a description of nature that is very reminiscent of computation,
motivating some scientists to even suggest that the entire universe may be
viewed as a giant computer (see Lloyd [?]). In an interesting twist, such
physical theories have been used in the past decade to design a model for
quantum computation; see Chapter 21.

From 1930s to the 1950s, researchers focused on computation in the
abstract and tried to understand its power. They developed a theory of
which algorithmic problems are computable. Many interesting algorithmic
tasks have been found to be uncomputable or undecidable: no computer can
solve them without going into infinite loops (i.e., never halting) on certain
inputs. Though a beautiful theory, it will not be our focus here. (But,
see Sipser [SIP96] or Rogers [?].) Instead, we focus on issues of computa-
tional efficiency. Computational complexity theory asks the following simple
question: how much computational resources are required to solve a given
computational task? Below, we discuss the meaning of this question.

Though complexity theory is usually studied as part of Computer Sci-
ence, the above discussion suggests that it will be of interest in many other
disciplines. Since computational processes also arise in nature, understand-
ing the resource requirements for computational tasks is a very natural sci-
entific question. The notion of proof and good characterization are basic to
mathematics, and many aspects of the famous P versus NP question have
a bearing on such issues, as will be pointed out in several places in the book
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(see Chapters 2, 9 and 19). Optimization problems arise in a host of dis-
ciplines including the life sciences, social sciences and operations research.
Complexity theory provides strong evidence that, like the independent set
problem, many other optimization problems are likely to be intractable and
have no efficient algorithm (see Chapter 2). Our society increasingly re-
lies every day on digital cryptography, which is based upon the (presumed)
computational difficulty of certain problems (see Chapter 10). Randomness
and statistics, which revolutionized several sciences including social sciences,
acquire an entirely new meaning once one throws in the notion of computa-
tion (see Chapters 7 and 17). In physics, questions about intractability and
quantum computation may help to shed light on the fundamental properties
of matter (see Chapter 21).

Meaning of efficiency

Now we explain the notion of computational efficiency and give examples.
A simple example, hinted at in Cobham’s quote at the start of the chap-

ter, concerns multiplying two integers. Consider two different methods (or
algorithms) for this task. The first is repeated addition: to compute a ·b, just
add a to itself b times. The other is the gradeschool algorithm illustrated in
Figure 1. Though the repeated addition algorithm is perhaps simpler than
the gradeschool algorithm, we somehow feel that the latter is better. Indeed,
it is much more efficient. For example, multiplying 577 and 423 by repeated
addition requires 577 additions, whereas doing it with the gradeschool al-
gorithm requires only 3 additions and 3 multiplications of a number by a
single digit.

We will quantify the efficiency of an algorithm by studying the number of
basic operations it performs as the size of the input increases. Here, the basic
operations are single-digit addition and multiplication. (In other settings,
we may wish to throw in division as a basic operation.) The size of the input
is the number of digits in the numbers. The number of basic operations used
to multiply two n-digit numbers (i.e., numbers between 10n−1 and 10n) is
at most 2n2 for the gradeschool algorithm and at least n10n−1 for repeated
addition. Phrased this way, the huge difference between the two algorithms
is apparent: even for 11-digit numbers, a pocket calculator running the
gradeschool algorithm would beat the best current supercomputers running
the repeated addition algorithm. For slightly larger numbers even a fifth
grader with pen and paper would outperform a supercomputer. We see
that the efficiency of an algorithm is to a considerable extent much more
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4 2 3
5 7 7

2 9 6 1
2 9 6 1

2 1 1 5
2 4 3 0 7 1

Figure 1: Grade-school algorithm for multiplication. Illustrated for computing 423 ·577.

important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication
that uses the Fast Fourier Transform. It was only discovered some 40 years
ago and multiplies two n-digit numbers using cn log n operations where c is
some absolute constant independent on n. Using the familiar asymptotic
notation, we call this an O(n log n)-step algorithm.

Similarly, for the problem of solving linear equations, the classic Gaus-
sian elimination algorithm (named after Gauss but known in some form to
Chinese mathematicians of the first century) uses O(n3) basic arithmetic
operations to solve n equations over n variables. In the late 1960’s, Strassen
found a more efficient algorithm that uses roughly O(n2.81) operations, and
the best current algorithm takes O(n2.376) operations.

The dinner party problem also has an interesting story. As in the case of
multiplication, there is an obvious and simple inefficient algorithm: try all
possible subsets of the n people from the largest to the smallest, and stop
when you find a subset that does not include any pair of guests who are not
on speaking terms. This algorithm can take as much time as the number
of subsets of a group of n people, which is 2n. This is highly unpractical
—an organizer of, say, a 70-person party, would need to plan at least a
thousand years in advance, even if she has a supercomputer at her disposal.
Surprisingly, we still do not know of a significantly better algorithm. In
fact, as we will see in Chapter 2, we have reasons to suspect that no efficient
algorithm exists for this problem. We will see that this problem is equivalent
to the independent set problem, which, together with thousands of other
famous problems, is NP-complete. The famous “P versus NP” question
asks whether or not any of these problems has an efficient algorithm.
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Proving nonexistence of efficient algorithms

We have seen that sometimes computational problems have nonintuitive al-
gorithms, which are quantifiably better (i.e., more efficient) than algorithms
that were known for thousands of years. It would therefore be really interest-
ing to prove for interesting computational tasks that the current algorithm is
the best —in other words, no better algorithms exist. For instance, we could
try to prove that the O(n log n)-step algorithm for multiplication can never
be improved (thus implying that multiplication is inherently more difficult
than addition, which does have an O(n)-step algorithm). Or, we could try
to prove that there is no algorithm for the dinner party problem that takes
fewer than 2n/10 steps.

It may be possible to mathematically prove such statements, since com-
putation is a mathematically precise notion. There are several precedents
for proving impossibility results in mathematics, such as the independence
of Euclid’s parallel postulate from the other basic axioms of geometry, or the
impossibility of trisecting an arbitrary angle using a compass and straight-
edge. Impossibility proofs are among the most interesting, fruitful, and
surprising results in mathematics.

Subsequent chapters of this book identify many interesting questions
about the inherent computational complexity of tasks, usually with respect
to the Turing Machine model. Most such questions are still unanswered, but
tremendous progress has been made in the past few decades in showing that
many of the questions are interrelated, sometimes in unexpected ways. This
interrelationship is usually exhibited using a reduction. For an intriguing
example of this, see the last chapter (Chapter 23), which uses computa-
tional complexity to explain why we are stuck in resolving the central open
questions concerning computational complexity.
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Conventions: A whole number is a number in the set Z = {0,±1,±2, . . .}.
A number denoted by one of the letters i, j, k, `,m, n is always assumed to
be whole. If n ≥ 1, then we denote by [n] the set {1, . . . , n}. For a real
number x, we denote by dx e the smallest n ∈ Z such that n ≥ x and by
bx c the largest n ∈ Z such that n ≤ x. Whenever we use a real number
in a context requiring a whole number, the operator d e is implied. We
denote by log x the logarithm of x to the base 2. We say that a condition
holds for sufficiently large n if it holds for every n ≥ N for some number N
(for example, 2n > 100n2 for sufficiently large n). We use expressions such
as
∑

i f(i) (as opposed to, say,
∑n

i=1 f(i)) when the range of values i takes
is obvious from the context. If u is a string or vector, then ui denotes the
value of the ith symbol/coordinate of u.
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Chapter 1

The computational model
—and why it doesn’t matter

“The idea behind digital computers may be explained by saying
that these machines are intended to carry out any operations
which could be done by a human computer. The human computer
is supposed to be following fixed rules; he has no authority to
deviate from them in any detail. We may suppose that these
rules are supplied in a book, which is altered whenever he is put
on to a new job. He has also an unlimited supply of paper on
which he does his calculations.”
Alan Turing, 1950

The previous chapter gave an informal introduction to computation and
efficient computations in context of arithmetic. This chapter gives a more
rigorous and general definition. As mentioned earlier, one of the surprising
discoveries of the 1930s was that all known computational models are able to
simulate each other. Thus the set of computable problems does not depend
upon the computational model.

In this book we are interested in issues of computational efficiency, and
therefore in classes of “efficiently computable” problems. Here, at first
glance, it seems that we have to be very careful about our choice of a compu-
tational model, since even a kid knows that whether or not a new video game
program is “efficiently computable” depends upon his computer’s hardware.
Surprisingly though, we can restrict attention to a single abstract compu-
tational model for studying many questions about efficiency—the Turing
machine. The reason is that the Turing Machine seems able to simulate all
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12 1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS

physically realizable computational models with very little loss of efficiency.
Thus the set of “efficiently computable” problems is at least as large for
the Turing Machine as for any other model. (One possible exception is the
quantum computer model, but we do not currently know if it is physically
realizable.)

The Turing machine is a simple embodiment of the age-old intuition that
computation consists of applying mechanical rules to manipulate numbers,
where the person/machine doing the manipulation is allowed a scratch pad
on which to write the intermediate results. The Turing Machine can be also
viewed as the equivalent of any modern programming language — albeit
one with no built-in prohibition about memory size1. In fact, this intuitive
understanding of computation will suffice for most of the book and most
readers can skip many details of the model on a first reading, returning to
them later as needed.

The rest of the chapter formally defines the Turing Machine and the
notion of running time, which is one measure of computational effort. Sec-
tion 1.4 introduces a class of “efficiently computable” problems called P
(which stands for Polynomial time) and discuss its philosophical signifi-
cance. The section also points out how throughout the book the definition
of the Turing Machine and the class P will be a starting point for definitions
of many other models, including nondeterministic, probabilistic and quan-
tum Turing machines, Boolean circuits, parallel computers, decision trees,
and communication games. Some of these models are introduced to study
arguably realizable modes of physical computation, while others are mainly
used to gain insights on Turing machines.

1.1 Encodings and Languages: Some conventions

In general we study the complexity of computing a function whose input
and output are finite strings of bits (i.e., members of the set {0, 1}∗, see
Appendix). Note that simple encodings can be used to represent general
mathematical objects—integers, pairs of integers, graphs, vectors, matrices,
etc.— as strings of bits. For example, we can represent an integer as a string
using the binary expansion (e.g., 34 is represented as 100010) and a graph
as its adjacency matrix (i.e., an n vertex graph G is represented by an n×n
0/1-valued matrix A such that Ai,j = 1 iff the edge (i, j) is present in G).

1Though the assumption of an infinite memory may seem unrealistic at first, in the
complexity setting it is of no consequence since we will restrict the machine to use a finite
amount of tape cells (the number allowed will depend upon the input size).
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We will typically avoid dealing explicitly with such low level issues of
representation, and will use xxy to denote some canonical (and unspecified)
binary representation of the object x. Often we will drop the symbols xy and
simply use x to denote both the object and its representation. We use the
notation 〈x, y〉 to denote the ordered pair consisting of x and y. A canonical
representation for 〈x, y〉 can be easily obtained from the representations of
x and y; to reduce notational clutter, instead of x〈x, y〉y we use 〈x, y〉 to
denote not only the pair consisting of x and y but also the representation of
this pair as a binary string.

An important special case of functions mapping strings to strings is the
case of Boolean functions, whose output is a single bit. We identify such
a function f with the set Lf = {x : f(x) = 1} and call such sets languages
or decision problems (we use these terms interchangeably). We identify the
computational problem of computing f (i.e., given x compute f(x)) with the
problem of deciding the language Lf (i.e., given x, decide whether x ∈ Lf ).

By representing the possible invitees to a dinner party with the vertices of
a graph having an edge between any two people that can’t stand one another,
the dinner party computational problem from the introduction becomes the
problem of finding a maximum sized independent set (set of vertices not
containing any edges) in a given graph. The corresponding language is:

INDSET = {〈G, k〉 : ∃S ⊆ V (G) s.t. |S| ≥ k and ∀u, v ∈ S, u v 6∈ E(G)}
(1)

An algorithm to solve this language will tell us, on input a graph G and
a number k, whether there exists a conflict-free set of invitees, called an
independent set, of size at least k. It is not immediately clear that such an
algorithm can be used to actually find such a set, but we will see this is
the case in Chapter 2. For now, let’s take it on faith that this is a good
formalization of this problem.

Big-Oh notations. As already hinted, we will often be more interested
in the rate of growth of functions than their precise behavior. The following
well known set of notations is very convenient for such analysis. If f, g are
two functions from N to N, then we (1) say that f = O(g) if there exists a
constant c such that f(n) ≤ c · g(n) for every sufficiently large n, (2) say
that f = Ω(g) if g = O(f), (3) say that f = Θ(g) is f = O(g) and g = O(f),
(4) say that f = o(g) if for every ε > 0, f(n) ≤ ε · g(n) for every sufficiently
large n, and (5) say that f = ω(g) if g = o(f). For example, if f(n) =
100n log n and g(n) = n2 then we have the relations f = O(g), g = Ω(f), f =
Θ(f), f = o(g), g = ω(f). (For more examples and explanations, see any
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undergraduate algorithms text such as [KT06, CLRS01] or see Section 7.1
in Sipser’s book [SIP96].)

1.2 Modeling computation and efficiency

We start with an informal description of computation. Let f be a function
that takes a string of bits (i.e., a member of the set {0, 1}∗) and outputs,
say, either 0 or 1. Informally speaking, an algorithm for computing f is a
set of mechanical rules, such that by following them we can compute f(x)
given any input x ∈ {0, 1}∗. The set of rules being followed is finite (i.e.,
the same set must work for all infinitely many inputs) though each rule in
this set may be applied arbitrarily many times. Each rule must involve one
of the following “elementary” operations:

1. Read a bit of the input.

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say
a digit in the set {0, . . . , 9}) from the “scratch pad” or working space
we allow the algorithm to use.

3. Write a bit/symbol to the scratch pad.

4. Stop and output either 0 or 1.

5. Decide which of the above operations to apply based on the values
that were just read.

Finally, the running time is the number of these basic operations per-
formed.

Below, we formalize all of these notions.

1.2.1 The Turing Machine

The k-tape Turing machine is a concrete realization of the above informal
notion, as follows (see Figure 1.1).

Scratch Pad: The scratch pad consists of k tapes. A tape is an infinite
one-directional line of cells, each of which can hold a symbol from a finite
set Γ called the alphabet of the machine. Each tape is equipped with a tape
head that can potentially read or write symbols to the tape one cell at a
time. The machine’s computation is divided into discrete time steps, and
the head can move left or right one cell in each step. The machine also has

Web draft 2006-09-28 18:09



DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY 15

a separate tape designated as the input tape of the machine, whose head
can only read symbols, not write them —a so-called read-only head.

The k read-write tapes are called work tapes and the last one of them
is designated as the output tape of the machine, on which it writes its final
answer before halting its computation.

Finite set of operations/rules: The machine has a finite set of states,
denoted Q. The machine contains a “register” that can hold a single element
of Q; this is the ”state” of the machine at that instant. This state determines
its action at the next computational step, which consists of the following:
(1) read the symbols in the cells directly under the k+1 heads (2) for the k
read/write tapes replace each symbol with a new symbol (it has the option
of not changing the tape by writing down the old symbol again), (3) change
its register to contain another state from the finite set Q (it has the option
not to change its state by choosing the old state again) and (4) move each
head one cell to the left or to the right.

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 1 1 0 1 0 1 0 0 0 1

> 0 1

q7Register

read only head

read/write head

read/write head

Figure 1.1: A snapshot of the execution of a 2-tape Turing machine M with an input
tape, a work tape, and an output tape. We call M a 2-tape machine because the input
tape can only be read from and not written to.

Formal definition. Formally, a TM M is described by a tuple (Γ, Q, δ)
containing:

• A set Γ of the symbols that M ’s tapes can contain. We assume that Γ
contains a designated “blank” symbol, denoted �, a designated “start”
symbol, denoted B and the numbers 0 and 1. We call Γ the alphabet
of M .
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• A set Q of possible states M ’s register can be in. We assume that
Q contains a designated start state, denoted qstart and a designated
halting state, denoted qhalt.

• A function δ : Q × Γk+1 → Q × Γk × {L,R}k+1 describing the rule
M uses in performing each step. This function is called the transition
function of M (see Figure 1.2.) (Note that δ also implicitly tells us k,
the number of work tapes allowed to the TM.)

IF THEN

input
symbol
read

work/
output
tape
symbol
read

current
state

move
input
head

new
work/
output
tape
symbol

move
work/
output
tape

new
state

... ... ... ... ... ... ...

... ... ... ... ... ... ...

a b q b’ q’

Figure 1.2: The transition function of a single-tape TM (i.e., a TM with one input tape
and one work/output tape).

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk+1) are the sym-
bols currently being read in the k + 1 tapes, and δ(q, (σ1, . . . , σk+1)) =
(q′, (σ′2, . . . , σ

′
k+1), z) where z ∈ {L,R}k+1 then at the next step the σ sym-

bols in the last k tapes will be replaced by the σ′ symbols, the machine will
be in state q′, and the k + 1 heads will move left/right (i.e., L/R) as given
by z. (If the machine tries to move left from the leftmost position of a tape
then it will stay in place.)

All tapes except for the input are initialized in their first location to
the start symbol B and in all other locations to the blank symbol �. The
input tape contains initially the start symbol, a finite non-blank string (“the
input”), and the rest of its cells are initialized with the blank symbol. All
heads start at the left ends of the tapes and the machine is in the special
starting state qstart. This is called the start configuration of M on input x.
Each step of the computation is performed by applying the function δ as
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described above. The special halting state qhalt has the property that once
the machine is in qhalt, the transition function δ does not allow it to further
modify the tape or change states. Clearly, if the machine enters qhalt then
it has halted. In complexity theory we are only interested in machines that
halt for every input in a finite number of steps.

Now we formalize the notion of running time. As every non-trivial algo-
rithm needs to at least read its entire input, by “quickly” we mean that the
number of basic steps we use is small when considered as a function of the
input length.

Definition 1.1 (Computing a function and running time)
Let f : {0, 1}∗ → {0, 1}∗ and let T : N → N be some functions. We say that a
TM M computes function f if for every x ∈ {0, 1}∗, if M is initialized to the start
configuration on input x, then it halts with f(x) written on its output tape.
We say M computes f in T (n)-time2 if for all n and all inputs x of size n, the
running time of M on that input is at most T (n).

Most of the specific details of our definition of Turing machines are quite
arbitrary. For example, the following three claims show that restricting the
alphabet Γ to be {0, 1,�,B}, restricting the machine to have a single work
tape, or allowing the tapes to be infinite in both directions will not have a
significant effect on the time to compute functions:

Claim 1.2
For every f : {0, 1}∗ → {0, 1}, T : N → N, if f is computable in time T (n)
by a TM M using alphabet Γ then it is computable in time 100 log |Γ|T (n)
by a TM M using the alphabet {0, 1,�,B}.

Claim 1.3
For every f : {0, 1}∗ → {0, 1}, T : N → N, if f is computable in time T (n)
by a TM M using k work tapes (plus additional input and output tapes)
then it is computable in time 100T (n)2 by a TM M using a single work tape
(plus additional input and output tapes).

Claim 1.4
Define a bidirectional TM to be a TM whose tapes are infinite in both
directions. For every f : {0, 1}∗ → {0, 1}∗, T : N → N as above if f is

2Formally we should use T instead of T (n), but we follow the convention of writing
T (n) to emphasize that T is applied to the input length.
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computable in time T (n) by a bidirectional TM M then it is computable in
time 100T (n) by a standard (unidirectional) TM.

We leave the proofs of these claims as Exercises 2, 3 and 4. The reader
might wish to pause at this point and work through the proofs, as this is a
good way to obtain intuition for Turing machines and their capabilities.

Other changes that will not have a very significant effect include restrict-
ing the number of states to 100, having two or three dimensional tapes,
allowing the machine random access to its tape, and making the output
tape write only (see the texts [SIP96, HMU01] for proofs and more exam-
ples). In particular none of these modifications will change the class P of
polynomial-time decision problems defined below in Section 1.4.

1.2.2 The expressive power of Turing machines.

When you encounter Turing machines for the first time, it may not be
clear that they do indeed fully encapsulate our intuititive notion of com-
putation. It may be useful to work through some simple examples, such
as expressing the standard algorithms for addition and multiplication in
terms of Turing machines computing the corresponding functions. (See Ex-
ercise 7; also, Sipser’s book [SIP96] contains many more such examples.)

Example 1.5
(This example assumes some background in computing.) We give a hand-
wavy proof that Turing machines can simulate any program written in any
of the familiar programming languages such as C or Java. First, recall that
programs in these programming languages can be translated (the technical
term is compiled) into an equivalent machine language program. This is a
sequence of simple instructions to read from memory into one of a finite
number of registers, write a register’s contents to memory, perform basic
arithmetic operations, such as adding two registers, and control instructions
that perform actions conditioned on, say, whether a certain register is equal
to zero.

All these operations can be easily simulated by a Turing machine. The
memory and register can be implemented using the machine’s tapes, while
the instructions can be encoded by the machine’s transition function. For
example, it’s not hard to show TM’s that add or multiply two numbers, or
a two-tape TM that, if its first tape contains a number i in binary represen-
tation, can move the head of its second tape to the ith location.
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1.3 The Universal Turing Machine

Underlying the computer revolution of the 20th century is one simple but
crucial observation: programs can be considered as strings of symbols, and
hence can be given as input to other programs. The notion goes back to Tur-
ing, who described a universal TM that can simulate the execution of every
other TM M given M ’s description as input. This enabled the construction
of general purpose computers that are designed not to achieve one particular
task, but can be loaded with a program for any arbitrary computation.

Of course, since we are so used to having a universal computer on our
desktops or even in our pockets, we take this notion for granted. But it
is good to remember why it was once counterintuitive. The parameters of
the universal TM are fixed —alphabet size, number of states, and number of
tapes. The corresponding parameters for the machine being simulated could
be much larger. The reason this is not a hurdle is, of course, the ability to
use encodings. Even if the universal TM has a very simple alphabet, say
{0, 1}, this is sufficient to allow it to represent the other machine’s state and
and transition table on its tapes, and then follow along in the computation
step by step.

Now we state a computationally efficient version of Turing’s construction
due to Hennie and Stearns [HS66]. To give the essential idea we first prove
a slightly relaxed variant where the term t log t of Condition 4 below is
replaced with t2. But since the efficient version is needed a few times in the
book, a full proof is also given at the end of the chapter.

Theorem 1.6 (Efficient Universal Turing machine)
There exists a TM U and a representation scheme of TM’s satisfying:

1. Every string α ∈ {0, 1}∗ is a representation of some TM Mα.

2. Every TM M is represented by infinitely many strings α ∈ {0, 1}∗.
3. For every t ∈ N and x, α ∈ {0, 1}∗, if on input x, the machine Mα outputs a

string y within at most t steps, then U(t, x, α) = y.

4. On every triple 〈t, x, α〉, the machine U runs for at most Ct log t steps, where
C is a constant depending on Mα’s alphabet and number of states and tapes
but independent of |α|, |x|, |t|.

Web draft 2006-09-28 18:09



DRAFT

20 1.3. THE UNIVERSAL TURING MACHINE

Proof: Represent a TM M in the natural way as the tuple 〈γ, q, δ, z〉 where
γ = |Γ| is the size of M ’s alphabet, q is the size of M ’s state space Q,
the transition function δ is described by a table listing all of its inputs and
outputs, and z is a table describing the elements of Γ, Q that correspond to
the special symbols and states (i.e., B,�, 0, 1, qstart, qhalt). We also allow the
description to end with an arbitrary number of 1’s to ensure Condition 2.3

If a string is not a valid representation of a TM according to these rules then
we consider it a representation of some canonical TM (i.e., a machine that
reads its input and immediately halts and outputs 0) to ensure Condition 1.

Our universal TM U will use the alphabet {0, 1,�,B} and have, in ad-
dition to the input and output tape, five work tapes. We do not give the
transition function of U explicitly but describe its operation in words. Sup-
pose U is given the input α, t, x, where α represents some TM M . Denote
by k the number of work tapes used by M . Note that if U were to have
k + 2 tapes, the same alphabet as M , and more states than M , then it
could trivially simulate M ’s execution by dedicating one tape to store the
description of M and at each computational step, the universal machine can
scan the transition function of M and decide how to proceed according to
its rules. Thus the main difficulty is that M may use a larger number of
states, a larger alphabet and more tapes than U .

Input
tape

Work
tapes

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 0 1

Description of M

Current state of M

Counter.

Contents of M’s work tapes.

Auxiliary work tape.

Figure 1.3: The universal TM U has in addition to the input and output tape, five
work tapes, used to store the description of the simulated machine M , its current state,
a counter that is decremented from t to 0, a tape that contains all the information in
M ’s work tapes, and an auxiliary “scratch” work tape that is used by U for various
computations.

3One can consider this convention as analogous to the comments feature common in
many programming languages (e.g., the /*..*/ syntax in C and Java).
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These difficulties are resolved as follows (see Figure 1.3). U uses the input
and output tapes in the same way that M uses them, and uses a single work
tape —called the main work tape—to store the contents of all the remaining
work tapes of M . Notice, each symbol of M ’s alphabet is represented by
log γ bits. Furthermore, U uses one work tape to keep track of what state M
is currently in (this only requires log q bits) and one work tape to maintain a
counter (or ”clock”)) that counts down from t to 0. Finally, one more work
tape acts as the ”scratch pad” for M ’s own computation.

To TM U stores the k work tapes of M using interleaving: the first
symbol from each of the k tapes is stored first, then the second symbol from
each tape, and so on (see Figure 1.4). The symbol ? marks the position of
the head at each tape.

M’s 3 work tapes:

c o m p l e t e l y

r e p l a c e d

m a c h i n e s

Encoding this in one tape of U:

c r m o * a m e c * p * p l h l a i
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Tape 1:

Tape 2:

Tape 3:

Figure 1.4: We encode k tapes into one tape by placing the contents of the first tape in
positions 1, k+1, 2k+1, . . ., the contents of the second tape in positions 2, k+2, 2k+2, . . .,
etc. We use the symbol ? to mark the position of the head in each tape.

To simulate a single computational step of M , the machine U performs
the following actions:

1. Scan the main work tape (the one containing the contents of M ’s k
tapes), and copy into its scratch tape the k symbols that follow the ?
symbol of each tape.

2. Scan the transition function of M to find out how M behaves on these
symbols (what M writes on its tapes, how it changes its state register,
and how it moves the head). Then write down this information on the
scratch pad.
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3. Scan the main work tape and update it (both symbols written and
head locations) according to the scratch pad.

4. Update the tape containing M ’s state according to the new state.

5. Use the same head movement and write instructions of M on the input
and output tape.

6. Decrease the counter by 1, check if it has reached 0 and if so halt.

Now let’s count how many computational steps U performs to simulate a
single step ofM : U ’s main tape contains at most kt symbols, and so scanning
it takes O(t) steps (as k is a constant depending only on M). Decreasing the
counter takes O(log t) steps. The transition function, the current state, and
the scratch pad only require a constant number of bits to store (where this
constant depends on M ’s alphabet size, and number of tapes and states)
and so only require a constant number of operations to read and update.
Thus, simulating a single step of M takes O(t + log t) = O(t) operations,
and simulating M for t steps takes O(t2) operations. �

1.4 Deterministic time and the class P.

A complexity class is a set of functions that can be computed within a given
resource. We will now introduce our first complexity classes. For reasons
of technical convenience, throughout most of this book we will pay special
attention to functions with one bit output, also known as decision problems
or languages.

Definition 1.7 (The class DTIME.)
Let T : N → N be some function. We let DTIME(T (n)) be the set of all
Boolean (one bit output) functions that are computable in c · T (n)-time for
some constant c > 0.

Remark 1.8 (Time-constructible functions)
A function T : N → N is time constructible if the function x 7→ 1T (|x|)

(i.e., x is mapped to a sequence of 1’s of length T (|x|)) is computable in
T (n) time. Examples for time-constructible functions are n, n log n, n2, 2n.
Almost all functions encountered in this book will be time-constructible and
we will typically restrict our attention to the class DTIME(T (n)) for time-
constructible T . We also typically assume that T (n) ≥ n as to allow the
algorithm time to read its input.
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The following class will serve as our rough approximation for the class
of decision problems that are efficiently solvable.

Definition 1.9 (The class P)
P = ∪c≥1DTIME(nc)

Thus, we can phrase the question from the introduction as to whether
INDSET has an efficient algorithm as follows: “Is INDSET ∈ P?”

1.4.1 On the philosophical importance of P

The class P is felt to capture the notion of decision problems with “feasi-
ble” decision procedures. Of course, one may argue whether DTIME(n100)
really represents “feasible” computation in the real world. However, in prac-
tice, whenever we show that a problem is in P, we usually find an n3 or n5

time algorithm (with reasonable constants), and not an n100 algorithm. (It
has also happened a few times that the first polynomial-time algorithm for
a problem had high complexity, say n20, but soon somebody simplified it to
say an n5 algorithm.)

Note that the class P is useful only in a certain context. Turing machines
are a poor model if one is designing algorithms that must run in a fraction
of a second on the latest PC (in which case one must carefully account for
fine details about the hardware). However, if the question is whether any
subexponential algorithms exist for say INDSET then even an n20 algorithm
on the Turing Machine would be a fantastic breakthrough.

We note that P is also a natural class from the viewpoint of a pro-
grammer. Suppose undergraduate programmers are asked to invent the
definition of an “efficient” computation. Presumably, they would agree that
a computation that runs in linear or quadratic time is “efficient.” Next,
since programmers often write programs that call other programs (or sub-
routines), they might find it natural to consider a program “efficient” if it
performs only “efficient” computations and calls subroutines that are “effi-
cient”. The notion of “efficiency” obtained turns out to be exactly the class
P (Cobham [Cob64]). Of course, Cobham’s result makes intuitive sense
since composing a polynomial function with another polynomial function
gives a polynomial function (for every c, d > 0, (nc)d = ncd) but the exact
proof requires some care.
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1.4.2 Criticisms of P and some efforts to address them

Now we address some possible criticisms of the definition of P, and some
related complexity classes that address these.

Worst-case exact computation is too strict. The definition of P only
considers algorithms that compute the function exactly on every possi-
ble input. However, not all possible inputs arise in practice (although
it’s not always easy to characterize the inputs that do). Chapter 15
gives a theoretical treatment of average-case complexity and defines the
analogue of P in that context. Sometimes, users are willing to settle
for approximate solutions. Chapter 19 contains a rigorous treatment
of the complexity of approximation.

Other physically realizable models. If we were to make contact with
an advanced alien civilization, would their class P be any different
from the class defined here?

As mentioned earlier, most (but not all) scientists believe the Church-
Turing (CT) thesis, which states that every physically realizable com-
putation device— whether it’s silicon-based, DNA-based, neuron-based
or using some alien technology— can be simulated by a Turing ma-
chine. Thus they believe that the set of computable problems would
be the same for aliens as it is for us. (The CT thesis is not a theorem,
merely a belief about the nature of the world.)

However, when it comes to efficiently computable problems, the sit-
uation is less clear. The strong form of the CT thesis says that
every physically realizable computation model can be simulated by a
TM with polynomial overhead (in other words, t steps on the model
can be simulated in tc steps on the TM, where c is a constant that
depends upon the model). If true, it implies that the class P defined
by the aliens will be the same as ours. However, several objections
have been made to this strong form.

(a) Issue of precision: TM’s compute with discrete symbols, whereas
physical quantities may be real numbers in R. Thus TM computations
may only be able to approximately simulate the real world. Though
this issue is not perfectly settled, it seems so far that TMs do not suffer
from an inherent handicap. After all, real-life devices suffer from noise,
and physical quantities can only be measured up to finite precision.
Thus a TM could simulate the real-life device using finite precision.
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(Note also that we often only care about the most significant bit of the
result, namely, a 0/1 answer.)

Even so, in Chapter 14 we also consider a modification of the TM
model that allows computations in R as a basic operation. The re-
sulting complexity classes have fascinating connections with the usual
complexity classes.

(b) Use of randomness: The TM as defined is deterministic. If ran-
domness exists in the world, one can conceive of computational models
that use a source of random bits (i.e., ”coin tosses”). Chapter 7 consid-
ers Turing Machines that are allowed to also toss coins, and studies the
class BPP, that is the analogue of P for those machines. (However,
we will see in Chapter 17 the intriguing possibility that randomized
computation may be no more powerful than deterministic computa-
tion.)

(c) Use of quantum mechanics: A more clever computational model
might use some of the counterintuitive features of quantum mechanics.
In Chapter 21 we define the class BQP, that generalizes P in such a
way. We will see problems in BQP that may not be in P. However,
currently it is unclear whether the quantum model is truly physically
realizable. Even if it is realizable it currently seems only able to ef-
ficiently solve only very few ”well-structured” problems that are not
in P. Hence insights gained from studying P could still be applied to
BQP.

(d) Use of other exotic physics, such as string theory. Though an
intriguing possibility, it hasn’t yet had the same scrutiny as quantum
mechanics.

Decision problems are too limited. Some computational problems are
not easily expressed as decision problems. Indeed, we will introduce
several classes in the book to capture tasks such as computing non-
Boolean functions, solving search problems, approximating optimiza-
tion problems, interaction, and more. Yet the framework of decision
problems turn out to be surprisingly expressive, and we will often use
it in this book.

1.4.3 Edmonds’ quote

We conclude this section with a quote from Edmonds [Edm65], that in
the paper showing a polynomial-time algorithm for the maximum matching
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problem, explained the meaning of such a result as follows:

For practical purposes computational details are vital. However,
my purpose is only to show as attractively as I can that there is
an efficient algorithm. According to the dictionary, “efficient”
means “adequate in operation or performance.” This is roughly
the meaning I want in the sense that it is conceivable for maxi-
mum matching to have no efficient algorithm.

...There is an obvious finite algorithm, but that algorithm in-
creases in difficulty exponentially with the size of the graph. It
is by no means obvious whether or not there exists an algorithm
whose difficulty increases only algebraically with the size of the
graph.

...When the measure of problem-size is reasonable and when the
sizes assume values arbitrarily large, an asymptotic estimate of
... the order of difficulty of an algorithm is theoretically impor-
tant. It cannot be rigged by making the algorithm artificially
difficult for smaller sizes.

...One can find many classes of problems, besides maximum match-
ing and its generalizations, which have algorithms of exponential
order but seemingly none better ... For practical purposes the
difference between algebraic and exponential order is often more
crucial than the difference between finite and non-finite.

...It would be unfortunate for any rigid criterion to inhibit the
practical development of algorithms which are either not known
or known not to conform nicely to the criterion. Many of the
best algorithmic idea known today would suffer by such theoreti-
cal pedantry. ... However, if only to motivate the search for good,
practical algorithms, it is important to realize that it is mathe-
matically sensible even to question their existence. For one thing
the task can then be described in terms of concrete conjectures.
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What have we learned?

• There are many equivalent ways to mathematically model computational pro-
cesses; we use the standard Turing machine formalization.

• Turing machines can be represented as strings. There is a universal TM that
can emulate (with small overhead) any TM given its representation.

• The class P consists of all decision problems that are solvable by Turing ma-
chines in polynomial time. We say that problems in P are efficiently solvable.

• Most low-level choices (number of tapes, alphabet size, etc..) in the definition
of Turing machines are immaterial, as they will not change the definition of
P.

Chapter notes and history

The Turing Machine should be thought of as a logical construct, rather
than as a piece of hardware. Most computers today are implementations of a
universal computer using silicon chips. But many other physical phenomena
can be used to construct universal TMs: amusing examples include bouncing
billiards balls, cellular automata, and Conway’s Game of life. It is also
possible to study complexity theory axiomatically in a machine-independent
fashion. See Cobham [Cob64] and Blum [Blu67] for two approaches.

We omitted a detailed discussion of formal complexity, and in particular
the fact that the class DTIME(f(n)) can be paradoxical if f is not a proper
complexity function (see the standard text [HMU01]). We say f is proper
if f(n) ≥ f(n − 1) and there is a TM that on input x outputs a string of
length f(|x|) using time O(|x| + f(|x|)) and space O(f(|x|)). This notion
will reappear in Chapter 4.

Exercises

§1 Prove that there exists a function f : {0, 1}∗ → {0, 1} that is not
computable in time T (n) for every function T : N→ N.
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Hint:foranystringα∈{0,1}
∗
,letMαbetheTMdescribedby

αanddefinefαsuchthatforeveryx,fα(x)=1ifMαoninputx
haltswithoutput1withinafinitenumberofstepsandfα(x)=0
otherwise.Youneedtofindf:{0,1}

∗
→{0,1}suchthatforevery

αthereexistsxwithf(x)6=fα(x).

§2 Prove Claim 1.2.

§3 Prove Claim 1.3.

Hint:Tostoretheinformationofktapesonasingletape,use
positions1,k+1,2k+1,...tostorethecontentsofthefirsttape,
usepositions2,k+2,3k+2,...tostorethecontentsofthesecond
tape,andsoon.

§4 Prove Claim 1.4.

Hint:tosimulateabidirectionalTMusingalphabetsizeγusea
unidirectionalTMofalphabetsizeγ

2
.

§5 Define a TM M to be oblivious if its head movement does not depend
on the input but only on the input length. That is, M is oblivious if for
every input x ∈ {0, 1}∗ and i ∈ N, the location of each of M ’s heads at
the ith step of execution on input x is only a function of |x| and i. Show
that for every time-constructible T : N → N, if L ∈ DTIME(T (n))
then there is an oblivious TM that decides L in time O(T (n)2).

§6 Show that for every time-constructible T : N→ N, if L ∈ DTIME(T (n))
then there is an oblivious TM that decides L in time O(T (n) log T (n)).

Hint:showthattheuniversalTMUobtainedbytheproofof
Theorem1.6canbetweakedtobeoblivious.

§7 Define FDTIME and FP to be the generalization of DTIME and P
for non-Boolean functions (with more than one bit of output). That
is, f ∈ FDTIME(T (n)) if f is computable in T (n) time and FP =
∪c≥1FDTIME(nc).

Prove that the addition and multiplication functions are in FP.

Proof of Theorem 1.6: Universal Simulation in O(t log t)-
time

We now show how to prove Theorem 1.6 as stated, with an O(t log t) time
simulation. Our machine U will use the same structure and number of tapes
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described in Section 1.3 (see Figure 1.3). The crucial different will be the
organization of the main tape of U .

If M uses the alphabet Γ, then, as we saw before, we may assume that
U uses the alphabet Γk (as this can be simulated with a constant overhead).
Thus we can encode in each cell of U ’s work tape k symbols of Γ, each
corresponding to a symbol from one of M ’s tapes. However, we still have
to deal with the fact that M has k read/write heads that can each move
independently to the left or right, whereas U ’s work tape only has a single
head. We handle this following the dictum

“If the mountain will not come to Muhammad then Muhammad
will go to the mountain”.

That is, since we can not move U ’s read/write head in different directions
at once, we simply move the tape “under” the head. To be more specific,
since we consider U ’s work tape alphabet to be Γk, we can think of it as
consisting of k parallel tapes; that is, k tapes with the property that in each
step either all their read/write heads go in unison one location to the left or
they all go one location to the right (see Figure 1.5). To simulate a single
step of M we shift all the non-blank symbols in each of these parallel tapes
until the head’s position in these parallel tapes corresponds to the heads’
positions of M ’s k tapes. For example, if k = 3 and in some particular step
M ’s transition function specifies the movements L,R,R then U will shift all
the non-blank entries of its first parallel tape one cell to the right, and shift
the non-blank entries of its second and third tapes one cell to the left. For
convenience, we think of U ’s parallel tapes as infinite in both the left and
right directions (again, this can be easily simulated with minimal overhead,
see Claim 1.4).

The approach above is still not good enough to get O(t log t)-time simu-
lation. The reason is that there may be as much as t non-blank symbols in
each tape, and so each shift operation may cost U as much as O(t) opera-
tions, resulting in O(kt) operations of U per each step of M . Our approach
to deal with this is to create “buffer zones”: rather than having each of U ’s
parallel tapes correspond exactly to a tape of M , we add a special kind of
blank symbol �� to the alphabet of U ’s parallel tapes with the semantics that
this symbol is ignored in the simulation. That is, if the non-blank contents
of M ’s tape are 010 then this can be encoded in the corresponding parallel
tape of U not just by 010 but also by 0�� 01 or 0���� 1�� 0 and so on.

Since U ’s parallel tapes are considered bidirectional we can index their
locations by 0,±1,±2, . . .. Normally we keep U ’s head on location 0 of these
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M’s 3 independent tapes:

c o m p l e t e l y

r e p l a c e d b y

m a c h i n e s

U’s 3 parallel tapes (i.e., one tape encoding 3 tapes)

c o m p l e t e l y

r e p l a c e d b y

m a c h i n c e s

Figure 1.5: Packing k tapes of M into one tape of U . We consider U ’s single work tape
to be composed of k parallel tapes, whose heads move in unison, and hence we shift the
contents of these tapes to simulate independent head movement.

parallel tapes. We will only move it temporarily to perform a shift when,
following our dictum, we simulate a left head movement by shifting the tape
to the right and vice versa. At the end of the shift we return the head to
location 0.

We split the tapes into zones L1, R1, L2, R2, . . . , Llog t+1, Rlog t+1 where
zone Li contains the cells in the interval [2i−1 + 1..2i] and zone Ri contains
the cells in the interval [−2i.. − 2i−1 − 1] (location 0 is not in any zone).
Initially, we set all the zones to be half-full. That is, half of the symbols in
each zones will be �� and the rest will contain symbols corresponding to the
work tapes of M . We always maintain the following invariants:

• Each of the zones is either empty, full, or half-full. That is, the number
of symbols in zone Li that are not �� is either 0,2i−1, or 2i and the
same holds for Ri. (We treat the ordinary � symbol the same as any
other symbol in Γ and in particular a zone full of �’s is considered
full.)
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- c o m p l e t e - - - - - - - l y

r e p - - l a c e - - - -

- - m a c h - - - - i n e s

R1 R2 R3L2L3 L1

..... -3 -2 -1 0 +1 +2 +3 .....

Before:

p l e t - - e - l y - - - - - -

r - e p - l a c e - - - -

m a c - h i n - - - - - e s

R1 R2 R3L2L3 L1

After:

Figure 1.6: Performing a shift of the parallel tapes. The left shift of the first tape involves
zones L1, R1, L2, R2, L3, R3, the right shift of the second tape involves only L1, R1, while
the left shift of the third tape involves zones L1, R1, L2, R2. We maintain the invariant
that each zone is either empty, half-full or full. Note that - denotes ��.

• The total number of non-�� symbols in Li ∪ Ri is 2i. That is, if Li is
full then Ri is empty and vice versa.

• Location 0 always contains a non-�� symbol.

The advantage in setting up these zones is that now when performing
the shifts, we do not always have to move the entire tape, but can restrict
ourselves to only using some of the zones. We illustrate this by showing how
U performs a left shift on the first of its parallel tapes (see Figure 1.6):

1. U finds the smallest i such that Ri is not empty. Note that this is also
the smallest i such that Li is not full.

2. U puts the leftmost non-�� symbol of Ri in position 0 and shifts the
remaining leftmost 2i−1 − 1 non-�� symbols from Ri into the zones
R1, . . . , Ri−1 filling up exactly half the symbols of each zone. Note
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that there is room to perform this since all the zones R1, . . . , Ri−1

were empty and that indeed 2i−1 =
∑i−2

j=0 2j + 1.

3. U performs the symmetric operation to the left of position 0: it shifts
into Li the 2i−1 leftmost symbols in the zones Li−1, . . . , L1 and reor-
ganizes Li−1, . . . , Li such that the remaining

∑i−1
j=1 2j−2i−1 = 2i−1−1

symbols, plus the symbol that was originally in position 0 (modified
appropriately according to M ’s transition function) take up exactly
half of each of the zones Li−1, . . . , Li.

4. Note that at the end of the shift, all of the zones L1, R1, . . . , Li−1, Ri−1

are half-full.

Performing such a shift costs O(
∑i

j=1 2j) = O(2i) operations. However,
once we do this, we will not touch Li again until we perform at least 2i−1

shifts. Thus, we perform a shift involving Li and Ri when simulating at
most a 1

2i−1 of the t steps of M . We perform a shift for every one of the
k tapes, but k is a constant, as is the overhead to simulate the alphabet
(Γ∪�� )k using the alphabet {0, 1,B,�} and to read the transition function
and state information. Thus total number of operations used by these shifts
is

O(
log t+1∑
i=1

t

2i−1
2i) = O(t log t)

where we need an additional O(t log t) operations to maintain the counter.4

�

4In fact, a more careful analysis shows that only O(t) operations are necessary to
decrease a counter from t to 0.
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Chapter 2

NP and NP completeness

“(if φ(n) ≈ Kn2)a then this would have consequences of the
greatest magnitude. That is to say, it would clearly indicate that,
despite the unsolvability of the (Hilbert) Entscheidungsproblem,
the mental effort of the mathematician in the case of the yes-or-
no questions would be completely replaced by machines.... (this)
seems to me, however, within the realm of possibility.”
Kurt Gödel in letter to John von Neumann, 1956; see [Sip92]

aIn modern terminology, if SAT has a quadratic time algorithm

“I conjecture that there is no good algorithm for the traveling
salesman problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical possibility,
and (2) I do not know.”
Jack Edmonds, 1966

“In this paper we give theorems that suggest, but do not im-
ply, that these problems, as well as many others, will remain
intractable perpetually.”
Richard Karp [Kar72], 1972

If you have ever attempted a crossword puzzle, you know that there is
often a big difference between solving a problem from scratch and verifying
a given solution. In the previous chapter we already encountered P, the
class of decision problems that can be efficiently solved. In this chapter,
we define the complexity class NP that aims to capture the set of problems
whose solution can be easily verified. The famous P versus NP question asks
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whether or not the two are the same. The resolution of this conjecture will
be of great practical, scientific and philosophical interest; see Section 2.6.

The chapter also introduces NP-completeness, an important class of
combinatorial problems that are in P if and only if P = NP. Notions such
as reductions and completeness encountered in this study motivate many
other definitions encountered later in the book.

2.1 The class NP

We will give several equivalent definitions of NP. The first one is as follows:
NP contains every language for which membership has a polynomial-time
verifiable certificate (some texts call it a witness). An example is the in-
dependent set (INDSET) problem mentioned in Chapter (see Example 2.3
below).

Definition 2.1 (The class NP)
For every L ⊆ {0, 1}∗, we say that L ∈ NP if there exists a polynomial p : N → N
and a polynomial-time TM M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

If x ∈ L and u ∈ {0, 1}p(|x|) satisfies M(x, u) = 1 then we say that u is a certificate
for x (with respect to the language L and machine M).

We have the following trivial relationship.

Theorem 2.2
P ⊆ NP ⊆

⋃
c>1 DTIME(2n

c
).

Proof: (P ⊆ NP): Suppose L ∈ P is decided in polynomial-time by a TM
N . Then L ∈ NP since we can take N as the machine M in Definition 2.1
and make p(x) the zero polynomial (in other words, u is an empty string).

(NP ⊆
⋃
c>1 DTIME(2n

c
)): If L ∈ NP and M,p() are as in Defini-

tion 2.1 then we can decide L in time 2O(p(n)) by enumerating all possible u
and using M to check whether u is a valid certificate for the input x. The
machine accepts iff such a u is ever found. Since p(n) = O(nc) for some
c > 1 then this machine runs in 2O(nc) time. Thus the theorem is proven.
�
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The question whether or not P = NP is considered the central open
question of complexity theory, and is also an important question in mathe-
matics and science at large (see Section 2.6). Most researchers believe that
P 6= NP since years of effort has failed to yield efficient algorithms for
certain NP languages.

Example 2.3
It is usually convenient to think of languages as decision problems. Here are
some examples of decision problems in NP:

Independent set: Given a graph G and a number k, decide if there is a k-
size independent subset of G’s vertices. The certificate for membership
is the list of k vertices forming an independent set.

Traveling salesperson: Given a set of n nodes,
(
n
2

)
numbers di,j denoting

the distances between all pairs of nodes, and a number k, decide if
there is a closed circuit (i.e., a “salesperson tour”) that visits every
node exactly once and has total length at most k. The certificate is
the sequence of nodes in the tour.

Subset sum: Given a list of n numbers A1, . . . , An and a number T , decide
if there is a subset of the numbers that sums up to T . The certificate
is the list of members in this subset.

Linear programming: Given a list of m linear inequalities with rational
coefficients over n variables u1, . . . , un (a linear inequality has the form
a1u1+a2u2+. . .+anun ≤ b for some coefficients a1, . . . , an, b), decide if
there is an assignment of rational numbers to the variables u1, . . . , un
that satisfies all the inequalities. The certificate is the assignment.

Integer programming: Given a list of m linear inequalities with rational
coefficients over n variables u1, . . . , um, find out if there is an assign-
ment of integer numbers to u1, . . . , un satisfying the inequalities. The
certificate is the assignment.

Graph isomorphism: Given two n×n adjacency matrices M1,M2, decide
if M1 and M2 define the same graph, up to renaming of vertices. The
certificate is the permutation π : [n] → [n] such that M2 is equal to
M1 after reordering M1’s indices according to π.

Composite numbers: Given a number N decide if N is a composite (i.e.,
non-prime) number. The certificate is the factorization of N .
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Factoring: Given three numbers N,L,U decide if N has a factor M in the
interval [L,U ]. The certificate is the factor M .

Connectivity: Given a graph G and two vertices s, t in G, decide if s is
connected to t in G. The certificate is the path from s to t.

The Connectivity, Composite Numbers and Linear programming prob-
lems are known to be in P. For connectivity this follows from the simple
and well known breadth-first search algorithm (see [?]). The composite
numbers problem was only recently shown to be in P by Agrawal, Kayal
and Saxena [?], who gave a beautiful algorithm to solve it. For the lin-
ear programming problem this is again highly non-trivial, and follows from
the Ellipsoid algorithm of Khachiyan [?] (there are also faster algorithms,
following Karmarkar’s interior point paradigm [?]).

All the rest of the problems are not known to have a polynomial-time
algorithm, although we have no proof that they are not in P. The Inde-
pendent Set, Traveling Salesperson, Subset Sum, and Integer Programming
problems are known to be NP-complete, which, as we will see in this chap-
ter, implies that they are not in P unless P = NP. The Graph Isomorphism
and Factoring problems are not known to be either in P nor NP-complete.

2.2 Non-deterministic Turing machines.

The class NP can also be defined using a variant of Turing machines called
non-deterministic Turing machines (abbreviated NDTM). In fact, this was
the original definition and the reason for the name NP, which stands for
non-deterministic polynomial-time. The only difference between an NDTM
and a standard TM is that an NDTM has two transition functions δ0 and
δ1. In addition the NDTM has a special state we denote by qaccept. When an
NDTM M computes, we envision that at each computational step M makes
an arbitrary choice as to which of its two transition functions to apply. We
say that M outputs 1 on a given input x if there is some sequence of these
choices (which we call the non-deterministic choices of M) that would make
M reach qaccept on input x. Otherwise— if every sequence of choices makes
M halt without reaching qaccept— then we say that M(x) = 0. We say that
M runs in T (n) time if for every input x ∈ {0, 1}∗ and every sequence of
non-deterministic choices, M reaches either a halting state or qaccept within
T (|x|) steps.
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Definition 2.4
For every function T : N→ N and L ⊆ {0, 1}∗, we say that L ∈ NTIME(T (n))
if there is a constant c > 0 and a cT (n)-time NDTM M such that for every
x ∈ {0, 1}∗, x ∈ L⇔M(x) = 1

The next theorem gives an alternative definiton of NP, the one that
appears in most texts.

Theorem 2.5
NP = ∪c∈NNTIME(nc)

Proof: The main idea is that the sequence of nondeterministic choices made
by an accepting computation of an NDTM can be viewed as a certificate
that the input is in the language, and vice versa.

Suppose p : N→ N is a polynomial and L is decided by a NDTM N that
runs in time p(n). For every x ∈ L, there is a sequence of nondeterministic
choices that makes N reach qaccept on input x. We can use this sequence
as a certificate for x. Notice, this certificate has length p(|x|) and can be
verified in polynomial time by a deterministic machine, which checks that N
would have entered qaccept after using these nondeterministic choices. Thus
L ∈ NP according to Definition 2.1.

Conversely, if L ∈ NP according to Definition 2.1, then we describe a
polynomial-time NDTM N that decides L. On input x, it uses the ability
to make non-deterministic choices to write down a string u of length p(|x|).
(Concretely, this can be done by having transition δ0 correspond to writing a
0 on the tape and transition δ1 correspond to writing a 1.) Then it runs the
deterministic verifier M of Definition 2.1 to verify that u is a valid certificate
for x, and if so, enters qaccept. Clearly, N enters qaccept on x if and only if a
valid certificate exists for x. Since p(n) = O(nc) for some c > 1, we conclude
that L ∈ NTIME(nc). �

As is the case with deterministic TM’s, there exists a universal non-
deterministic Turing machine, see Exercise 1. (In fact, using non-determinism
we can even make the simulation by a universal TM slightly more efficient.)

2.3 Reducibility and NP-completeness

It turns out that the independent set is at least as hard as any other lan-
guage in NP: if INDSET has a polynomial-time algorithm then so do all the
problems in NP. This fascinating property is called NP-hardness. Since
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most scientists conjecture that NP 6= P, the fact that a language is NP-
hard can be viewed as evidence that it cannot be decided in polynomial
time.

How can we prove that a language B is at least as hard as some language
A? The crucial tool we use is the notion of a reduction (see Figure 2.1):

Definition 2.6 (Reductions, NP-hardness and NP-completeness)
We say that a language A ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language
B ⊆ {0, 1}∗ (sometimes shortened to just “polynomial-time reducible”1) denoted by
A ≤p B if there is a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, x ∈ A⇔ x ∈ B.
We say that B is NP-hard if A ≤p B for every A ∈ NP. We say that B is
NP-complete if B is NP-hard and B ∈ NP.

L

L

L’

L’

f(L)

f(L)

Algorithm for L

Algorithm for L’
f

Input: x f(x)
output:
1 iff f(x) in L’

Figure 2.1: A Karp reduction from L to L′ is a polynomial-time function f that maps
strings in L to strings in L′ and strings in L = {0, 1}∗ \L to strings in L′. It can be used
to transform a polynomial-time TM M ′ that decides L into a polynomial-time TM M for
L by setting M(x) = M ′(f(x)).

Now we observe some properties of polynomial-time reductions. Part 1
shows that this relation is transitive. (Later we will define other notions
of reduction, and all will satisfy transitivity.) Part 2 suggests the reason
for the term NP-hard —namely, an NP-hard languages is at least as hard
as any other NP language. Part 3 similarly suggests the reason for the
term NP-complete: to study the P versus NP question it suffices to study
whether any NP-complete problem can be decided in polynomial time.

1Some texts call this notion “many-to-one reducibility” or “polynomial-time mapping
reducibility”.
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Theorem 2.7
1. (transitivity) A ≤p B and B ≤p C, then A ≤p C.

2. If language A is NP-hard and A ∈ P then P = NP.

3. If language A is NP-complete then A ∈ P if and only if P = NP.

Proof: The main observation is that if p, q are two functions that have poly-
nomial growth then their composition p(q(n)) also has polynomial growth.
We prove part 1 and leave the others as simple exercises.

If f1 is a polynomial-time reduction from A to B and f2 is a reduction
from B to C then the mapping x 7→ f2(f1(x)) is a polynomial-time reduction
from A to C since f2(f1(x)) takes polynomial time to compute given x and
f2(f1(x)) ∈ C iff x ∈ A. �

Do NP-complete languages exist? It may not be clear that NP should
possess a language that is as hard as any other language in the class. How-
ever, this does turn out to be the case:

Theorem 2.8
The following language is NP-complete:

TMSAT = {〈 xMy, x, 1n, 1t〉 : ∃u ∈ {0, 1}n s.t. M outputs 1 on input 〈x, u〉 within t steps}

where xMy denotes the representation of the TM M according to the rep-
resentation scheme of Theorem 1.6.

Theorem 2.8 is straightforward from the definition of NP and is left to
the reader as Exercise 2. But TMSAT is not a very useful NP-complete
problem since its definition is intimately tied to the notion of the Turing
machine, and hence the fact that it is NP-complete does not provide much
new insight.

2.3.1 The Cook-Levin Theorem: Computation is Local

Around 1971, Cook and Levin independently discovered the notion of NP-
completeness and gave examples of combinatorial NP-complete problems
whose definition seems to have nothing to do with Turing machines. Soon
after, Karp showed that NP-completeness occurs widely and many combi-
natorial problems of practical interest are NP-complete. To date, thousands
of computational problems in a variety of disciplines have been found to be
NP-complete.
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Some of the simplest examples of NP-complete problems come from
propositional logic. A Boolean formula over the variables u1, . . . , un consists
of the variables and the logical operators AND (∧), NOT (¬) and OR (∨);
see Appendix for their definitions. For example, (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) is
a Boolean formula that is True if and only if the majority of the variables
a, b, c are True. If ϕ is a Boolean formula over variables u1, . . . , un, and
z ∈ {0, 1}n, then ϕ(z) denotes the value of ϕ when the variables of ϕ are
assigned the values z (where we identify 1 with True and 0 with False).
The formula is satisfiable if there is an assignment to the variables that
makes it evaluate to True. Otherwise, we say ϕ is unsatisfiable.

Definition 2.9 (CNF, kCNF)
A Boolean formula over variables u1, . . . , un is in CNF form (shorthand for
Conjunctive Normal Form) if it is an AND of OR’s of variables or their
negations. It has the form ∧

i

∨
j

vij

 ,

where each vij is a literal of ϕ, in other words either a variable uk or to its
negation uk. The terms (∨jvij ) are called the clauses. If all clauses contain
at most k literals, the formula is a kCNF.

For example, the following is a CNF formula that is 3CNF.

(u1 ∨ ū2 ∨ u3) ∧ (u2 ∨ ū3 ∨ u4) ∧ (ū1 ∨ u3 ∨ ū4) .

Definition 2.10 (SAT and 3SAT)
SAT is the language of all satisfiable CNF formulae and 3SAT is the language
of all satisfiable 3CNF formulae.

Theorem 2.11 (Cook-Levin Theorem [Coo71, Lev73])
1. SAT is NP-complete.

2. 3SAT is NP-complete.

Remark 2.12
An alternative proof of the Cook-Levin theorem, using the notion of Boolean
circuits, is described in Section 6.7.
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Both SAT and 3SAT are clearly in NP, since a satisfying assignment can
serve as the certificate that a formula is satisfiable. Thus we only need to
prove that they are NP-hard. We do so by first proving that SAT is NP-
hard and then showing that SAT is polynomial-time Karp reducible to 3SAT.
This implies that 3SAT is NP-hard by the transitivity of polynomial-time
reductions. Thus the following lemma is the key to the proof.

Lemma 2.13
SAT is NP-hard.

Notice, to prove this we have to show how to reduce every NP language
L to SAT, in other words give a polynomial-time transformation that turns
any x ∈ {0, 1}∗ into a CNF formula ϕx such that x ∈ L iff ϕx is satisfiable.
Since we know nothing about the language L except that it is in NP, this
reduction has to rely just upon the definition of computation, and express
it in some way using a boolean formula.

Expressiveness of boolean formulae

As a warmup for the proof of Lemma 2.13 we show how to express constraints
using boolean formulae.

Example 2.14
The formula (a ∨ b) ∧ (a ∨ b) is in CNF form. It is satisfied by only those
values of a, b that are equal. Thus, the formula

(x1 ∨ y1) ∧ (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) ∧ (xn ∨ yn)

is True if and only if the strings x, y ∈ {0, 1}n are equal to one another.
Thus, though = is not a standard boolean operator like ∨ or ∧, we will

use it as a convenient shorthand since the formula φ1 = φ2 is equivalent to
(in other words, has the same satisfying assignments as) (φ1∨φ2)∧(φ1∨φ2).

In fact, CNF formulae of sufficient size can express every Boolean condi-
tion, as shown by the following simple claim: (this fact is sometimes known
as universality of the operations AND, OR and NOT)

Claim 2.15
For every Boolean function f : {0, 1}` → {0, 1} there is an `-variable CNF

formula ϕ of size `2` such that ϕ(u) = f(u) for every u ∈ {0, 1}`, where
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the size of a CNF formula is defined to be the number of ∧/∨ symbols it
contains.

Proof: For every v ∈ {0, 1}`, there exists a clause Cv such that Cv(v) =
0 and Cv(u) = 1 for every u 6= v. For example, if v = 〈1, 1, 0, 1〉, the
corresponding clause is u1 ∨ u2 ∨ u3 ∨ u4. We let S be the set {v : f(v) = 1}
and set ϕ = ∧v∈SCv. Then for every v such that f(v) = 0 it holds that
ϕ(v) = 0 and for every u such that f(u) = 1, we have that Cv(u) = 1 for
every v ∈ S and hence ϕ(u) = 1. �

In this chapter we will use this claim only when the number of variables
is some fixed constant.

Proof of Lemma 2.13

Let L be an NP language and let M be the polynomial time TM such that
that for every x ∈ {0, 1}∗, x ∈ L ⇔ M(x, u) = 1 for some u ∈ {0, 1}p(|x|),
where p : N → N is some polynomial. We show L is polynomial-time Karp
reducible to SAT by describing a way to transform in polynomial-time every
string x ∈ {0, 1}∗ into a CNF formula ϕx such that x ∈ L iff ϕx is satisfiable.

How can we construct such a formula ϕx? By Claim 2.15, the function
that maps u ∈ {0, 1}p(|x|) to M(x, u) can be expressed as a CNF formula
ψx (i.e., ψx(u) = M(x, u) for every u ∈ {0, 1}p(|x|)). Thus a u such that
M(x, u) = 1 exists if and only if ψx is satisfiable. But this is not useful
for us, since the size of the formula ψx obtained from Claim 2.15 can be
as large as p(|x|)2p(|x|). To get a smaller formula we use the fact that M
runs in polynomial time, and that each basic step of a Turing machine is
highly local (in the sense that it examines and changes only a few bits of
the machine’s tapes).

We assume for notational simplicity that M only has two tapes: an input
tape and a work/output tape. The proof carries over in the same way for
any fixed number of tapes. We also assume that M is an oblivious TM in
the sense that its head movement does not depend on the contents of its
input tape. In particular, this means that M ’s computation takes the same
time for all inputs of size n and for each time step i the location of M ’s
heads at the ith step depends only on i and M ’s input length. We can make
this assumption since every TM can be easily simulated by an oblivious TM
incurring only a polynomial overhead (e.g., by replacing each step of the
computation with a left to right and back sweep of the machine’s tapes; see
Exercise 5 of Chapter 1).2

2In fact, with some more effort we even simulate a non-oblivious T (n)-time TM by an
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The advantage of the obliviousness assumption is that there are polynomial-
time computable functions inputpos(i), prev(i) where inputpos(i) denotes
the location of the input tape head at step i and prev(i) denotes the last
step before i that M visited the same location on its work tape, see Fig-
ure 2.3. These values can be computed in polynomial-time by simulating
the machine on say the input (0|x|, 0p(|x|)).

Denote by Q the set of M ’s possible states and by Γ its alphabet. The
snapshot of M ’s execution on some input y at a particular step i is the triple
〈a, b, q〉 ∈ Γ× Γ×Q such that a, b are the symbols read by M ’s heads from
the two tapes and q is the state M is in at the ith step (see Figure 2.2). Each
such snapshot can be encoded by a binary string of length c, where c is some
constant depending on M ’s state and alphabet size (but independent of the
input length).

Input
tape

Work/
output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 1 1 0 1 1 1 0 0 0 1

q7State register

read only head

read/write head

snapshot

0 1 q7
a b q

Figure 2.2: A snapshot of a TM contains the current state and symbols read by the TM
at a particular step. If at the ith step M reads the symbols 0, 1 from its tapes and is in
the state q7 then the snapshot of M at the ith step is 〈0, 1, q7〉.

For everym ∈ N and y ∈ {0, 1}m, the snapshot ofM ’s execution on input
y at the ith step depends on its state in the i− 1st step, and the contents of
the current cells of its input and work tapes. Thus if we denote the encoding
of the ith snapshot as a length-c string by zi, then zi is a function of zi−1,
yinputpos(i), and zprev(i), where inputpos(i), prev(i) are as defined earlier.

We write this as

zi = F (zi−1, zprev(i), yinputpos(i)) ,

oblivious TM running in O(T (n) log T (n))-time, see Exercise 6 of Chapter 1.
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where F is some function (derived from M ’s transition function) that maps
{0, 1}2c+1 to {0, 1}c.3

1 minputpos(i)

.... ....

............
1 prev(i) i-1 i T

input:

snapshots:

Figure 2.3: The snapshot of M at the ith step depends on its previous state (contained
in the snapshot at the i− 1st step), and the symbols read from the input tape, which is in
position inputpos(i), and from the work tape, which was last written to in step prev(i).

Let n ∈ N and x ∈ {0, 1}n. We need to construct a CNF formula ϕx
such that x ∈ L ⇔ ϕx ∈ SAT. Recall that x ∈ L if and only if there
exists some u ∈ {0, 1}p(n) such that M(y) = 1 where y = x ◦ u (with ◦
denoting concatenation). Since the sequence of snapshots in M ’s execution
completely determines its outcome, this happens if and only if there exists a
string y ∈ {0, 1}n+p(n) and a sequence of strings z1, . . . , zT ∈ {0, 1}c (where
T = T (n) is the number of steps M takes on inputs of length n + p(n))
satisfying the following four conditions:

1. The first n bits of y are equal to x.

2. The string z1 encodes the initial snapshot of M (i.e., the triple 〈B
,�, qstart〉 where B is the start symbol of the input tape, � is the
blank symbol, and qstart is the initial state of the TM M).

3. For every i ∈ {2, .., T}, zi = F (zi−1, zinputpos(i), zprev(i)).

4. The last string zT encodes a snapshot in which the machine halts and
outputs 1.

The formula ϕx will take variables y ∈ {0, 1}n+p(n) and z ∈ {0, 1}cT
and will verify that y, z satisfy the AND of these four conditions. Clearly
x ∈ L ⇔ ϕx ∈ SAT and so all that remains is to show that we can express
ϕx as a polynomial-sized CNF formula.

3If i is the first step in which M accesses a particular location of the input tape then
we define prev(i) = 1 and we will always require that the snapshot z1 contains the blank
symbol � for the work tape.
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Condition 1 can be expressed as a CNF formula of size 2n (in fact, such
a formula appears in Example 2.14). Conditions 2 and 4 each depend on
c variables and hence by Claim 2.15 can be expressed by CNF formulae of
size c2c. Condition 3, which is an AND of T conditions each depending on
at most 3c+ 1 variables, can be expressed as a CNF formula of size at most
T (3c+ 1)23c+1. Hence the AND of all these conditions can be expressed as
a CNF formula of size d(n + T ) where d is some constant depending only
on M . Moreover, this CNF formula can be computed in time polynomial in
the running time of M .

Lemma 2.16
SAT ≤p 3SAT.

Proof: We will map a CNF formula ϕ into a 3CNF formula ψ such that
ψ is satisfiable if and only if ϕ is. We demonstrate first the case that ϕ is
a 4CNF. Let C be a clause of ϕ, say C = u1 ∨ u2 ∨ u3 ∨ u4. We add a new
variable z to the ϕ and replace C with the pair of clauses C1 = u1 ∨ u2 ∨ z
and C2 = u3 ∨ u4 ∨ z. Clearly, if u1 ∨ u2 ∨ u3 ∨ u4 is true then there is
an assignment to z that satisfies both u1 ∨ u2 ∨ z and u3 ∨ u4 ∨ z and vice
versa: if C is false then no matter what value we assign to z either C1 or
C2 will be false. The same idea can be applied to a general clause of size 4,
and in fact can be used to change every clause C of size k (for k > 3) into
an equivalent pair of clauses C1 of size k − 1 and C2 of size 3 that depend
on the k variables of C and an additional auxiliary variable z. Applying
this transformation repeatedly yields a polynomial-time transformation of a
CNF formula ϕ into an equivalent 3CNF formula ψ. �

2.3.2 More thoughts on the Cook-Levin theorem

The Cook-Levin theorem is a good example of the power of abstraction.
Even though the theorem holds regardless of whether our computational
model is the C programming language or the Turing machine, it may have
been considerably more difficult to discover in the former context.

Also, it is worth pointing out that the proof actually yields a result that
is a bit stronger than the theorem’s statement:

1. If we use the efficient simulation of a standard TM by an oblivious TM
(see Exercise 6, Chapter 1) then for every x ∈ {0, 1}∗, the size of the
formula ϕx (and the time to compute it) is O(T log T ), where T is the
number of steps the machine M takes on input x (see Exercise 10).
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2. The reduction f from an NP-language L to SAT presented in Lemma 2.13
not only satisfied that x ∈ L ⇔ f(x) ∈ SAT but actually the proof
yields an efficient way to transform a certificate for x to a satisfying
assignment for f(x) and vice versa. We call a reduction with this
property a Levin reduction. One can also verify that the proof sup-
plied a one-to-one and onto map between the set of certificates for x
and the set of satisfying assignments for f(x), implying that they are
of the same size. A reduction with this property is called parsimo-
nious. Most of the known NP-complete problems (including all the
ones mentioned in this chapter) have parsimonious Levin reductions
from all the NP languages (see Exercise 11). As we will see in this
book, this fact is sometimes useful for certain applications.

Why 3SAT? The reader may wonder why is the fact that 3SAT is NP-
complete so much more interesting than the fact that, say, the language
TMSAT of Theorem 2.8 is NP-complete. One answer is that 3SAT is useful
for proving the NP-completeness of other problems: it has very minimal
combinatorial structure and thus easy to use in reductions. Another an-
swer has to do with history: propositional logic has had a central role in
mathematical logic —in fact it was exclusively the language of classical logic
(e.g. in ancient Greece). This historical resonance is one reason why Cook
and Levin were interested in 3SAT in the first place. A third answer has
to do with practical importance: it is a simple example of constraint sat-
isfaction problems, which are ubiquitous in many fields including artificial
intelligence.

2.3.3 The web of reductions

Cook and Levin had to show how every NP language can be reduced to
SAT. To prove the NP-completeness of any other language L, we do not
need to work as hard: it suffices to reduce SAT or 3SAT to L. Once we
know that L is NP-complete we can show that an NP-language L′ is in fact
NP-complete by reducing L to L′. This approach has been used to build a
“web of reductions” and show that thousands of interesting languages are in
fact NP-complete. We now show the NP-completeness of a few problems.
More examples appear in the exercises (see Figure 2.4). See the classic book
by Garey and Johnson [?] and the internet site [?] for more.

Theorem 2.17 (Independent set is NP-complete)
Let INDSET = {〈G, k〉 : G has independent set of size k}. Then INDSET is
NP-complete.
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Figure 2.4: Web of reductions between the NP-completeness problems de-
scribed in this chapter and the exercises. Thousands more are known.
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Proof: Since INDSET is clearly in NP, we only need to show that it is
NP-hard, which we do by reducing 3SAT to INDSET. Let ϕ be a 3CNF
formula on n variables with m clauses. We define a graph G of 7m vertices
as follows: we associate a cluster of 7 vertices in G with each clause of
ϕ. The vertices in cluster associated with a clause C correspond to the
7 possible assignments to the three variables C depends on (we call these
partial assignments, since they only give values for some of the variables).
For example, if C is u2∨u5∨u7 then the 7 vertices in the cluster associated
with C correspond to all partial assignments of the form u1 = a, u2 =
b, u3 = c for a binary vector 〈a, b, c〉 6= 〈1, 1, 1〉. (If C depends on less than
three variables we treat one of them as repeated and then some of the 7
vertices will correspond to the same assignment.) We put an edge between
two vertices of G if they correspond to inconsistent partial assignments.
Two partial assignments are consistent if they give the same value to all the
variables they share. For example, the assignment u1 = 1, u2 = 0, u3 = 0 is
inconsistent with the assignment u3 = 1, u5 = 0, u7 = 1 because they share
a variable (u3) to which they give a different value. In addition, we put
edges between every two vertices that are in the same cluster.

Clearly transforming ϕ into G can be done in polynomial time. We
claim that ϕ is satisfiable if and only if G has a clique of size m. Indeed,
suppose that ϕ has a satisfying assignment u. Define a set S of m vertices as
follows: for every clause C of ϕ put in S the vertex in the cluster associated
with C that corresponds to the restriction of u to the variables C depends
on. Because we only choose vertices that correspond to restrictions of the
assignment u, no two vertices of S correspond to inconsistent assignments
and hence S is an independent set of size m.

On the other hand, suppose that G has an independent set S of size m.
We will use S to construct a satisfying assignment u for ϕ. We define u as
follows: for every i ∈ [n], if there is a vertex in S whose partial assignment
gives a value a to ui, then set ui = a; otherwise set ui = 0. This is well
defined because S is an independent set, and hence each variable ui can get
at most a single value by assignments corresponding to vertices in S. On the
other hand, because we put all the edges within each cluster, S can contain
at most a single vertex in each cluster, and hence there is an element of S
in every one of the m clusters. Thus, by our definition of u, it satisfies all
of ϕ’s clauses. �

We see that, surprisingly, the answer to the famous NP vs. P question
depends on the seemingly mundane question of whether one can efficiently
plan an optimal dinner party. Here are some more NP-completeness results:

Web draft 2006-09-28 18:09



DRAFT

2.3. REDUCIBILITY AND NP-COMPLETENESS 49

Theorem 2.18 (Integer programming is NP-complete)
We say that a set of linear inequalities with rational coefficients over vari-
ables u1, . . . , un is in IPROG if there is an assignment of integer numbers in
{0, 1, 2, . . .} to u1, . . . , un that satisfies it. Then, IPROG is NP-complete.

Proof: IPROG is clearly in NP. To reduce SAT to IPROG note that every
CNF formula can be easily expressed as an integer program: first add the
constraints 0 ≤ ui ≤ 1 for every i to ensure that the only feasible assignments
to the variables are 0 or 1, then express every clause as an inequality. For
example, the clause u1∨u2∨u3 can be expressed as u1+(1−u2)+(1−u3) ≥ 1.
�

......

m vertices corresponding to clauses c1 .... cm

start vertex

end vertex

..........

For every variable ui we have a “chain” of 6m vertices.

chain 1:

chain n:

c10 = u1 OR u2 OR u3

link in chain 1:

link in chain 2:

link in chain 3:

left-to-right traversal = TRUE, right-to-left = FALSE

vertex c10 can be visited if chain 1 is traversed left-to-right
or if chains 2 or 3 are traversed right-to-left

u v

chain 2:

Figure 2.5: Reducing SAT to dHAMPATH. A formula ϕ with n variables andm clauses is
mapped to a graph G that has m vertices corresponding to the clauses and n doubly linked
chains, each of length 6m, corresponding to the variables. Traversing a chain left to right
corresponds to setting the variable to True, while traversing it right to left corresponds
to setting it to False. Note that in the figure every Hamiltonian path that takes the edge
from u to c10 must immediately take the edge from c10 to v, as otherwise it would get
“stuck” the next time it visits v.

Theorem 2.19 (Hamiltonian path is NP-complete)
Let dHAMPATH denote the set of all directed graphs that contain a path
visiting all of their vertices exactly once. Then dHAMPATH is NP-complete.

Proof: Again, dHAMPATH is clearly in NP. To show it’s NP-complete
we show a way to map every CNF formula ϕ into a graph G such that ϕ is
satisfiable if and only if G has a Hamiltonian path (i.e. path that visits all
of G’s vertices exactly once).
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The reduction is described in Figure 2.5. The graph G has (1)m vertices
for each of ϕ’s clauses c1, . . . , cm, (2) a special starting vertex vstart and
ending vertex vend and (3) n “chains” of 6m vertices corresponding to the
n variables of ϕ. A chain is a set of vertices v1, . . . , v6m such that for every
i ∈ [6m− 1], vi and vi+1 are connected by two edges in both directions.

We put edges from the starting vertex vstart to the two extreme points of
the first chain. We also put edges from the extreme points of the jth chain
to the extreme points to the j + 1th chain for every j ∈ [n− 1]. We put an
edge from the extreme points of the nth chain to the ending vertex vend.

In addition to these edges, for every clause C of ϕ, we put edges between
the chains corresponding to the variables appearing in C and the vertex vC
corresponding to C in the following way: if C contains the literal uj then we
take two neighboring vertices vi, vi+1 in the jth chain and put an edge from
vi to C and from C to vi+1. If C contains the literal uj then we connect
these edges in the opposite direction (i.e., vi+1 to C and C to vi). When
adding these edges, we never “reuse” a link vi, vi+1 in a particular chain and
always keep an unused link between every two used links. We can do this
since every chain has 5m vertices, which is more than sufficient for this.

ϕ ∈ SAT⇒ G ∈ dHAMPATH. Suppose that ϕ has a satisfying assignment
u1, . . . , un. We will show a path that visits all the vertices of G. The path
will start at vstart, travel through all the chains in order, and end at vend.
For starters, consider the path that travels the jth chain in left-to-right order
if uj = 1 and travels it in right-to-left order if uj = 0. This path visits all the
vertices except for those corresponding to clauses. Yet, if u is a satisfying
assignment then the path can be easily modified to visit all the vertices
corresponding to clauses: for each clause C there is at least one literal that
is true, and we can use one link on the chain corresponding to that literal
to “skip” to the vertex vC and continue on as before.

G ∈ dHAMPATH ⇒ ϕ ∈ SAT. Suppose that G has an Hamiltonian path
P . We first note that the path P must start in vstart (as it has no incoming
edges) and end at vend (as it has no outgoing edges). Furthermore, we
claim that P needs to traverse all the chains in order, and within each chain
traverse it either in left-to-right order or right-to-left order. This would be
immediate if the path did not use the edges from a chain to the vertices
corresponding to clauses. The claim holds because if a Hamiltonian path
takes the edge u→ w, where u is on a chain and w corresponds to a clause,
then it must at the next step take the edge w → v where v is the vertex
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adjacent to u in the link. Otherwise, the path will get stuck the next time
it visits v (see Figure 2.1). Now, define an assignment u1, . . . , un to ϕ
as follows: uj = 1 if P traverses the jth chain in left-to-right order, and
uj = 0 otherwise. It is not hard to see that because P visits all the vertices
corresponding to clauses, u1, . . . , un is a satisfying assignment for ϕ. �

In praise of reductions

Though originally invented as part of the theory of NP-completeness, the
polynomial-time reduction (together with its first cousin, the randomized
polynomial-time reduction defined in Section 7.8) has led to a rich under-
standing of complexity above and beyond NP-completeness. Much of com-
plexity theory and cryptography today (thus, many chapters of this book)
consists of using reductions to make connections between disparate complex-
ity theoretic conjectures. Why do complexity theorists excel at reductions
but not at actually proving lowerbounds on Turing machines? A possible
explanation is that humans have evolved to excel at problem solving, and
hence are more adept at algorithms (after all, a reduction is merely an algo-
rithm to transform one problem into another) than at proving lowerbounds
on Turing machines.

2.4 Decision versus search

We have chosen to define the notion of NP using Yes/No problems (“Is
the given formula satisfiable?”) as opposed to search problems (“Find a
satisfying assignment to this formula if one exists”). However, it turns out
that if P = NP then the search versions of NP problems can also be solved
in polynomial time.

Theorem 2.20
Suppose that P = NP. Then, for every NP language L there exists a
polynomial-time TM B that on input x ∈  L outputs a certificate for x.

That is, if, as per Definition 2.1, x ∈ L iff ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) =
1 where p is some polynomial and M is a polynomial-time TM, then on input
x ∈ L, B(x) will be a string u ∈ {0, 1}p(|x|) satisfying M(x,B(x)) = 1.

Proof: We start by showing the theorem for the case of SAT. In particular
we show that given an algorithm A that decides SAT, we can come up with
an algorithm B that on input a satisfiable CNF formula ϕ with n variables,
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finds a satisfying assignment for ϕ using 2n+1 calls to A and some additional
polynomial-time computation.

The algorithm B works as follows: we first use A to check that the input
formula ϕ is satisfiable. If so, we substitute x1 = 0 and x1 = 1 in ϕ (this
transformation, that simplifies and shortens the formula a little, leaving a
formula with n − 1 variables, can certainly be done in polynomial time)
and then use A to decide which of the two is satisfiable (it is possible that
both are). Say the first is satisfiable. Then we fix x1 = 0 from now on and
continue with the simplified formula. Continuing this way we end up fixing
all n variables while ensuring that each intermediate formula is satisfiable.
Thus the final assignment to the variables satisfies ϕ.

To solve the search problem for an arbitrary NP-language L, we use
the fact that the reduction of Theorem 2.11 from L to SAT is actually a
Levin reduction. This means that we have a polynomial-time computable
function f such that not only x ∈ L⇔ f(x) ∈ SAT but actually we can map
a satisfying assignment of f(x) into a certificate for x. Therefore, we can
use the algorithm above to come up with an assignment for f(x) and then
map it back into a certificate for x. �

Remark 2.21
The proof above shows that SAT is downward self-reducible, which means
that given an algorithm that solves SAT on inputs of length smaller than n
we can solve it on inputs of length n. Using the Cook-Levin reduction, one
can show that all NP-complete problems have a similar property, though
we do not make this formal.

2.5 coNP, EXP and NEXP

Now we define some related complexity classes that are very relevant to the
study of the P versus NP question.

2.5.1 coNP

If L ⊆ {0, 1}∗ is a language, then we denote by L the complement of L.
That is, L = {0, 1}∗ \ L. We make the following definition:

Definition 2.22
coNP =

{
L : L ∈ P

}
.

It is important to note that coNP is not the complement of the class
NP. In fact, they have a non-empty intersection, since every language in P
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is in NP∩coNP (see Exercise 19). The following is an example of a coNP
language: SAT = {ϕ : ϕ is not satisfiable} . Students sometimes mistakenly
convince themselves that SAT is in NP. They have the following polynomial
time NDTM in mind: on input ϕ, the machine guesses an assignment. If
this assignment does not satisfy ϕ then it accepts (i.e., goes into qaccept and
halts) and if it does satisfy ϕ then the machine halts without accepting.
This NDTM does not do the job: indeed it accepts every unsatisfiable ϕ but
in addition it also accepts many satisfiable formulae (i.e., every formula that
has a single unsatisfying assignment). That is why pedagogically we prefer
the following definition of coNP (which is easily shown to be equivalent to
the first, see Exercise 20):

Definition 2.23 (coNP, alternative definition)
For every L ⊆ {0, 1}∗, we say that L ∈ coNP if there exists a polynomial
p : N→ N and a polynomial-time TM M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∀u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

The key fact to note is the use of “∀” in this definition where Defini-
tion 2.1 used ∃.

We can define coNP-completeness in analogy to NP-completeness: a
language is coNP-complete if it is in coNP and every coNP language is
polynomial-time Karp reducible to it.

Example 2.24
In classical logic, tautologies are true statements. The following language is
coNP-complete:

TAUTOLOGY = {ϕ : ϕ is a boolean formula that is satisfied by every assignment} .

It is clearly in coNP by Definition 2.23 and so all we have to show is
that for every L ∈ coNP, L ≤p TAUTOLOGY. But this is easy: just modify
the Cook-Levin reduction from L (which is in NP) to SAT. For every input
x ∈ {0, 1}∗ that reduction produces a formula ϕx that is satisfiable iff x ∈ L.
Now consider the formula ¬ϕx. It is in TAUTOLOGY iff x ∈ L, and this
completes the description of the reduction.

It is a simple exercise to check that if P = NP then NP = coNP = P.
Put contrapositively, if we can show that NP 6= coNP then we have shown
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P 6= NP. Most researchers believe that NP 6= coNP. The intuition is
almost as strong as for the P versus NP question: it seems hard to believe
that there is any short certificate for certifying that a given formula is a
TAUTOLOGY, in other words, to certify that every assignment satisfies the
formula.

2.5.2 EXP and NEXP

The following two classes are exponential time analogues of P and NP.

Definition 2.25
EXP = ∪c≥0DTIME(2n

c
).

NEXP = ∪c≥0NTIME(2n
c
).

Because every problem in NP can be solved in exponential time by a
brute force search for the certificate, P ⊆ NP ⊆ EXP ⊆ NEXP. Is
there any point to studying classes involving exponential running times?
The following simple result —providing merely a glimpse of the rich web of
relations we will be establishing between disparate complexity questions—
may be a partial answer.

Theorem 2.26
If EXP 6= NEXP then P 6= NP.

Proof: We prove the contrapositive: assuming P = NP we show EXP =
NEXP. Suppose L ∈ NTIME(2n

c
) and NDTM M decides it. We claim

that then the language

Lpad =
{
〈x, 12|x|

c

〉 : x ∈ L
}

(1)

is in NP. Here is an NDTM for Lpad: given y, first check if there is a string
z such that y = 〈z, 12|z|

c

〉. If not, output REJECT. If y is of this form, then
run M on z for 2|z|

c

steps and output its answer. Clearly, the running time
is polynomial in |y|, and hence Lpad ∈ NP. Hence if P = NP then Lpad is
in P. But if Lpad is in P then L is in EXP: to determine whether an input
x is in L, we just pad the input and decide whether it is in Lpad using the
polynomial-time machine for Lpad. �

Remark 2.27
The padding technique used in this proof, whereby we transform a language
by “padding” every string in a language with a string of (useless) symbols,
is also used in several other results in complexity theory. In many settings it
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can be used to show that equalities between complexity classes “scale up”;
that is, if two different type of resources solve the same problems within
bound T (n) then this also holds for functions T ′ larger than T . Viewed
contrapositively, padding can be used to show that inequalities between
complexity classes involving resurce bound T ′(n) “scale down” to resource
bound T (n).

We note that most of the complexity classes studied later are, like P and
NP, also contained in EXP or NEXP.

2.6 More thoughts about P, NP, and all that

2.6.1 The philosophical importance of NP

At a totally abstract level, the P versus NP question may be viewed as a
question about the power of nondeterminism in the Turing machine model.
(Similar questions have been completely answered for simpler models such
as finite automata.)

However, the certificate definition of NP also suggests that the P ver-
sus NP question captures a widespread phenomenon of some philosophical
importance (and a source of great frustration to students): recognizing the
correctness of an answer is often easier than coming up with the answer. To
give other analogies from life: appreciating a Beethoven sonata is far easier
than composing the sonata; verifying the solidity of a design for a suspension
bridge is easier (to a civil engineer anyway!) than coming up with a good
design; verifying the proof of a theorem is easier than coming up with a
proof itself (a fact referred to in Gödel’s letter mentioned at the start of the
chapter), and so forth. In such cases, coming up with the right answer seems
to involve exhaustive search over an exponentially large set. The P versus
NP question asks whether exhaustive search can be avoided in general. It
seems obvious to most people —and the basis of many false proofs proposed
by amateurs— that exhaustive search cannot be avoided: checking that a
given salesman tour (provided by somebody else) has length at most k ought
to be a lot easier than coming up with such a tour by oneself. Unfortunately,
turning this intuition into a proof has proved difficult.

2.6.2 NP and mathematical proofs

By definition, NP is the set of languages where membership has a short
certificate. This is reminiscent of another familiar notion, that of a mathe-
matical proof. As noticed in the past century, in principle all of mathematics
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can be axiomatized, so that proofs are merely formal manipulations of ax-
ioms. Thus the correctness of a proof is rather easy to verify —just check
that each line follows from the previous lines by applying the axioms. In
fact, for most known axiomatic systems (e.g., Peano arithmetic or Zermelo-
Fraenkel Set Theory) this verification runs in time polynomial in the length
of the proof. Thus the following problem is in NP for any of the usual
axiomatic systems A:

theorems = {(ϕ, 1n) : ϕ has a formal proof of length ≤ n in system A} .

In fact, the exercises ask you to prove that this problem is NP-complete.
Hence the P versus NP question is a rephrasing of Gödel’s question (see
quote at the beginning of the chapter), which asks whether or not there is a
algorithm that finds mathematical proofs in time polynomial in the length
of the proof.

Of course, all our students know in their guts that finding correct proofs
is far harder than verifying their correctness. So presumably, they believe
at an intuitive level that P 6= NP.

2.6.3 What if P = NP?

If P = NP —specifically, if an NP-complete problem like 3SAT had a very
efficient algorithm running in say O(n2) time— then the world would be
mostly a Utopia. Mathematicians could be replaced by efficient theorem-
discovering programs (a fact pointed out in Kurt Gödel’s 1956 letter and
discovered three decades later). In general for every search problem whose
answer can be efficiently verified (or has a short certificate of correctness),
we will be able to find the correct answer or the short certificate in polyno-
mial time. AI software would be perfect since we could easily do exhaustive
searches in a large tree of possibilities. Inventors and engineers would be
greatly aided by software packages that can design the perfect part or gizmo
for the job at hand. VLSI designers will be able to whip up optimum cir-
cuits, with minimum power requirements. Whenever a scientist has some
experimental data, she would be able to automatically obtain the simplest
theory (under any reasonable measure of simplicity we choose) that best
explains these measurements; by the principle of Occam’s Razor the sim-
plest explanation is likely to be the right one. Of course, finding simple
theories sometimes takes scientists centuries to solve. This approach can be
used to solve also non-scientific problems: one could find the simplest the-
ory that explains, say, the list of books from the New-York Times’ bestseller
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list. (NB: All these applications will be a consequence of our study of the
Polynomial Hierarchy in Chapter 5.)

Somewhat intriguingly, this Utopia would have no need for randomness.
As we will later see, if P = NP then randomized algorithms would buy
essentially no efficiency gains over deterministic algorithms; see Chapter 7.
(Philosophers should ponder this one.)

This Utopia would also come at one price: there would be no privacy in
the digital domain. Any encryption scheme would have a trivial decoding
algorithm. There would be no digital cash, no SSL, RSA or PGP (see
Chapter 10). We would just have to learn to get along better without these,
folks.

This utopian world may seem ridiculous, but the fact that we can’t rule
it out shows how little we know about computation. Taking the half-full
cup point of view, it shows how many wonderful things are still waiting to
be discovered.

2.6.4 What if NP = coNP?

If NP = coNP, the consequences still seem dramatic. Mostly, they have
to do with existence of short certificates for statements that do not seem
to have any. To give an example, remember the NP-complete problem of
finding whether or not a set of multivariate polynomials has a common root,
in other words, deciding whether a system of equations of the following type
has a solution:

f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

where each fi is a quadratic polynomial.
If a solution exists, then that solution serves as a certificate to this effect

(of course, we have to also show that the solution can be described using
a polynomial number of bits, which we omit). The problem of deciding
that the system does not have a solution is of course in coNP. Can we
give a certificate to the effect that the system does not have a solution?
Hilbert’s Nullstellensatz Theorem seems to do that: it says that the system
is infeasible iff there is a sequence of polynomials g1, g2, . . . , gm such that∑

i figi = 1, where 1 on the right hand side denotes the constant polynomial
1.
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What is happening? Does the Nullstellensatz prove coNP = NP? No,
because the degrees of the gi’s —and hence the number of bits used to
represent them— could be exponential in n,m. (And it is simple to construct
fi’s for which this is necessary.)

However, if NP = coNP then there would be some other notion of a
short certificate to the effect that the system is infeasible. The effect of such
a result on mathematics would probably be even greater than the effect of
Hilbert’s Nullstellensatz. Of course, one can replace Nullstellensatz with
any other coNP problem in the above discussion.

What have we learned?

• The class NP consists of all the languages for which membership can be cer-
tified to a polynomial-time algorithm. It contains many important problems
not known to be in P. NP can also be defined using non-deterministic Turing
machines.

• NP-complete problems are the hardest problems in NP, in the sense that
they have a polynomial-time algorithm if and only if P =NP. Many natural
problems that seemingly have nothing to do with Turing machines turn out
to be NP-complete. One such example is the language 3SAT of satisfiable
Boolean formulae in 3CNF form.

• If P = NP then for every search problem for which one can efficiently verify
a given solution, one can also efficiently find such a solution from scratch.

Chapter notes and history

Sipser’s survey [Sip92] succinctly describes the evolution of the concepts
of P, NP in various scholarly articles from the 1950s and 1960s. It also
contains a translation of Gödel’s remarkable letter, which was discovered
among von Neumann’s papers in the 1980s.

The “TSP book” by Lawler et al. [LLKS85] also has a similar chapter,
and it traces interest in the Traveling Salesman Problem back to the 19th
century. Furthermore, a recently discovered letter by Gauss to Schumacher
shows that Gauss was thinking about methods to solve the famous Euclidean
Steiner Tree problem —today known to be NP-hard— in the early 19th
century.

Even if NP 6= P, this does not necessarily mean that all of the utopian
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applications mentioned in Section 2.6.3 are gone. It may be that, say, 3SAT
is hard to solve in the worst case on every input but actually very easy
on the average, See Chapter 15 for a more detailed study of average-case
complexity.

Exercises

§1 Prove the existence of a non-deterministic Universal TM (analogously
to the deterministic universal TM of Theorem 1.6). That is, prove that
there exists a representation scheme of NDTMs, and an NDTM NU
such that for every string α, and input x, if the NDTM Mα represented
by α halts on x within at most t steps then NU(α, t, x) = Mα(x).

(a) Prove that there exists such a universal NDTM NU that on in-
puts α, t, x runs for at most ct log t steps (where c is a constant
depending only on the machine represented by α).

(b) Prove that there is such a universal NDTM that runs on these
inputs for at most ct steps.

Hint:AsimulationinO(|α|tlogt)timecanbeobtainedbya
straightforwardadaptationoftheproofofTheorem1.6.Todoa
moreefficientsimulation,themainideaistofirstrunasimulation
ofMwithoutactuallyreadingthecontentsoftheworktapes,but
rathersimplynon-deterministicallyguessingthesecontents,and
writingthoseguessesdown.Then,goovertapebytapeandverify
thatallguesseswereconsistent.Usecanalsousethefactthat
decreasingacounterfromtto0canbedoneusingO(T)steps.

§2 Prove Theorem 2.

§3 Define the language H to consist of all the pairs 〈 xMy, x〉 such that
M(x) does not go into an infinite loop. Show that H is NP-hard. Is
H NP-complete?

§4 We have defined a relation ≤p among languages. We noted that it is
reflexive (that is, A ≤p A for all languages A) and transitive (that is, if
A ≤p B and B ≤p C then A ≤p C). Show that it is not commutative,
namely, A ≤p B need not imply B ≤p A.

§5 Suppose L1, L2 ∈ NP. Then is L1 ∪L2 in NP? What about L1 ∩L2?
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§6 Mathematics can be axiomatized using for example the Zermelo Frankel
system, which has a finite description. Argue at a high level that the
following language is NP-complete.

{〈ϕ, 1n〉 : math statement ϕ has a proof of size at most n in the ZF system} .

Hint:WhyisthislanguageinNP?Isbooleansatisfiabilitya
mathmaticalstatement?

The question of whether this language is in P is essentially the question
asked by Gödel in the chapter’s initial quote.

§7 Show that NP = coNP iff 3SAT and TAUTOLOGY are polynomial-
time reducible to one another.

§8 Can you give a definition of NEXP without using NDTMs, analogous
to the definition of NP in Definition 2.1? Why or why not?

§9 We say that a language is NEXP-complete if it is in NEXP and
every language in NEXP is polynomial-time reducible to it. Describe
a NEXP-complete language.

§10 Show that for every time constructible T : N→ N, if L ∈ NTIME(T (n))
then we can give a polynomial-time Karp reduction from L to 3SAT
that transforms instances of size n into 3CNF formulae of sizeO(T (n) log T (n)).
Can you make this reduction also run in O(T (n) log T (n))?

§11 Recall that a reduction f from an NP-language L to an NP-languages
L′ is parsimonious if the number of certificates of f is equal to the
number of certificates of f(x).

(a) Prove that the reduction from every NP-language L to SAT pre-
sented in the proof of Lemma 2.13 is parsimonious.

(b) Show a parsimonious reduction from SAT to 3SAT.

§12 The notion of polynomial-time reducibility used in Cook’s paper was
somewhat different: a language A is polynomial-time Cook reducible
to a language B if there is a polynomial time TM M that, given an
oracle for deciding B, can decide A. (An oracle for B is a magical
extra tape given to M , such that whenever M writes a string on this
tape and goes into a special “invocation” state, then the string —in a
single step!—gets overwritten by 1 or 0 depending upon whether the
string is or is not in B, see Section ??)
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Show that the notion of cook reducibility is transitive and that 3SAT
is Cook-reducible to TAUTOLOGY.

§13 (Berman’s Theorem 1978) A language is called unary if every string
in it is of the form 1i (the string of i ones) for some i > 0. Show that
if a unary language is NP-complete then P = NP. (See Exercise 6 of
Chapter 6 for a strengthening of this result.)

Hint:Ifthereisan
c

timereductionfrom3SATtoaunarylan-
guageL,thenthisreductioncanonlymapsizeninstancesof3SAT

tosomestringoftheform1
i
wherei≤n

c
.Usethisobservationto

obtainapolynomial-timealgorithmforSATusingthedownward
selfreducibilityargumentofTheorem2.20.

§14 In the CLIQUE problem we are given an undirected graph G and an
integer K and have to decide whether there is a subset S of at least
K vertices such that every two distinct vertices u, v ∈ S have an
edge between them (such a subset is called a clique). In the VERTEX
COVER problem we are given an undirected graph G and an integer K
and have to decide whether there is a subset S of at most K vertices
such that for every edge {i, j} of G, at least one of i or j is in S. Prove
that both these problems are NP-complete.

Hint:reducefromINDSET.

§15 In the MAX CUT problem we are given an undirected graph G and
an integer K and have to decide whether there is a subset of vertices
S such that there are at least K edges that have one endpoint in S
and one endpoint in S. Prove that this problem is NP-complete.

§16 In the Exactly One 3SAT problem, we are given a 3CNF formula ϕ and
need to decide if there exists a satisfying assignment u for ϕ such that
every clause of ϕ has exactly one True literal. In the SUBSET SUM
problem we are given a list of n numbers A1, . . . , An and a number T
and need to decide whether there exists a subset S ⊆ [n] such that∑

i∈S Ai = T (the problem size is the sum of all the bit representations
of all numbers). Prove that both Exactly One3SAT and SUBSET SUM
are NP-complete.

Web draft 2006-09-28 18:09



DRAFT

62 2.6. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

Hint:ForExactlyOne3SATreplaceeachoccurrenceofaliteral
viinaclauseCbyanewvariablezi,Candclausesandauxiliary
variablesensuringthatifviisTruethenzi,Cisallowedtobeeither
TrueorFalsebutifviisfalsethenzi,CmustbeFalse.The
approachforthereductionofExactlyOne3SATtoSUBSETSUM

isthatgivenaformulaϕ,wemapittoaSUBSETSUMinstanceby
mappingeachpossibleliteraluitothenumber∑j∈Si(2n)

j
where

Siisthesetofclausesthattheliteraluisatisfies,andsettingthe
targetTtobe∑m

j=1(2n)
j
.Anadditionaltrickisrequiredtoensure

thatthesolutiontothesubsetsuminstancewillnotincludetwo
literalsthatcorrespondtoavariableanditsnegation.

§17 Prove that the language HAMPATH of undirected graphs with Hamil-
tonian paths is NP-complete. Prove that the language TSP described
in Example 2.3 is NP-complete. Prove that the language HAMCYCLE
of undirected graphs that contain Hamiltonian cycle (a simple cycle
involving all the vertices) is NP-complete.

§18 Let quadeq be the language of all satisfiable sets of quadratic equations
over 0/1 variables (a quadratic equations over u1, . . . , un has the form
form

∑
ai,j

uiuj = b), where addition is modulo 2. Show that quadeq
is NP-complete.

Hint:ReducefromSAT

§19 Prove that P ⊆ NP ∩ coNP.

§20 Prove that the Definitions 2.22 and 2.23 do indeed define the same
class coNP.

§21 Suppose L1, L2 ∈ NP ∩ coNP. Then show that L1 ⊕ L2 is in NP ∩
coNP, where L1 ⊕ L2 = {x : x is in exactly one of L1, L2}.
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Chapter 3

Space complexity

“(our) construction... also suggests that what makes “games”
harder than “puzzles” (e.g. NP-complete problems) is the fact
that the initiative (“the move”) can shift back and forth between
the players.”
Shimon Even and Robert Tarjan, 1976

In this chapter we will study the memory requirements of computational
tasks. To do this we define space-bounded computation, which has to be per-
formed by the TM using a restricted number of tape cells, the number being
a function of the input size. We also study nondeterministic space-bounded
TMs. As in the chapter on NP, our goal in introducing a complexity class is
to “capture” interesting computational phenomena— in other words, iden-
tify an interesting set of computational problems that lie in the complexity
class and are complete for it. One phenomenon we will “capture” this way
(see Section 3.3.2) concerns computation of winning strategies in 2-person
games, which seems inherently different from (and possibly more difficult
than) solving NP problems such as SAT, as alluded to in the above quote.
The formal definition of deterministic and non-deterministic space bounded
computation is as follows (see also Figure 3.1):

Definition 3.1 (Space-bounded computation.)
Let S : N → N and L ⊆ {0, 1}∗. We say that L ∈ SPACE(s(n)) (resp. L ∈
NSPACE(s(n))) if there is a constant c and TM (resp. NDTM) M deciding L
such that on every input x ∈ {0, 1}∗, the total number of locations that are at some
point non-blank during M ’s execution on x is at most c·s(|x|). (Non-blank locations
in the read-only input tape do not count.)
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Input
tape

Work
tape

Output
tape

Register

read only head

read/write head

read/write head

Figure 3.1: Space bounded computation. Only cells used in the read/write tapes count
toward the space bound.

As in our definitions of all nondeterministic complexity classes, we re-
quire all branches of nondeterministic machines to always halt.

Remark 3.2
Analogously to time complexity, we will restrict our attention to space
bounds S : N→ N that are space-constructible functions, by which we mean
that there is a TM that computes S(n) in O(S(n)) space when given 1n as
input. (Intuitively, if S is space-constructible, then the machine “knows”
the space bound it is operating under.) This is a very mild restriction since
functions of interest, including log n,n and 2n, are space-constructible.

Also, realize that since the work tape is separated from the input tape,
it makes sense to consider space-bounded machines that use space less than
the input length, namely, S(n) < n. (This is in contrast to time-bounded
computation, where DTIME(T (n)) for T (n) < n does not make much sense
since the TM does not have enough time to read the entire input.) We will
assume however that S(n) > log n since the work tape has length n, and
we would like the machine to at least be able to “remember” the index of
the cell of the input tape that it is currently reading. (One of the exercises
explores classes that result when S(n)� log n.)

Note that DTIME(S(n)) ⊆ SPACE(S(n)) since a TM can access only
one tape cell per step. Also, notice that space can be reused : a cell on the
work tape can be overwritten an arbitrary number of times. A space S(n)
machine can easily run for as much as 2Ω(S(n)) steps —think for example of
the machine that uses its work tape of size S(n) to maintain a counter which
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it increments from 1 to 2S(n)−1. The next easy theorem (whose proof ap-
pears a little later) shows that this is tight in the sense that any languages in
SPACE(S(n)) (and even NSPACE(S(n))) is in DTIME(2O(S(n))). Sur-
prisingly enough, up to logarithmic terms, this theorem contains the only re-
lationships we know between the power of space-bounded and time-bounded
computation. Improving this would be a major result.

Theorem 3.3
For every space constructible S : N→ N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

3.1 Configuration graphs.

Cstart

Caccept
αqβ

Figure 3.2: The configuration graph GM,x is the graph of all configurations of M ’s
execution on x where there is an edge from a configuration C to a configuration C′ if
C′ can be obtained from C in one step. It has out-degree one if M is deterministic and
out-degree at most two if M is non-deterministic.

To prove Theorem 3.3 we use the notion of a configuration graph of a
Turing machine. This notion will also be quite useful for us later in this
chapter and the book. Let M be a (deterministic or non-deterministic) TM.
A configuration of a TM M consists of the contents of all non-blank entries
of M ’s tapes, along with its state and head position, at a particular point
in its execution. For every TM M and input x ∈ {0, 1}∗, the configuration
graph of M on input x, denoted GM,x, is a directed graph whose nodes
correspond to possible configurations that M can reach from the starting
configuration Cxstart (where the input tape is initialized to contain x). The
graph has a directed edge from a configuration C to a configuration C ′ if C ′

can be reached from C in one step according to M ’s transition function (see
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Figure 3.2). Note that if M is deterministic then the graph has out-degree
one, and if M is non-deterministic then it has an out-degree at most two.
Also note that we can assume that M ’s computation on x does not repeat
the same configuration twice (as otherwise it will enter into an infinite loop)
and hence that the graph is a directed acyclic graph (DAG). By modifying
M to erase all its work tapes before halting, we can assume that there is only
a single configuration Caccept on which M halts and outputs 1. This means
that M accepts the input x iff there exists a (directed) path in GM,x from
Cstart to Caccept. We will use the following simple claim about configuration
graphs:

Claim 3.4
Let GM,x be the configuration graph of a space-S(n) machine M on some
input x of length n. Then,

1. Every vertex in GM,x can be described using cS(n) bits for some con-
stant c (depending on M ’s alphabet size and number of tapes) and in
particular, GM,x has at most 2cS(n) nodes.

2. There is an O(S(n))-size CNF formula ϕM,x such that for every two
strings C,C ′, ϕM,x(C,C ′) = 1 if and only if C,C ′ encode two neigh-
boring configuration in GM,x.

Proof sketch: Part 1 follows from observing that a configuration is
completely described by giving the contents of all work tapes, the position of
the head, and the state that the TM is in (see Section 1.2.1). We can encode
a configuration by first encoding the snapshot (i.e., state and current symbol
read by all tapes) and then encoding in sequence the non-blank contents
of all the work-tape, inserting a special “marker” symbol, to denote the
locations of the heads.

Part 2 follows using similar ideas as in the proof of the Cook-Levin
theorem (Theorem 2.11). There we showed that deciding whether two con-
figurations are neighboring can be expressed as the AND of many checks,
each depending on only a constant number of bits, where such checks can
be expressed by constant-sized CNF formulae by Claim 2.15. �

Now we can prove Theorem 3.3.
Proof of Theorem 3.3: Clearly SPACE(S(n)) ⊆ NSPACE(S(n))
and so we just need to show NSPACE(S(n)) ⊆ DTIME(2O(S(n))). By
enumerating over all possible configurations we can construct the graph
GM,x in 2O(S(n))-time and check whether Cstart is connected to Caccept in
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GM,x using the standard (linear in the size of the graph) breadth-first search
algorithm for connectivity (e.g., see [?]). �

We also note that there exists a universal TM for space bounded com-
putation analogously to Theorems 1.6 and ?? for deterministic and non-
deterministic time bounded computation, see Section ?? below.

3.2 Some space complexity classes.

Now we define some complexity classes, where PSPACE,NPSPACE are
analogs of P and NP respectively.

Definition 3.5
PSPACE = ∪c>0SPACE(nc)
NPSPACE = ∪c>0NSPACE(nc)
L = SPACE(log n)
NL = NSPACE(log n)

Example 3.6
We show how 3SAT ∈ PSPACE by describing a TM that decides 3SAT
in linear space (that is, O(n) space, where n is the size of the 3SAT in-
stance). The machine just uses the linear space to cycle through all 2k

assignments in order, where k is the number of variables. Note that once
an assignment has been checked it can be erased from the worktape, and
the worktape then reused to check the next assignment. A similar idea of
cycling through all potential certificates applies to any NP language, so in
fact NP ⊆ PSPACE.

Example 3.7
The reader should check (using the gradeschool method for arithmetic) that
the following languages are in L:

EVEN = {x : x has an even number of 1s} .

MULT = {( xny, xmy, xnmy) : n ∈ N} .
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Its seems difficult to conceive of any complicated computations apart
from arithmetic that use only O(log n) space. Nevertheless, we cannot cur-
rently even rule out that 3SAT ∈ L (in other words —see the exercises—
it is open whether NP 6= L). Space-bounded computations with space
S(n) � n seem relevant to computational problems such as web crawling.
The world-wide-web may be viewed crudely as a directed graph, whose nodes
are webpages and edges are hyperlinks. Webcrawlers seek to explore this
graph for all kinds of information. The following problem PATH is natural
in this context:

PATH = {〈G, s, t〉 : G is a directed graph in which there is a path from s to t}
(1)

We claim that PATH ∈ NL. The reason is that a nondeterministic ma-
chine can take a “nondeterministic walk” starting at s, always maintaining
the index of the vertex it is at, and using nondeterminism to select a neigh-
bor of this vertex to go to next. The machine accepts iff the walk ends at t
in at most n steps, where n is the number of nodes. If the nondeterministic
walk has run for n steps already and t has not been encountered, the ma-
chine rejects. The work tape only needs to hold O(log n) bits of information
at any step, namely, the number of steps that the walk has run for, and the
identity of the current vertex.

Is PATH in L as well? This is an open problem, which, as we will shortly
see, is equivalent to whether or not L = NL. That is, PATH captures the
“essence” of NL just as 3SAT captures the “essence” of NP. (Formally, we
will show that PATH is NL-complete. ) A recent surprising result shows
that the restriction of PATH to undirected graphs is in L; see Chapters 7
and 17.

3.3 PSPACE completeness

As already indicated, we do not know if P 6= PSPACE, though we strongly
believe that the answer is YES. Notice, P = PSPACE implies P = NP.
Since complete problems can help capture the essence of a complexity class,
we now present some complete problems for PSPACE.
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Definition 3.8
A language A is PSPACE-hard if for every L ∈ PSPACE, L ≤p A. If in
addition A ∈ PSPACE then A is PSPACE-complete.

Using our observations about polynomial-time reductions from Chapter ??
we see that if any PSPACE-complete language is in P then so is every other
language in PSPACE. Viewed contrapostively, if PSPACE 6= P then a
PSPACE-complete language is not in P. Intuitively, a PSPACE-complete
language is the “most difficult” problem of PSPACE. Just as NP trivially
contains NP-complete problems, so does PSPACE. The following is one
(Exercise 3):

SPACETM = {〈M,w, 1n〉 : DTM M accepts w in space n} . (2)

Now we see some more interesting PSPACE-complete problems. We
use the notion of a quantified boolean formula, which is a boolean formula in
which variables are quantified using ∃ and ∀ which have the usual meaning
“there exists” and “for all” respectively. It is customary to also specify the
universe over which these signs should be interpreted, but in our case the
universe will always be the truth values {0, 1}. Thus a quantified boolean
formula has the form Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) where each Qi is
one of the two quantifiers ∀ or ∃ and ϕ is an (unquantified) boolean formula1.

If all variables in the formula are quantified (in other words, there are
no free variables) then a moment’s thought shows that such a formula is
either true or false —there is no “middle ground”. We illustrate the notion
of truth by an example.

Example 3.9
Consider the formula ∀x∃y (x ∧ y) ∨ (x ∧ y) where ∀ and ∃ quantify over
the universe {0, 1}. Some reflection shows that this is saying “for every
x ∈ {0, 1} there is a y ∈ {0, 1} that is different from it”, which we can
also informally represent as ∀x∃y(x 6= y). This formula is true. (Note: the

1 We are restricting attention to quantified boolean formulae which are in prenex normal
form, i.e., all quantifiers appear to the left. However, this is without loss of generality
since we can transform a general formula into an equivalent formula in prenex form in
polynomial time using identities such as p∨∃xϕ(x) = ∃xp∨ϕ(x) and ¬∀xφ(x) = ∃x¬φ(x).
Also note that unlike in the case of the SAT and 3SAT problems, we do not require that
the inner unquantified formula ϕ is in CNF or 3CNF form. However this choice is also not
important, since using auxiliary variables in a similar way to the proof of the Cook-Levin
theorem, we can in polynomial-time transform a general quantified Boolean formula to an
equivalent formula where the inner unquantified formula is in 3CNF form.
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symbols = and 6= are not logical symbols per se, but are used as informal
shorthand to make the formula more readable.)

However, switching the second quantifier to ∀ gives ∀x∀y (x∧y)∨(x∧y),
which is false.

Example 3.10
Recall that the SAT problem is to decide, given a Boolean formula ϕ that
has n free variables x1, . . . , xn, whether or not ϕ has a satisfying assignment
x1, . . . , xn ∈ {0, 1}n such that ϕ(x1, . . . , xn) is true. An equivalent way
to phrase this problem is to ask whether the quantified Boolean formula
ψ = ∃x1, . . . , xnϕ(x1, . . . , xn) is true.

The reader should also verify that the negation of the formula
Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) is the same as

Q′1x1Q
′
2x2 · · ·Q′nxn¬ϕ(x1, x2, . . . , xn),

where Q′i is ∃ if Qi was ∀ and vice versa. The switch of ∃ to ∀ in case of SAT
gives instances of TAUTOLOGY, the coNP-complete language encountered
in Chapter ??.

We define the language TQBF to be the set of quantified boolean formu-
lae that are true.

Theorem 3.11
TQBF is PSPACE-complete.

Proof: First we show that TQBF ∈ PSPACE. Let

ψ = Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn) (3)

be a quantified Boolean formula with n variables, where we denote the size
of ϕ bym. We show a simple recursive algorithm A that can decide the truth
of ψ in O(n+m) space. We will solve the slightly more general case where, in
addition to variables and their negations, ϕ may also include the constants
0 (i.e., “false”) and 1 (i.e., “true”). If n = 0 (there are no variables) then
the formula contains only constants and can be evaluated in O(m) time and
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space. Let n > 0 and let ψ be as in (3). For b ∈ {0, 1}, denote by ψ�x1=b the
modification of ψ where the first quantifier Q1 is dropped and all occurrences
of x1 are replaced with the constant b. Algorithm A will work as follows: if
Q1 = ∃ then output 1 iff at least one of A(ψ�x1=0) and A(ψ�x1=1) returns 1.
If Q1 = ∀ then output 1 iff both A(ψ�x1=0) and A(ψ�x1=1). By the definition
of ∃ and ∀, it is clear that A does indeed return the correct answer on any
formula ψ.

Let sn,m denote the space A uses on formulas with n variables and de-
scription size m. The crucial point is —and here we use the fact that space
can be reused—that both recursive computations A(ψ�x1=0) and A(ψ�x1=1)
can run in the same space. Specifically, after computing A(ψ�x1=0), the algo-
rithm A needs to retain only the single bit of output from that computation,
and can reuse the rest of the space for the computation of A(ψ�x1=1). Thus,
assuming that A uses O(m) space to write ψ� x1 = b for its recursive calls,
we’ll get that sn,m = sn−1,m +O(m) yielding sn,m = O(n ·m). 2

We now show that L ≤p TQBF for every L ∈ PSPACE. Let M be a
machine that decides L in S(n) space and let x ∈ {0, 1}n. We show how
to construct a quantified Boolean formula ψ of size O(S(n)2) that is true
iff M accepts x. Recall that by Claim 3.4, there is a Boolean formula ϕM,x

such that for every two strings C,C ′ ∈ {0, 1}m (where m = O(S(n)) is the
number of bits require to encode a configuration of M), ϕM (C,C ′) = 1 iff
C and C ′ are valid encodings of two adjacent configurations in the config-
uration graph GM,x. We will use ϕM,x to come up with a polynomial-sized
quantified Boolean formula ψ′ that has polynomially many Boolean vari-
ables bound by quantifiers and additional 2m unquantified Boolean variables
C1, . . . , Cm, C

′
1, . . . , C

′
m (or, equivalently, two variables C,C ′ over {0, 1}m)

such that for every C,C ′ ∈ {0, 1}m, ψ(C,C ′) is true iff C has a directed
path to C ′ in GM,x. By plugging in the values Cstart and Caccept to ψ′ we
get a quantified Boolean formula ψ that is true iff M accepts x.

We define the formula ψ′ inductively. We let ψi(C,C ′) be true if and
only if there is a path of length at most 2i from C to C ′ in GM,x. Note that
ψ′ = ψm and ψ0 = ϕM,x. The crucial observation is that there is a path of

2The above analysis already suffices to show that TQBF is in PSPACE. However, we
can actually show that the algorithm runs in linear space, specifically, O(m + n) space.
Note that algorithm always works with restrictions of the same formula ψ. So it can keep
a global partial assignment array that for each variable xi will contain either 0, 1 or ’q’

(if it’s quantified and not assigned any value). Algorithm A will use this global space for
its operation, where in each call it will find the first quantified variable, set it to 0 and
make the recursive call, then set it to 1 and make the recursive call, and then set it back
to ’q’. We see that A’s space usage is given by the equation sn,m = sn−1,m + O(1) and
hence it uses O(n+m) space.
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length at most 2i from C to C ′ if and only if there is a configuration C ′′

with such that there are paths of length at most 2i−1 path from C to C ′′

and from C ′′ to C ′. Thus the following formula suggests itself: ψi(C,C ′) =
∃C ′′ ψi−1(C,C ′) ∧ ψi−1(C ′′, C).

However, this formula is no good. It implies that ψi’s is twice the size of
ψi−1, and a simple induction shows that ψm has size about 2m, which is too
large. Instead, we use additional quantified variables to save on description
size, using the following more succinct definition for ψi(C,C ′):

∃C ′′∀D1∀D2
(
(D1 = C ∧D2 = C ′)∨ (D1 = C ′ ∧D2 = C ′′)

)
⇒ ψi−1(D1, D2)

(Here, as in Example 3.9, = and ⇒ are convenient shorthands, and can be
replaced by appropriate combinations of the standard Boolean operations
∧ and ¬.) Note that size(ψi) ≤ size(ψi−1) + O(m) and hence size(ψm) ≤
O(m2). We leave it to the reader to verify that the two definitions of ψi are
indeed logically equivalent. As noted above we can convert the final formula
to prenex form in polynomial time. �

3.3.1 Savitch’s theorem.

The astute reader may notice that because the above proof uses the notion
of a configuration graph and does not require this graph to have out-degree
one, it actually yields a stronger statement: that TQBF is not just hard
for PSPACE but in fact even for NPSPACE!. Since TQBF ∈ PSPACE
this implies that PSPACE = NSPACE, which is quite surprising since
our intuition is that the corresponding classes for time (P and NP) are
different. In fact, using the ideas of the above proof, one can obtain the
following theorem:

Theorem 3.12 (Savitch [Sav70])
For any space-constructible S : N→ N with S(n) ≥ logn, NSPACE(S(n)) ⊆
SPACE(S(n)2)

We remark that the running time of the algorithm obtained from this
theorem can be as high as 2Ω(s(n)2).
Proof: The proof closely follows the proof that TQBF is PSPACE-complete.
Let L ∈ NSPACE(S(n)) be a language decided by a TM M such that
for every x ∈ {0, 1}n, the configuration graph G = GM,x has at most
M = 2O(S(n)) vertices. We describe a recursive procedure reach?(u, v, i)
that returns “YES” if there is a path from u to v of length at most 2i

and “NO” otherwise. Note that reach?(s, t, d logM e) is “YES” iff t is
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reachable from s. Again, the main observation is that there is a path
from u to v of length at most 2i iff there’s a vertex z with paths from
u to z and from z to v of lengths at most 2i−1. Thus, on input u, v, i,
reach? will enumerate over all vertices z (at a cost of O(logM) space)
and output “YES” if it finds one z such that reach?(u, z, i − 1)=“YES”
and reach?(z, v, i− 1)=“YES”. Once again, the crucial observation is that
although the algorithm makes n recursive invocations, it can reuse the space
in each of these invocations. Thus, if we let sM,i be the space complexity of
reach?(u, v, i) on an M -vertex graph we get that sM,i = sM,i−1 +O(logM)
and thus sM,logM = O(log2M) = O(S(n)2). �

3.3.2 The essence of PSPACE: optimum strategies for game-
playing.

Recall that the central feature of NP-complete problems is that a yes an-
swer has a short certificate. The analogous unifying concept for PSPACE-
complete problems seems to be that of a winning strategy for a 2-player
game with perfect information. A good example of such a game is Chess:
two players alternately make moves, and the moves are made on a board
visible to both. Thus moves have no hidden side effects; hence the term
“perfect information.” What does it mean for a player to have a “winning
strategy?” The first player has a winning strategy iff there is a 1st move
for player 1 such that for every possible 1st move of player 2 there is a 2nd
move of player 1 such that.... (and so on) such that at the end player 1
wins. Thus deciding whether or not the first player has a winning strategy
seems to require searching the tree of all possible moves. This is reminiscent
of NP, for which we also seem to require exponential search. But the cru-
cial difference is the lack of a short “certificate” for the statement “Player
1 has a winning strategy,” since the only certificate we can think of is the
winning strategy itself, which as noticed, requires exponentially many bits
to even describe. Thus we seem to be dealing with a fundamentally different
phenomenon than the one captured by NP.

The interplay of existential and universal quantifiers in the description
of the the winning strategy motivates us to invent the following game.

Example 3.13 (The QBF game)
The “board” for the QBF game is a Boolean formula ϕ whose free variables
are x1, x2, . . . , x2n. The two players alternately make moves, which involve
picking values for x1, x2, . . . , in order. Thus player 1 will pick values for the

Web draft 2006-09-28 18:09



DRAFT

74 3.3. PSPACE COMPLETENESS

odd-numbered variables x1, x3, x5, . . . (in that order) and player 2 will pick
values for the even-numbered variables x2, x4, x6, . . . ,. We say player 1 wins
iff at the end ϕ becomes true.

Clearly, player 1 has a winning strategy iff

∃x1∀x2∃x3∀x4 · · · ∀x2nϕ(x1, x2, . . . , x2n),

namely, iff this quantified boolean formula is true.
Thus deciding whether player 1 has a winning strategy for a given board

in the QBF game is PSPACE-complete.

At this point, the reader is probably thinking of familiar games such as
Chess, Go, Checkers etc. and wondering whether complexity theory may
help differentiate between them—for example, to justify the common intu-
ition that Go is more difficult than Chess. Unfortunately, formalizing these
issues in terms of asymptotic complexity is tricky because these are finite
games, and as far as the existence of a winning strategy is concerned, there
are at most three choices: Player 1 has has a winning strategy, Player 2 does,
or neither does (they can play to a draw). However, one can study general-
izations of these games to an n×n board where n is arbitrarily large —this
may involve stretching the rules of the game since the definition of chess
seems tailored to an 8 × 8 board— and then complexity theory can indeed
by applied. For most common games, including chess, determining which
player has a winning strategy in the n × n version is PSPACE-complete
(see [?]or [?]). Note that if NP 6= PSPACE then in general there is no
short certificate for exhibiting that either player in the TQBF game has a
winning strategy, which is alluded to in Evens and Tarjan’s quote at the
start of the chapter.

Proving PSPACE-completeness of games may seem like a frivolous pur-
suit, but similar ideas lead to PSPACE-completeness of some practical
problems. Usually, these involve repeated moves that are in turn coun-
teracted by an adversary. For instance, many computational problems of
robotics are PSPACE-complete: the “player” is the robot and the “adver-
sary” is the environment. (Treating the environment as an adversary may
appear unduly pessimistic; but unfortunately even assuming a benign or “in-
different” environment still leaves us with a PSPACE-complete problem;
see the Chapter notes.)
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3.4 NL completeness

Now we consider problems that form the “essence” of non-deterministic log-
arithmic space computation, in other words, problems that are complete for
NL. What kind of reduction should we use? We cannot use the polynomial-
time reduction since NL ⊆ P. Thus every language in NL is polynomial-
time reducible to the trivial language {1} (reduction: “decide using polyno-
mial time whether or not the input is in the NL language, and then map
to 1 or 0 accordingly”). Intuitively, such trivial languages should not be the
“hardest” languages of NL.

When choosing the type of reduction to define completeness for a com-
plexity class, we must keep in mind the complexity phenomenon we seek to
understand. In this case, the complexity question is whether or not NL = L.
The reduction should not be more powerful than the weaker class, which is
L. For this reason we use logspace reductions —for further, justification, see
part (b) of Lemma 3.15 below). To define such reductions we must tackle the
tricky issue that a reduction typically maps instances of size n to instances
of size at least n, and so a logspace machine computing such a reduction
does not have even the memory to write down its output. The way out
is to require that the reduction should be able to compute any desired bit
of the output in logarithmic space. In other words, if the reduction were
given a separate output tape, it could in principle write out the entire new
instance by first computing the first bit, then the second bit, and so on.
(Many texts define such reductions using a “write-once” output tape.) The
formal definition is as follows.
Definition 3.14 (logspace reduction)
Let f :{0, 1}∗ → {0, 1}∗ be a polynomially-bounded function (i.e., there’s a
constant c > 0 such that f(x) ≤ |x|c for every x ∈ {0, 1}∗). We say that f
is implicitly logspace computable, if the languages Lf = {〈x, i〉 | f(x)i = 1}
and L′f = {〈x, i〉 | i ≤ |f(x)|} are in L.

Informally, we can think of a single O(log |x|)-space machine that given
input (x, i) outputs f(x)|i provided i ≤ |f(x)|.

Language A is logspace reducible to language B, denoted A ≤l B, if there
is a function f :{0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and
x ∈ A iff f(x) ∈ B for every x ∈ {0, 1}∗.

Logspace reducibility satisfies usual properties one expects.

Lemma 3.15
(a) If A ≤l B and B ≤l C then A ≤l C. (b) If A ≤l B and B ∈ L then
A ∈ L.
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Proof: We prove that if f, g are two functions that are logspace implicitly
computable, then so is the function h where h(x) = g(f(x)). Then part (a)
of the Lemma follows by letting f be the reduction from A to B and g be
the reduction from B to C. Part (b) follows by letting f be the reduction
from A to B and g be the characteristic function of B (i.e. g(y) = 1 iff
y ∈ B).

So let Mf ,Mg be the logspace machines that compute the mappings
x, i 7→ f(x)i and y, j 7→ g(y)j respectively. We construct a machine Mh

that computes the mapping x, j 7→ g(f(x))j , in other words, given input
x, j outputs g(f(x))j provided j ≤ |g(f(x))|. Machine Mh will pretend that
it has an additional (fictitious) input tape on which f(x) is written, and
it is merely simulating Mg on this input (see Figure 3.3). Of course, the
true input tape has x, j written on it. To maintain its fiction, Mh always
maintains on its worktape the index, say i, of the cell on the fictitious
tape that Mg is currently reading; this requires only log |f(x)| space. To
compute for one step, Mg needs to know the contents of this cell, in other
words, f(x)|i. At this point Mh temporarily suspends its simulation of Mg

(copying the contents of Mg’s worktape to a safe place on its own worktape)
and invokes Mf on inputs x, i to get f(x)|i. Then it resumes its simulation
of Mg using this bit. The total space Mh uses is O(log |g(f(x))| + s(|x|) +
s′(|f(x)|)) = O(log |x|). �

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

read only headread/write head

Mf

Work
tape

Output
tape

Virtual
input
tape

Mg

Figure 3.3: Composition of two implicitly logspace computable functions f, g. The
machine Mg uses calls to f to implement a “virtual input tape”. The overall space used
is the space of Mf + the space of Mg + O(log |f(x)|) = O(log|x|).

We say that A is NL-complete if it is in NL and for every B ∈ NL,
A ≤l B. Note that an NL-complete language is in L iff NL =L.

Web draft 2006-09-28 18:09



DRAFT

3.4. NL COMPLETENESS 77

Theorem 3.16
PATH is NL-complete.

Proof: We have already seen that PATH is in NL. Let L be any language
in NL and M be a machine that decides it in space O(log n). We describe a
logspace implicitly computable function f that reduces L to PATH. For any
input x of size n, f(x) will be the configuration graph GM,x whose nodes are
all possible 2O(logn) configurations of the machine on input x, along with the
start configuration Cstart and the accepting configuration Cacc. In this graph
there is a path from Cstart to Cacc iff M accepts x. The graph is represented
as usual by an adjacency matrix that contain 1 in the 〈C,C ′〉th position
(i.e., in the Cth row and C ′th column if we identify the configurations with
numbers between 0 and 2O(logn)) iff there’s an edge C from C ′ in GM,x. To
finish the proof we need to show that this adjacency matrix can be computed
by a logspace reduction. This is easy since given a 〈C,C ′〉 a deterministic
machine can in space O(|C| + |C ′|) = O(log |x|) examine C,C ′ and check
whether C ′ is one of the (at most two) configurations that can follow C
according to the transition function of M . �

3.4.1 Certificate definition of NL: read-once certificates

In Chapter 2 we gave two equivalent definitions of NP— one using non-
deterministic TM’s and another using the notion of a certificate. The idea
was that the nondeterministic choices of the NDTM that lead it to accept
can be viewed as a “certificate” that the input is in the language, and vice
versa. We can give a certificate-based definition also for NL, but only after
addressing one tricky issue: a certificate may be polynomially long, and a
logspace machine does not have the space to store it. Thus, the certificate-
based definition of NL assumes that the logspace machine on a separate
read-only tape. Furthermore, on each step of the machine the machine’s
head on that tape can either stay in place or move to the right. In particular,
it cannot reread any bit to the left of where the head currently is. (For this
reason the this kind of tape is called “read once”.) It is easily seen that the
following is an alternative definition of NL (see also Figure 3.4):

Definition 3.17 (NL- alternative definition.)
A language L is in NL if there exists a deterministic TM M and a with an
additional special read-once input tape polynomial p : N→ N such that for
every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1
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Input
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Output
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read only head

read/write head
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Figure 3.4: Certificate view of NL. The certificate for input x is placed on a special
“read-once” tape on which the machine’s head can never move to the left.

where by M(x, u) we denote the output of M where x is placed on its input
tape and u is placed on its special read-once tape, and M uses at most
O(log |x|) space on its read/write tapes for every input x.

3.4.2 NL = coNL

Consider the problem PATH, i.e., the complement of PATH. A decision
procedure for this language must accept when there is no path from s to
t in the graph. Unlike in the case of PATH, there is no natural certificate
for the non-existence of a path from s to t and thus it seemed “obvious” to
researchers that PATH 6∈ NL, until the discovery of the following theorem
in the 1980s proved them wrong.

Theorem 3.18 (Immerman-Szlepcsenyi)
PATH ∈ NL.

Proof: As we saw in Section 3.4.1, we need to show an O(log n)-space
algorithm A such that for every n-vertex graph G and vertices s and t,
there exists a polynomial certificate u such that A(〈G, s, t〉, u) = 1 if and
only if t is not reachable from u in G, where A has only read-once access to
u.

What can we certify to an O(log n)-space algorithm? Let Ci be the set
of vertices that are reachable from s in G within at most i steps. For every
i ∈ [n] and vertex v, we can easily certify that v is in Ci. The certificate
simply contains the labels v0, v1, . . . , vk of the vertices along the path from
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s to v (we can assume without loss of generality that vertices are labeled
by the numbers 1 to n and hence the labels can be described by log n bit
strings). The algorithm can check the certificate using read-once access by
verifying that (1) v0 = s, (2) for j > 0, there is an edge from vj−1 to vj ,
(3) vk = v and (using a counter) that (4) the path ends within at most i
steps. Note that the certificate is indeed of size at most polynomial in n.

Our algorithm uses the following two procedures:

1. Procedure to certify that a vertex v is not in Ci given the size of Ci.

2. Procedure to certify that |Ci| = c for some number c, given the size of
Ci−1.

Since C0 = {s} and Cn contains all the vertices reachable from s, we
can apply the second procedure iteratively to learn the sizes of the sets
C1, . . . , Cn, and then use the first procedure to certify that t 6∈ Cn.

Certifying that v is not in Ci, given |Ci|. The certificate is simply the
list of certificates that u is in Ci for every u ∈ Ci sorted in ascending order
of labels (recall that we identify labels with numbers in [n]). The algorithm
checks that (1) each certificate is valid, (2) the label of a vertex u for which
a certificate is given is indeed larger than the label of the previous vertex,
(3) no certificate is provided for v, and (4) the total number of certificates
provided is exactly |Ci|. If v 6∈ Ci then the algorithm will accept the above
certificate, but if v ∈ Ci there will not exist |Ci| certificates that vertices
u1 < u2 < . . . < u|Ci| are in Ci where uj 6= v for every j.

Certifying that v is not in Ci, given |Ci−1|. Before showing how we
certify that |Ci| = c given |Ci−1|, we show how to certify that v 6∈ Ci with
this information. This is very similar to the above procedure: the certificate
is the list of |Ci−1| certificates that u ∈ Ci−1 for every u ∈ Ci−1 in ascending
order. The algorithm checks everything as before except that in step (3) it
verifies that no certificate is given for v or for a neighbor of v. Since v ∈ Ci
if and only if there exists u ∈ Ci−1 such that u = v or u is a neighbor of v
in G, the procedure will not accept a false certificate by the same reasons
as above.

Certifying that |Ci| = c given |Ci−1|. For every vertex v, if v ∈ Ci then
there is a certificate for this fact, and by the above procedure, given |Ci−1|,
if v 6∈ Ci then there is a certificate for this fact as well. The certificate
that |Ci| = c will consist of n certificates for each of the vertices 1 to n in
ascending order. For every vertex u, there will be an appropriate certificate
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depending on whether u ∈ Ci or not. The algorithm will verify all the
certificate and count the number of certificate that a vertex is in Ci. It
accepts if this count is equal to c. �

Using the notion of the configuration graph we can modify the proof of
Theorem 3.18 to prove the following:

Corollary 3.19
For every space constructible S(n) > log n, NSPACE(S(n)) = coNSPACE(S(n)).

Our understanding of space-bounded complexity.
The following is our understanding of space-bounded complexity.

DTIME(s(n))⊆SPACE(s(n))⊆NSPACE(s(n))=coNSPACE(s(n))⊆DTIME(2O(s(n))).

None of the inclusions are known to be strict though we believe they all are.

Chapter notes and history

The concept of space complexity had already been explored in the 1960s;
in particular, Savitch’s theorem predates the Cook-Levin theorem. Stock-
meyer and Meyer proved the PSPACE-completeness of TQBF soon after
Cook’s paper appeared. A few years later Even and Tarjan pointed out
the connection to game-playing and proved the PSPACE-completeness of
a game called Generalized Hex. Papadimitriou’s book gives a detailed ac-
count of PSPACE-completeness. He also shows PSPACE-completeness
of several Games against nature first defined in [Pap85]. Unlike the TQBF
game, where one player is Existential and the other Universal, here the
second player chooses moves randomly. The intention is to model games
played against nature—where “nature” could mean not just weather for ex-
ample, but also large systems such as the stock market that are presumably
“indifferent” to the fate of individuals. Papadimitriou gives an alternative
characterization PSPACE using such games. A stronger result, namely, a
characterization of PSPACE using interactive proofs, is described in Chap-
ter 9.

Exercises

§1 Show that SPACE(S(n)) = SPACE(0) when S(n) = log log n.
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§2 Prove the existence of a universal TM for space bounded computation
(analogously to the deterministic universal TM of Theorem 1.6). That
is, prove that there exists a a TM SU such that for every string α, and
input x, if the TM Mα represented by α halts on x before using t cells
of its work tapes then SU(α, t, x) = Mα(x), and moreover, SU uses
at most Ct cells of its work tapes, where C is a constant depending
only on Mα. (Despite the fact that the bound here is better than the
bound of Theorem 1.6, the proof of this statement is actually easier
than the proof of Theorem 1.6.)

§3 Prove that the language SPACETM of (2) is PSPACE-complete.

§4 Show that the following language is NL-complete:

{ xGy : G is a strongly connected digraph} .

§5 Show that 2SAT is in NL.

§6 Suppose we define NP-completeness using logspace reductions instead
of polynomial-time reductions. Show (using the proof of the Cook-
Levin Theorem) that SAT and 3SAT continue to be NP-complete un-
der this new definition. Conclude that SAT ∈ L iff NP = L.

§7 Show that TQBF is complete for PSPACE also under logspace reduc-
tions.

§8 Show that in every finite 2-person game with perfect information (by
finite we mean that there is an a priori upperbound n on the number
of moves after which the game is over and one of the two players is
declared the victor —there are no draws) one of the two players has a
winning strategy.

§9 Define polyL to be ∪c>0SPACE(logc n). Steve’s Class SC (named in
honor of Steve Cook) is defined to be the set of languages that can be
decided by deterministic machines that run in polynomial time and
logc n space for some c > 0.

It is an open problem whether PATH ∈ SC. Why does Savitch’s The-
orem not resolve this question?

Is SC the same as polyL ∩P?
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Chapter 4

Diagonalization

“..the relativized P =?NP question has a positive answer for
some oracles and a negative answer for other oracles. We feel
that this is further evidence of the difficulty of the P =?NP
question.”
Baker, Gill, Solovay. [BGS75]

One basic goal in complexity theory is to separate interesting complexity
classes. To separate two complexity classes we need to exhibit a machine in
one class that gives a different answer on some input from every machine in
the other class. This chapter describes diagonalization, essentially the only
general technique known for constructing such a machine. The first use of
diagonalization is to prove hierarchy theorems, according to which giving
Turing machines more computational resources (such as time, space, and
non-determinism) allows them to solve a strictly larger number of problems.
We will also use it to show that if P 6= NP then there exist problems that
are neither in P nor NP-complete.

Though diagonalization led to some of these early successes of complex-
ity theory, researchers realized in the 1970s that diagonalization alone may
not resolve P versus NP and other interesting questions; see Section 4.5.
Interestingly, the limits of diagonalization are proved using diagonalization.

This last result caused diagonalization to go out of favor for many years.
But some recent results (see Section 17.3 for an example) use diagonalization
as a key component. Thus future complexity theorists should master this
simple idea before going on to anything fancier!
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Machines as strings and the universal TM. The one common tool
used in all diagonalization proofs is the representation of TMs by strings,
such that given a string x a universal TM can simulate the machine Mx

represented by x with a small (i.e. at most logarithmic) overhead, see The-
orems 1.6, ?? and ??. Recall that we assume that every string x represents
some machine and every machine is represented by infinitely many strings.
For i ∈ N, we will also use the notation Mi for the machine represented by
the string that is the binary expansion of the number i.

4.1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more
computation time strictly increases the class of languages that they can
decide. Recall that a function f :N → N is a time-constructible function if
there is a Turing machine that, given the input 1n, writes down 1f(n) on its
tape in O(f(n)) time. Usual functions like n log n or n2 satisfy this property,
and we will restrict attention to running times that are time-constructible.

Theorem 4.1
If f, g are time-constructible functions satisfying f(n) log f(n) = o(g(n)),
then

DTIME(f(n)) ( DTIME(g(n)) (1)

Proof: To showcase the essential idea of the proof of Theorem 4.1, we prove
the simpler statement DTIME(n)  DTIME(n1.5).

Consider the following Turing Machine D: “On input x, run for |x|1.4
steps the Universal TM U of Theorem 1.6 to simulate the execution of Mx

on x. If Mx outputs an answer in this time, namely, Mx(x) ∈ {0, 1} then
output the opposite answer (i.e., output 1−Mx(x)). Else output 0.” Here
Mx is the machine represented by the string x.

By definition, D halts within n1.4 steps and hence the language L decided
by D is in DTIME(n1.5). We claim that L 6∈ DTIME(n).

For contradiction’s sake assume that some TM M decides L but runs in
time cn on inputs of size n. Then every x ∈ {0, 1}∗, M(x) = D(x).

The time to simulate M by the universal Turing machine U on every
input x is at most c′c|x| log |x| for some constant c′ (depending on the al-
phabet size and number of tapes and states of M , but independent of |x|).
There exists a number n0 such that for every n ≥ n0, n1.4 > c′cn log n. Let
x be a string representing the machine M of length at least n0 (there exists
such a string since M is represented by infinitely many strings). Then, D(x)
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will obtain the output M(x) within |x|1.4 steps, but by definition of D, we
have D(x) = 1−M(x) 6= M(x). Thus we have derived a contradiction. �

Figure 4.1 shows why this method is called “diagonalization”.

Mx1

x1 x2 x3 ......

Mx2

Mx3

....

0 1 1 1

1 1 0

0 1 0

0

1

D

Figure 4.1: If we order all the strings in {0, 1}∗ as x1, x2, . . . and have a table that
contains in its 〈i, j〉th location the value of the machine represented by xi on the input xi,
then on large enough inputs, the diagonalizer D from the proof of Theorem 4.1 computes
the function that is the negation of this table’s diagonal.

4.2 Space Hierarchy Theorem

The space hierarchy theorem is completely analogous to the time hierarchy
theorem. One restricts attention to space-constructible functions, which are
functions f :N→ N for which there is a machine that, given any n-bit input,
constructs f(n) in space O(f(n)). The proof of the next theorem is com-
pletely analogous to that of Theorem 4.1. (The theorem does not have the
log f(n) factor because the universal machine for space-bounded computa-
tion incurs only a constant factor overhead in space; see Theorem ??.)

Theorem 4.2
If f, g are space-constructible functions satisfying f(n) = o(g(n)), then

SPACE(f(n)) ( SPACE(g(n)) (2)
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4.3 Nondeterministic Time Hierarchy Theorem

The following is the hierarchy theorem for non-deterministic Turing ma-
chines.

Theorem 4.3
If f, g are time constructible functions satisfying f(n+ 1) = o(g(n)), then

NTIME(f(n))  NTIME(g(n)) (3)

Proof: Again, we just showcase the main idea by proving NTIME(n)  
NTIME(n1.5). The technique from the previous section does not directly
apply, since it has to determine the answer of a TM in order to flip it. To
determine the answer of a nondeterminisitic that runs in O(n) time, we
may need to examine as many as 2Ω(n) possible strings of non-deterministic
choices. So it is unclear that how the “diagonalizer” machine can determine
in O(n1.5) (or even O(n100)) time how to flip this answer. Instead we in-
troduce a technique called lazy diagonalization, which is only guaranteed to
flip the answer on some input in a fairly large range.

For every i ∈ N we denote by Mi the non-deterministic TM represented
by i’s binary expansion according to the universal NDTM NU (see The-
orem ??). We define the function f : N → N as follows: f(1) = 2 and
f(i+ 1) = 2f(i)1.2 . Note that given n, we can can easily find in O(n1.5) time
the number i such that n is sandwiched between f(i) and f(i + 1). Our
diagonalizing machine D will try to flip the answer of Mi on some input in
the set {1n : f(i) < n ≤ f(i+ 1)}. It is defined as follows:

“On input x, if x 6∈ 1∗, reject. If x = 1n, then compute i such that
f(i) < n ≤ f(i+ 1) and

1. If f(i) < n < f(i + 1) then simulate Mi on input 1n+1 using nonde-
terminism in n1.1 time and output its answer. (If the simulation takes
more than that then halt and accept.)

2. If n = f(i+ 1), accept 1n iff Mi rejects 1f(i)+1 in (f(i) + 1)1.5 time.”

Note that Part 2 requires going through all possible exp((f(i) + 1)1.1)
branches of Mi on input 1f(i)+1, but that is fine since the input size f(i+1)
is 2f(i)1.2 . We conclude that NDTM D runs in O(n1.5) time. Let L be the
language decided by D. We claim that L 6∈ NTIME(n).

Indeed, suppose for the sake of contradiction that L is decided by an
NDTM M running in cn steps (for some constant c). Since each NDTM is
represented by infinitely many strings, we can find i large enough such that
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M = Mi and on inputs of length n ≥ f(i), Mi can be simulated in less than
n1.1 steps. Thus the two steps in the description of D ensure respectively
that

If f(i) < n < f(i+ 1), then D(1n) = Mi(1n+1) (4)
D(1f(i+1)) 6= Mi(1f(i)+1) (5)

see Figure 4.2.

D(1f(i)+1) D(1f(i)+2) .... D(1f(i+1))

Mi(1
f(i)+1) Mi(1

f(i)+2) .... Mi(1
f(i+1))

= = = = = = = = =

=

Figure 4.2: The values of D and Mi on inputs 1n for n ∈ (f(i), f(i + 1)]. Full lines
denote equality by the design of D, dashed lines denote equality by the assumption that
D(x) = Mi(x) for every x, and the dashed arrow denotes inequality by the design of D.
Note that together all these relations lead to contradiction.

By our assumptionMi andD agree on all inputs 1n for n ∈ (f(i), f(i+1)].
Together with (4), this implies that D(1f(i+1)) = Mi(1f(i)+1), contradict-
ing(5). �

4.4 Ladner’s Theorem: Existence of NP-intermediate
problems.

One of the striking aspects of NP-completeness is the surprisingly large
number of NP-problems –including some that were studied for many decades—
that turned out to be NP-complete. This phenomenon suggests a bold con-
jecture: every problem in NP is either in P or NP complete. We show
that if P 6= NP then this is false —there is a language L ∈ NP \ P that
is not NP-complete. (If P = NP then the conjecture is trivially true but
uninteresting.) The rest of this section proves this.
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Theorem 4.4 (Ladner’s Theorem [?])
Suppose that P 6= NP. Then there exists a language L ∈ NP \ P that is
not NP-complete.

Proof: If P 6= NP then we know at least one language in NP\P: namely,
the NP-complete language SAT. Consider the language SATH of length n
satisfiable formulae that are padded with nH(n) 1’s for some polynomial-time
computable functionH : N→ N (i.e., SATH =

{
ψ01n

H(n)
: ψ ∈ SAT and n = |ψ|

}
).

Consider two possibilities:

(a) H(n) is at most some constant c for every n. In this case SATH is
simply SAT with a polynomial amount of “padding.” Thus, SATH is
also NP-complete and is not in P if P 6= NP.

(b) H(n) tends to infinity with n, and thus the padding is of superpolyno-
mial size. In this case, we claim that SATH cannot be NP-complete.
Indeed, if there is a O(ni)-time reduction f from SAT to SATH then
such a reduction reduces the satisfiability of SAT instances of length
n to instances of SATH of length O(ni), which must have the form
ψ01|ψ|

H(|ψ|)
, where |ψ| + |ψ|H(|ψ|) = O(ni), and hence |ψ| = o(n). In

other words, we have a polynomial-time reduction from SAT instances
of length n to SAT instances of length o(n), which implies SAT can
be solved in polynomial time. (The algorithm consists of applying the
reduction again and again, reducing the size of the instances each time
until the instance is of size O(1) and can be solved in O(1) time by
brute force) This is a contradiction to the assumption P 6= NP.

The proof of the Theorem uses a language SATH for a function H that
in some senses combines the two cases above. This function tends to infinity
with n, so that SATH is not NP-complete as in Case (b), but grows slowly
enough to assure SATH 6∈ P as in Case (a). Function H is defined as follows:

H(n) is the smallest number i < log log n such that for every
x ∈ {0, 1}∗ with |x| ≤ log n,

Mi halts on x within i|x|i steps and Mi outputs 1 iff x ∈ SATH

where Mi is the machine represented by the binary expansion of
i according to the representation scheme of the universal Turing
machine U of Theorem 1.6. If there is no such i then we let
H(n) = log log n.
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Notice, this is implicitly a recursive definition since the definition ofH de-
pends on SATH , but a moment’s thought shows that H is well-defined since
H(n) determines membership in SATH of strings whose length is greater
than n, and the definition of H(n) only relies upon checking the status of
strings of length at most log n.

There is a trivial algorithm to compute H(n) in O(n3) time. After
all, we only need to (1) compute H(k) for every k ≤ log n, (2) simu-
late at most log log n machines for every input of length at most log n for
log log n(log n)log logn = o(n) steps, and (3) compute SAT on all the inputs
of length at most log n.

Now we have the following two claims.

claim 1: SATH is not in P. Suppose, for the sake of contradiction, that
there is a machine M solving SATH in at most cnc steps. Since M is repre-
sented by infinitely many strings, there is a number i > c such that M = Mi.
By the definition of H(n) this implies that for n > 22i , H(n) ≤ i. But this
means that for all sufficiently large input lengths, SATH is simply the lan-
guage SAT padded with a polynomial (i.e., ni) number of 1’s, and so cannot
be in P unless P = NP.

claim 2: SATH is not NP-complete. As in Case (b), it suffices to show that
H(n) tends to infinity with n. We prove the equivalent statement that for
every integer i, there are only finitely many n’s such that H(n) = i: since
SATH 6∈ P, for each i we know that there is an input x such that given i|x|i
time, Mi gives the incorrect answer to whether or not x ∈ SATH . Then the
definition of H ensures that for every n > 2|x|, H(x) 6= i.

�

Remark 4.5
We do not know of a natural decision problem that, assuming NP 6= P, is
proven to be in NP \ P but not NP-complete, and there are remarkably
few candidates for such languages. However, there are a few fascinating
examples for languages not known to be either in P nor NP-complete. Two
such examples are the Factoring and Graph isomorphism languages (see
Example 2.3). No polynomial-time algorithm is currently known for these
languages, and there is some evidence that they are not NP complete (see
Chapter 9).
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4.5 Oracle machines and the limits of diagonaliza-
tion?

Quantifying the limits of “diagonalization” is not easy. Certainly, the di-
agonalization in Sections 4.3 and 4.4 seems more clever than the one in
Section 4.1 or the one that proves the undecidability of the halting problem.

For concreteness, let us say that “diagonalization” is any technique that
relies upon the following properties of Turing machines

1. The existence of an effective representation of Turing machines by
strings.

2. The ability of one TM to simulate any another without much overhead
in running time or space.

Any argument that only uses these facts is treating machines as black-
boxes: the machine’s internal workings do not matter. We show a general
way to define a variant of Turing Machines called oracle Turing Machines
that still satisfy the above two properties. However, one way of defining the
variants results in TMs for which P = NP, whereas the other way results
in TMs for which P 6= NP. We conclude that to resolve P versus NP we
need to use some other property besides the above two.

Oracle machines will be used elsewhere in this book in other contexts.
These are machines that are given access to an “oracle” that can magically
solve the decision problem for some language O ⊆ {0, 1}∗. The machine has
a special oracle tape on which it can write a string q ∈ {0, 1}∗ on a and in
one step gets an answer to a query of the form “Is q in O?”. This can be
repeated arbitrarily often with different queries. If O is a difficult language
that cannot be decided in polynomial time then this oracle gives an added
power to the TM.

Definition 4.6 (Oracle Turing Machines)
An oracle Turing machine is a TM M that has a special read/write tape we
call M ’s oracle tape and three special states qquery, qyes, qno. To execute M ,
we specify in addition to the input a language O ⊆ {0, 1}∗ that is used as
the oracle for M . Whenever during the execution M enters the state qquery,
the machine moves into the state qyes if q ∈ O and qno if q 6∈ O, where q
denotes the contents of the special oracle tape. Note that, regardless of the
choice of O, a membership query to O counts only as a single computational
step. If M is an oracle machine, O ⊆ {0, 1}∗ a language, and x ∈ {0, 1}∗,
then we denote the output of M on input x and with oracle O by MO(x).

Nondeterministic oracle TMs are defined similarly.
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Definition 4.7
For every O ⊆ {0, 1}∗, PO is the set of languages decided by a polynomial-
time deterministic TM with oracle access to O and NPO is the set of lan-
guages decided by a polynomial-time non-deterministic TM with oracle ac-
cess to O.

To illustrate these definitions we show a few simple claims.

Claim 4.8
1. Let SAT denote the language of unsatisfiable formulae. Then SAT ∈

PSAT.

2. Let O ∈ P. Then PO = P.

3. Let TQBF be the PSPACE-complete language of true quantified
Boolean formulae (see Section 3.3). Then PTQBF = NPTQBF = PSPACE.

Proof:

1. Given oracle access to SAT, to decide whether a formula ϕ is in SAT,
the machine asks the oracle if ϕ ∈ SAT, and then gives the opposite
answer as its output.

2. Allowing an oracle can only help compute more languages and so P ⊆
PO. If O ∈ P then it is redundant as an oracle, since we can transform
any polynomial-time oracle TM using O into a standard (no oracle)
by simply replacing each oracle call with the computation of O. Thus
PO ⊆ P.

3. Because TQBF is PSPACE-complete, we can decide every language in
PSPACE using one oracle call to it, and hence PSPACE ⊆ PTQBF.
Note also that clearly PTQBF ⊆ NPTQBF. If M is a non-deterministic
polynomial-time oracle TM, we can simulate its execution with a
TQBF oracle in polynomial space: it only requires polynomial space to
enumerate all of M ’s non-deterministic choices and to solve the TQBF
oracle queries. Thus, PSPACE ⊆ PTQBF ⊆ NPTQBF ⊆ PSPACE.

�

The key fact to note about oracle TMs is the following: Regardless of
what oracle O is, the set of all oracle TM’s with access to oracle O satisfy
Properties 1 and 2 above. The reason is that we can represent TMs with
oracle O as strings, and we have a universal TM OU that, using access
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to O, can simulate every such machine with logarithmic overhead, just as
Theorem 1.6 shows for non-oracle machines. Indeed, we can prove this in
exactly the same way of Theorem 1.6, except that whenever in the simulation
M makes an oracle query, OU forwards the query to its own oracle.

Thus any result about TMs or complexity classes that uses only Prop-
erties 1 and 2 above also holds for the set of all TMs with oracle O. Such
results are called relativizing results.

All of the results on universal Turing machines and the diagonalizations
results in this chapter are of this type.

The next theorem implies that whichever of P = NP or P 6= NP is
true, it cannot be a relativizing result.

Theorem 4.9 (Baker, Gill, Solovay [BGS75])
There exist oracles A,B such that PA = NPA and PB 6= NPB.

Proof: As seen in Claim 4.8, we can use A = TQBF. Now we construct B.
For any language B, let UB be the unary language

UB = {1n : some string of length n is in B} .

For every oracleB, the language UB is clearly in NPB, since a non-deterministic
TM can make a non-deterministic guess for the string x ∈ {0, 1}n such that
x ∈ B. Below we construct an oracle B such that UB 6∈ PB, implying that
PB 6= NPB.

Construction of B: For every i, we let Mi be the oracle TM represented
by the binary expansion of i. We construct B in stages, where stage i ensures
that MB

i does not decide UB in 2n/10 time. Initially we let B be empty, and
gradually add strings to it. Each stage determines the status (i.e., whether
or not they will ultimately be in B) of a finite number of strings.

Stage i: So far, we have declared for a finite number of strings whether
or not they are in B. Choose n large enough so that it exceeds the length
of any such string, and run Mi on input 1n for 2n/10 steps. Whenever
it queries the oracle about strings whose status has been determined, we
answer consistently. When it queries strings whose status is undetermined,
we declare that the string is not in B. Note that until this point, we have
not declared that B has any string of length n. Now we make sure that
if Mi halts within 2n/10 steps then its answer on 1n is incorrect. If Mi

accepts, we declare that all strings of length n are not in B, thus ensuring
1n 6∈ Bu. If Mi rejects, we pick a string of length n that it has not queried
(such a string exists because Mi made at most 2n/10 queries) and declare
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that it is in B, thus ensuring 1n ∈ Bu. In either case, the answer of Mi is
incorrect. Our construction ensures that UB is not in PB (and in fact not
in DTIMEB(f(n)) for every f(n) = o(2n)). �

Let us now answer our original question: Can diagonalization or any
simulation method resolve P vs NP? Answer: Possibly, but it has to use
some fact about TMs that does not hold in presence of oracles. Such facts
are termed nonrelativizing and we will later see examples of such facts.
However, a simple one was already encountered in Chapter ??: the Cook-
Levin theorem! It is not true for a general oracle A that every language
L ∈ NPA is polynomial-time reducible to 3SAT (see Exercise 6). Note
however that nonrelativizing facts are necessary, not sufficient. It is an open
question how to use known nonrelativizing facts in resolving P vs NP (and
many interesting complexity theoretic conjectures).

Whenever we prove a complexity-theoretic fact, it is useful to check
whether or not it can be proved using relativizing techniques. The reader
should check that Savitch’s theorem (Corollary ??) and Theorem 3.18 do
relativize.

Later in the book we see other attempts to separate complexity classes,
and we will also try to quantify —using complexity theory itself!—why they
do not work for the P versus NP question.

What have we learned?

• Diagonalization uses the representation of Turing machines as strings to sep-
arate complexity classes.

• We can use it to show that giving a TM more of the same type of resource
(time, non-determinism, space) allows it to solve more problems, and to show
that, assuming NP 6= P, NP has problems neither in P nor NP-complete.

• Results proven solely using diagonalization relativize in the sense that they
hold also for TM’s with oracle access to O, for every oracle O ⊆ {0, 1}∗. We
can use this to show the limitations of such methods. In particular, relativizing
methods alone cannot resolve the P vs. NP question.

Chapter notes and history

Georg Cantor invented diagonalization in the 19th century to show that the
set of real numbers is uncountable. Kurt Gödel used a similar technique in
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his proof of the Incompleteness Theorem. Computer science undergraduates
often encounter diagonalization when they are taught the undecidabilty of
the Halting Problem.

The time hierarchy theorem is from Hartmanis and Stearns’ pioneering
paper [HS65]. The space hierarchy theorem is from Stearns, Hartmanis,
and Lewis [SHL65]. The nondeterministic time hierarchy theorem is from
Cook [Coo73], though the simple proof given here is essentially from [Zak83].
A similar proof works for other complexity classes such as the (levels of the)
polynomial hierarchy discussed in the next chapter. Ladner’s theorem is
from [?] but the proof here is due to an unpublished manuscript by Impagli-
azzo. The notion of relativizations of the P versus NP question is from
Baker, Gill, and Solovay [BGS75], though the authors of that paper note
that other researchers independently discovered some of their ideas. The
notion of relativization is related to similar ideas in logic (such as indepen-
dence results) and recursive function theory.

The notion of oracle Turing machines can be used to study interrelation-
ships of complexity classes. In fact, Cook [Coo71] defined NP-completeness
using oracle machines. A subfield of complexity theory called structural
complexity has carried out a detailed study of oracle machines and classes
defined using them; see [].

Whether or not the Cook-Levin theorem is a nonrelativizing fact de-
pends upon how you formalize the question. There is a way to allow the
3SAT instance to “query” the oracle, and then the Cook-Levin theorem does
relativize. However, it seems safe to say that any result that uses the locality
of computation is looking at the internal workings of the machine and hence
is potentially nonrelativizing.

The term superiority introduced in the exercises does not appear in the
literature but the concept does. In particular, ??? have shown the limita-
tions of relativizing techniques in resolving certain similar open questions.

Exercises

§1 Show that the following language is undecidable:{
xMy : M is a machine that runs in 100n2 + 200 time

}
.

§2 Show that SPACE(n) 6= NP. (Note that we do not know if either
class is contained in the other.)

§3 Show that there is a language B ∈ EXP such that NPB 6= PB.
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§4 Say that a class C1 is superior to a class C2 if there is a machine M1

in class C1 such that for every machine M2 in class C2 and every large
enough n, there is an input of size between n and n2 on which M1 and
M2 answer differently.

(a) Is DTIME(n1.1) superior to DTIME(n)?

(b) Is NTIME(n1.1) superior to NTIME(n)?

§5 Show that there exists a function that is not time-constructible.

§6 Show that there is an oracle A and a language L ∈ NPA such that
L is not polynomial-time reducible to 3SAT even when the machine
computing the reduction is allowed access to A.

§7 Suppose we pick a random language B, by deciding for each string
independently and with probability 1/2 whether or not it is in B.
Show that with high probability PB 6= NPB. (To give an answer that
is formally correct you may need to know elementary measure theory.)
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Chapter 5

The Polynomial Hierarchy
and Alternations

“..synthesizing circuits is exceedingly difficulty. It is even more
difficult to show that a circuit found in this way is the most
economical one to realize a function. The difficulty springs from
the large number of essentially different networks available.”
Claude Shannon 1949

This chapter discusses the polynomial hierarchy, a generalization of P,
NP and coNP that tends to crop up in many complexity theoretic inves-
tigations (including several chapters of this book). We will provide three
equivalent definitions for the polynomial hierarchy, using quantified pred-
icates, alternating Turing machines, and oracle TMs (a fourth definition,
using uniform families of circuits, will be given in Chapter 6). We also use
the hierarchy to show that solving the SAT problem requires either linear
space or super-linear time.

5.1 The classes Σp
2 and Πp

2

To understand the need for going beyond nondeterminism, let’s recall an NP
problem, INDSET, for which we do have a short certificate of membership:

INDSET = {〈G, k〉 : graph G has an independent set of size ≥ k} .

Consider a slight modification to the above problem, namely, determin-
ing the largest independent set in a graph (phrased as a decision problem):

EXACT INDSET = {〈G, k〉 : the largest independent set in G has size exactly k} .
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2

Now there seems to be no short certificate for membership: 〈G, k〉 ∈
EXACT INDSET iff there exists an independent set of size k in G and every
other independent set has size at most k.

Similarly, consider the language MIN-DNF, the decision version of a
problem in circuit minimization, a topic of interest in electrical engineering
(and referred to in Shannon’s paper). We say that two boolean formulae are
equivalent if they have the same set of satisfying assignments.

MIN− DNF = { xϕy : ϕ is a DNF formula not equivalent to any smaller DNF formula} .
= { xϕy : ∀ψ, |ψ| < |ϕ| ,∃ assignment s such that ϕ(s) 6= ψ(s)} .

Again, there is no obvious notion of a certificate of membership. Note
that both the above problems are in PSPACE, but neither is believed to
be PSPACE-complete.

It seems that the way to capture such languages is to allow not only an
“exists“ quantifier (as in Definition 2.1 of NP) or only a “for all” quantifier
(as Definition 2.23 of coNP) but a combination of both quantifiers. This
motivates the following definition:

Definition 5.1
The class Σp

2 is defined to be the set of all languages L for which there exists
a polynomial-time TM M and a polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗.

Note that Σp
2 contains both the classes NP and coNP.

Example 5.2
The language EXACT INDSET above is in Σp

2, since as we noted above, a
pair 〈G, k〉 is in EXACT INDSET iff

∃ S ∀S′ set S is an independent set of size k in G and
S′ is not a independent set of size ≥ k + 1.

We define the class Πp
2 to be the set

{
L : L ∈ sigp2

}
. It is easy to see

that an equivalent definition is that L ∈ Πp
2 if there is a polynomial-time

TM M and a polynomial q such that

x ∈ L⇔ ∀u ∈ {0, 1}q(|x|) ∃v ∈ {0, 1}q(|x|)M(x, u, v) = 1
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for every x ∈ {0, 1}∗.

Example 5.3
The language EXACT INDSET is also in Πp

2 since a pair 〈G, k〉 is in EXACT INDSET
if for every S′, if S′ has size at least k+ 1 then it is not an independent set,
but there exists an independent set S of size k in G. (Exercise 8 shows a
finer placement of EXACT INDSET.)

The reader can similarly check that MIN− DNF is in Πp
2. It is conjec-

tured to be complete for Πp
2.

5.2 The polynomial hierarchy.

The polynomial hierarchy generalizes the definitions of NP, coNP,Σp
2,Π

p
2

to consists all the languages that can be defined via a combination of a
polynomial-time computable predicate and a constant number of ∀/∃ quan-
tifiers:

Definition 5.4 (Polynomial Hierarchy)
For every i ≥ 1, a language L is in Σp

i if there exists a polynomial-time TM M and
a polynomial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi denotes ∀ or ∃ depending on whether i is even or odd respectively.

We say that L is in Πp
i if there exists a polynomial-time TM M and a polynomial

q such that

x ∈ L⇔ ∀u1 ∈ {0, 1}q(|x|) ∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi denotes ∃ or ∀ depending on whether i is even or odd respectively.

The polynomial hierarchy is the set PH = ∪iΣp
i .

Remark 5.5
Note that Σp

1 = NP and Πp
2 = coNP. More generally, for evert i ≥ 1,

Πp
i = coΣp

i =
{
L : L ∈ Σp

i

}
. Note also that that Σp

i ⊆ Πp
i+1, and so we can
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also define the polynomial hierarchy as ∪i>0Π
p
i .

5.2.1 Properties of the polynomial hierarchy.

We believe that P 6= NP and NP 6= coNP. An appealing generalization of
these conjectures is that for every i, Σp

i is strictly contained in Σp
i+1. This

is called the conjecture that the polynomial hierarchy does not collapse, and
is used often in complexity theory. If the polynomial hierarchy does collapse
this means that there is some i such that Σp

i = ∪jΣp
j = PH. In this case we

say that the polynomial hierarchy has collapsed to the ith level. The smaller
i is, the weaker, and hence more plausible, is the conjecture that PH does
not collapse to the ith level.

Theorem 5.6
1. For every i ≥ 1, if Σp

i = Πp
i then PH = Σp

i (i.e., the hierarchy

collapses to the ith level).

2. If P = NP then PH = P (i.e., the hierarchy collapses to P).

Proof: We do the second part; the first part is similar and also easy.
Assuming P = NP we prove by induction on i that Σp

i ,Π
p
i ⊆ P. Clearly

this is true for i = 1 since under our assumption P = NP = coNP. We
assume it is true for i− 1 and prove it for i. Let L ∈ Σp

i , we will show that
L ∈ P. By definition, there is a polynomial-time M and a polynomial q
such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi is ∃/∀ as in Definition 5.4. Define the language L′ as follows:

u ∈ L′ ⇔ ∃∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(u1, u2, . . . , ui) = 1.

Clearly, L′ ∈ Πp
i−1 and so under our assumption is in P. This implies that

there is a TM M ′ such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)M ′(x, u1) = 1 .

But this means L ∈ NP and hence under our assumption L ∈ P. The same
idea shows that if L ∈ Πp

i then L ∈ P. �
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5.2.2 Complete problems for levels of PH

For every i, we say that a language L is Σp
i -complete if L ∈ Σp

i and for
every L′ ∈ Σp

i , L
′ ≤p L. We define Πp

i -completeness and PH-completeness
in the same way. In this section we show that for every i ∈ N, both Σp

i and
Πp
i have complete problems. In contrast the polynomial hierarchy itself is

believed not to have a complete problem, as is shown by the following simple
claim:

Claim 5.7
Suppose that there exists a language L that is PH-complete, then there

exists an i such that PH = Σp
i (and hence the hierarchy collapses to its ith

level.)

Proof sketch: Since L ∈ PH = ∪iΣp
i , there exists i such that L ∈ Σp

i .
Since L is PH-complete, we can reduce every language of PH to Σp

i to L,
and thus PH ⊆ Σp

i . �

Remark 5.8
It is not hard to see that PH ⊆ PSPACE. A simple corollary of Claim 5.7
is that unless the polynomial hierarchy collapses, PH 6= PSPACE. Indeed,
otherwise the problem TQBF would be PH-complete.

Example 5.9
The following are some examples for complete problems for individual levels
of the hierarchy:

For every i ≥ 1, the class Σp
i has the following complete problem in-

volving quantified boolean expression with limited number of alternations:

ΣiSAT = ∃u1∀u2∃ · · ·Qiui ϕ(u1, u2, . . . , ui) = 1, (1)

where ϕ is a Boolean formula (not necessarily in CNF form, although this
does not make much difference), each ui is a vector of boolean variables,
and Qi is ∀ or∃ depending on whether i is odd or even. Notice that this is
a special case of the TQBF problem defined in Chapter 3. Exercise 1 asks
you to prove that ΣiSAT is indeed Σp

i -complete. One can similarly define a
problem ΠiSAT that is Πp

i -complete.
In the SUCCINCT SET COVER problem we are given a collection S =

{ϕ1, ϕ2, . . . , ϕm} of 3-DNF formulae on n variables, and an integer k. We
need to determine whether there is a subset S′ ⊆ {1, 2, . . . ,m} of size at most
K for which ∨i∈S′ϕi is a tautology (i.e., evaluates to 1 for every assignment to
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the variables). Umans showed that SUCCINCT SET COVER is Σp
2-complete

[Uma01].

5.3 Alternating Turing machines

Alternating Turing Machines (ATM), are generalizations of nondeterminis-
tic Turing machines. Recall that even though NDTMs are not a realistic
computational model, studying them helps us to focus on a natural compu-
tational phenomenon, namely, the apparent difference between guessing an
answer and verifying it. ATMs plays a similar role for certain languages for
which there is no obvious short certificate for membership and hence cannot
be characterized using nondeterminism alone.

Alternating TMs are similar to NDTMs in the sense that they have two
transition functions between which they can choose in each step, but they
also have the additional feature that every internal state except qaccept and
qhalt is labeled with either ∃ or ∀. Similar to the NDTM, an ATM can
evolve at every step in two possible ways. Recall that a non-deterministic
TM accepts its input if there exists some sequence of choices that leads it
to the state qaccept. In an ATM, the exists quantifier over each choice is
replaced with the appropriate quantifier according to the labels.

Definition 5.10
Let M be an alternating TM. For a function T : N → N, we say that M
is an T (n)-time ATM if for every input x ∈ {0, 1}∗ and for every possible
sequence of transition function choices, M will halt after at most T (|x|)
steps.

For every x ∈ {0, 1}∗, we let GM,x be the configuration graph of x,
whose vertices are the configurations of M on input x and there is an edge
from configuration C to C ′ if there C ′ can be obtained from C in one step
using one of the two transition functions (see Section 3.1). Recall that this
is a directed acyclic graph. We label some of the nodes in the graph by
“ACCEPT” by repeatedly applying the following rules until they cannot be
applied anymore:

• The configuration Caccept where the machine is in qaccept is labeled
“ACCEPT”.
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• If a configuration C is in a state labeled ∃ and one of the configurations
C ′ reachable from it in one step is labeled “ACCEPT” then we label
C “ACCEPT”.

• If a configuration C is in a state labeled ∀ and both the configurations
C ′, C ′′ reachable from it one step is labeled “ACCEPT” then we label
C “ACCEPT”.

We say that M accepts x if at the end of this process the starting con-
figuration Cstart is labeled “ACCEPT”. The language accepted by M is the
set of all x’s such that M accepts x. We denote by ATIME(T (n)) the set
of all languages accepted by some T (n)-time ATM.

For every i ∈ N, we define ΣiTIME(T (n)) (resp. ΠiTIME(T (n)) to
be the set of languages accepted by a T (n)-time ATM M whose initial state
is labeled “∃” (resp. “∀”) and on which every input and sequence of choices
leads M to change at most i− 1 times from states with one label to states
with the other label.

The following claim is left as an easy exercise (see Exercise 2):

Claim 5.11
For every i ∈ N,

Σp
i = ∪cΣiTIME(nc)

Πp
i = ∪cΠiTIME(nc)

5.3.1 Unlimited number of alternations?

What if we consider polynomial-time alternating Turing machines with no
a priori bound on the number of quantifiers? We define the class AP to be
∪cATIME(nc). We have the following theorem:

Theorem 5.12
AP = PSPACE.

Proof: PSPACE ⊆ AP follows since TQBF is trivially in AP (just “guess”
values for each existentially quantified variable using an ∃ state and for uni-
versally quantified variables using a ∀ state) and every PSPACE language
reduces to TQBF.

AP ⊆ PSPACE follows using a recursive procedure similar to the one
used to show that TQBF ∈ PSPACE. �
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Similarly, one can consider alternating Turing machines that run in poly-
nomial space. The class of languages accepted by such machines is called
APSPACE, and Exercise 6 asks you to prove that APSPACE = EXP.
One can similarly consider alternating logspace machines; the set of lan-
guages accepted by them is exactly P.

5.4 Time versus alternations: time-space tradeoffs
for SAT.

Despite the fact that SAT is widely believed to require exponential (or at
least super-polynomial) time to solve, and to require linear (or at least super-
logarithmic) space, we currently have no way to prove these conjectures. In
fact, as far as we know, SAT may have both a linear time algorithm and a
logarithmic space one. Nevertheless, we can prove that SAT does not have
an algorithm that runs simultaneously in linear time and logarithmic space.
In fact, we can prove the following stronger theorem:

Theorem 5.13 (??)
For every two functions S, T : N → N, define TISP(T (n), S(n)) to be the
set of languages decided by a TM M that on every input x takes at most
O(T (|x|)) steps and uses at most O(S(|x|)) cells of its read/write tapes.
Then, SAT 6∈ TISP(n1.1, n0.1).

Remark 5.14
The class TISP(T (n), S(n)) is typically defined with respect to TM’s with
RAM memory (i.e., TM’s that have random access to their tapes; such
machines can be defined in a similar way to the definition of oracle TM’s
in Section 4.5). Theorem 5.13 and its proof carries over for that model as
well. We also note that a stronger result is known for both models: for
every c < (

√
5 + 1)/2, there exists d > 0 such that SAT 6∈ TISP(nc, nd) and

furthermore, d approaches 1 from below as c approaches 1 from above.

Proof: We will show that

NTIME(n) * TISP(n1.2, n0.2) . (2)

This implies the result for SAT by following the ideas of the proof of the
Cook-Levin Theorem (Theorem 2.11). A careful analysis of that proof yields
a reduction from the task of deciding membership in an NTIME(T (n))-
language to the task deciding whether an O(T (n) log T (n))-sized formula is
satisfiable, such that every output bit of this reduction can be computed in
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polylogarithmic time and space. (See also the proof of Theorem 6.7 for a
similar analysis.) Hence, if SAT ∈ TISP(n1.1, n0.1) then NTIME(n) ⊆
TISP(n1.1polylog(n), n0.1polylog(n)). Our main step in proving (2) is the
following claim, showing how to replace time with alternations:

Claim 5.14.1
TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof: The proof is similar to the proofs of Savitch’s Theorem and the
PSPACE-completeness of TQBF (Theorems 3.12 and 3.11). Suppose that
L is decided by a machine M using n12 time and n2 space. For every
x ∈ {0, 1}∗, consider the configuration graph GM,x of M on input x. Each
configuration in this graph can be described by a string of length O(n2) and
x is in L if and only if there is a path of length n12 in this graph from the
starting configuration Cstart to an accepting configuration. There is such
a path if and only if there exist n6 configurations C1, . . . , Cn6 (requiring
O(n8) to specify) such that if we let C0 = Cstart then Cn6 is accepting and
for every i ∈ [n6] the configuration Ci is computed from Ci−1 within n6

steps. Because this condition can be verified in n6 time, we can we get an
O(n8)-time σ2-TM for deciding membership in L. �

Our next step will show that, under the assumption that (2) does not
hold (and hence NTIME(n) ⊆ TISP(n1.2, n0.2)), we can replace alterna-
tions with time:

Claim 5.14.2
Suppose that NTIME(n) ⊆ DTIME(n1.2). Then Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof: Using the characterization of the polynomial hierarchy by alternat-
ing machines, L is in Σ2TIME(n8) if and only if there is an O(n8)-time
TM M such that

x ∈ L⇔ ∃u ∈ {0, 1}c|x|
8

∀v ∈ {0, 1}d|x|
8

M(x, u, v) = 1 .

for some constants c, d. Yet if NTIME(n) ⊆ DTIME(n1.2) then by a
simple padding argument (a la the proof of Theorem 2.26) we have a deter-
ministic algorithm D that on inputs x, u with |x| = n and |u| = cn8 runs
in time O((n8)1.2) = O(n9.6)-time and returns 1 if and only if there exists
some v ∈ {0, 1}dn

8

such that M(x, u, v) = 0. Thus,

x ∈ L⇔ ∃u ∈ {0, 1}c|x|
8

D(x, u) = 0 .

implying that L ∈ NTIME(n9.6). �
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Claims 5.14.1 and 5.14.2 show that the assumption that NTIME(n) ⊆
TISP(n1.2, n0.2) leads to contradiction: by simple padding it implies that
NTIME(n10) ⊆ TISP(n12, n2) which by Claim 5.14.1 implies that NTIME(n10) ⊆
Σ2TIME(n8). But together with Claim 5.14.2 this implies that NTIME(n10) ⊆
NTIME(n9.6), contradicting the non-deterministic time hierarchy theorem
(Theorem 4.3). �

5.5 Defining the hierarchy via oracle machines.

Recall the definition of oracle machines from Section 4.5. These are ma-
chines that are executed with access to a special tape they can use to make
queries of the form “is q ∈ O” for some language O. For every O ⊆ {0, 1}∗,
oracle TM M and input x, we denote by MO(x) the output of M on x
with access to O as an oracle. We have the following characterization of the
polynomial hierarchy:

Theorem 5.15
For every i ≥ 2, Σp

i = NPΣi−1SAT, where the latter class denotes the set
of languages decided by polynomial-time NDTMs with access to the oracle
Σi−1SAT.

Proof: We showcase the idea by proving that Σp
2 = NPSAT. Suppose that

L ∈ Σp
2. Then, there is a polynomial-time TM M and a polynomial q such

that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1

yet for every fixed u1 and x, the statement “for every u2, M(x, u1, u2) = 1”
is the negation of an NP-statement and hence its truth can be determined
using an oracle for SAT. We get that there is a simple NDTM N that given
oracle access for SAT can decide L: on input x, non-deterministically guess
u1 and use the oracle to decide if ∀u2M(x, u1, u2) = 1. We see that x ∈ L
iff there exists a choice u1 that makes N accept.

On the other hand, suppose that L is decidable by a polynomial-time
NDTM N with oracle access to SAT. Then, x is in L if and only if there
exists a sequence of non-deterministic choices and correct oracle answers that
makes N accept x. That is, there is a sequence of choices c1, . . . , cm ∈ {0, 1}
and answers to oracle queries a1, . . . , ak ∈ {0, 1} such that on input x, if the
machine N uses the choices c1, . . . , cm in its execution and receives ai as the
answer to its ith query, then (1) M reaches the accepting state qaccept and
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(2) all the answers are correct. Let ϕi denote the ith query that M makes
to its oracle when executing on x using choices c1, . . . , xm and receiving
answers a1, . . . , ak. Then, the condition (2) can be phrased as follows: if
ai = 1 then there exists an assignment ui such that ϕi(ui) = 1 and if ai = 0
then for every assignment vi, ϕi(vi) = 0. Thus, we have that

x ∈ L⇔∃c1, . . . , cm, a1, . . . , ak, u1, . . . , uk∀v1, . . . , vk such that
N accepts x using choices c1, . . . , cm and answers a1, . . . , ak AND
∀i ∈ [k] if ai = 1 then ϕi(ui) = 1 AND
∀i ∈ [k] if ai = 0 then ϕi(vi) = 0

implying that L ∈ Σp
2. �

Remark 5.16
Because having oracle access to a complete language for a class allows to
solve every language in that class, some texts use the class name instead
of the complete language in the notation for the oracle. Thus, some texts
denote the class Σp

2 = NPSAT by NPNP, the class Σp
3 by NPNPNP

and etc.

What have we learned?

• The polynomial hierarchy is the set of languages that can be defined via a
constant number of alternating quantifiers. It also has equivalent definitions
via alternating TMs and oracle TMs. It contains several natural problems
that are not known (or believed) to be in NP.

• We conjecture that the hierarchy does not collapse in the sense that each of
its levels is distinct from the previous ones.

• We can use the concept of alternations to prove that SAT cannot be solved
simultaneously in linear time and sublinear space.

Chapter notes and history

The polynomial hierarchy was formally defined by Stockmeyer [Sto77], though
the concept appears in the literature even earlier. For instance, Karp [Kar72]
notes that “a polynomial-bounded version of Kleene’s Arithmetic Hierar-
chy (Rogers 1967) becomes trivial if P = NP.”
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The class DP was defined by Papadimitriou and Yannakakis [PY82],
who used it to characterize the complexity of identifying the facets of a
polytope.

The class of complete problems for various levels of PH is not as rich
as it is for NP, but it does contain several interesting ones. See Schaeffer
and Umans [SU02a, SU02b] for a recent list. The SUCCINCT SET-COVER
problem is from Umans [Uma01], where it is also shown that the following
optimization version of MIN-DNF is Σp

2-complete:{
〈ϕ, k〉 : ∃ DNFϕ′ of size at most k, that is equivalent to DNF ϕ

}
.

Exercises

§1 Show that the language ΣiSAT of (1) is complete for Σp
i under poly-

nomial time reductions.

Hint::UsetheNP-completenessofSAT.

§2 Prove Claim 5.11.

§3 Show that if 3SAT is polynomial-time reducible to 3SAT then PH =
NP.

§4 Show that PH has a complete language iff it collapses to some finite
level Σp

i .

§5 Show that the definition of PH using ATMs coincides with our other
definitions.

§6 Show that APSPACE = EXP.

Hint:ThenontrivialdirectionEXP⊆APSPACEusesideas
similartothoseintheproofofTheorem5.13.

§7 Show that Σp
2 = NPSAT. Generalize your proof to give a characteri-

zation of PH in terms of oracle Turing machines.

§8 The class DP is defined as the set of languages L for which there are
two languages L1 ∈ NP, L2 ∈ coNP such that L = L1 ∩ L2. (Do not
confuse DP with NP∩ coNP, which may seem superficially similar.)
Show that

(a) EXACT INDSET ∈ DP.
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(b) Every language in DP is polynomial-time reducible to EXACT INDSET.

§9 Suppose A is some language such that PA = NPA. Then show that
PHA ⊆ PA (in other words, the proof of Theorem ?? relativizes).

§10 Show that SUCCINCT SET-COVER ∈ Σp
2.

§11 (Suggested by C. Umans) This problem studies VC-dimension, a con-
cept important in machine learning theory. If S = {S1, S2, . . . , Sm}
is a collection of subsets of a finite set U , the VC dimension of S,
denoted V C(S), is the size of the largest set X ⊆ U such that for
every X ′ ⊆ X, there is an i for which Si ∩X = X ′. (We say that X
is shattered by S.)

A boolean circuit C succinctly represents collection S if Si consists of
exactly those elements x ∈ U for which C(i, x) = 1. Finally,

VC-DIMENSION = {〈C, k〉 : C represents a collection S s.t. V C(S) ≥ k} .

(a) Show that VC-DIMENSION ∈ Σp
3.

(b) Show that VC-DIMENSION is Σp
3-complete.

Hint:ReducefromΣ3-3SAT.Also,thecollectionSproducedby
yourreductioncanusethesamesetmultipletimes.
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Chapter 6

Circuits

“One might imagine that P 6= NP, but SAT is tractable in the
following sense: for every ` there is a very short program that
runs in time `2 and correctly treats all instances of size `. ”
Karp and Lipton, 1982

This chapter investigates a model of computation called a Boolean cir-
cuit, which is a generalization of Boolean formulae and a rough formalization
of the familiar ”silicon chip.” Here are some motivations for studying it.

First, it is a natural model for nonuniform computation, by which we
mean that a different ”algorithm” is allowed for each input size. By contrast,
our standard model thus far was uniform computation: the same Turing
Machine (or algorithm) solves the problem for inputs of all (infinitely many)
sizes. Nonuniform computation crops up often in complexity theory, and also
in the rest of this book.

Second, in principle one can separate complexity classes such as P and
NP by proving lowerbounds on circuit size. This chapter outlines why such
lowerbounds ought to exist. In the 1980s, researchers felt boolean circuits are
mathematically simpler than the Turing Machine, and thus proving circuit
lowerbounds may be the right approach to separating complexity classes.
Chapter 13 describes the partial successes of this effort and Chapter 23
describes where it is stuck.

This chapter defines the class P/poly of languages computable by polynomial-
sized boolean circuits and explores its relation to NP. We also encounter
some interesting subclasses of P/poly, including NC, which tries to capture
computations that can be efficiently performed on highly parallel comput-
ers. Finally, we show a (yet another) characterization of the polynomial
hierarchy, this time using exponential-sized circuits of constant depth.
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6.1 Boolean circuits
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Figure 6.1: A circuit C computing the XOR function (i.e., C(x1, x2) = 1 iff x1 6= x2).

A Boolean circuit is a just a diagram showing how to derive an output
from an input by a combination of the basic Boolean operations of OR (∨),
AND (∧) and NOT (¬). For example, Figure 6.1 shows a circuit computing
the XOR function. Here is the formal definition.

Definition 6.1 (Boolean circuits)
For every n,m ∈ N a Boolean circuit C with n inputs and m outputs1is a directed
acyclic graph. It contains n nodes with no incoming edges; called the input nodes
and m nodes with no outgoing edges, called the output nodes. All other nodes
are called gates and are labeled with one of ∨, ∧ or ¬ (in other words, the logical
operations OR, AND, and NOT). The ∨ and ∧ nodes have fanin (i.e., number of
incoming edges) of 2 and the ¬ nodes have fanin 1. The size of C, denoted by |C|,
is the number of nodes in it.
The circuit is called a Boolean formula if each node has at most one outgoing edge.

The boolean circuit in the above definition implements a function from
{0, 1}n to {0, 1}m. This may be clear intuitively to most readers (especially
those who have seen circuits in any setting) but here is the proof. Assume
that the n input nodes and m output nodes are numbered in some canonical
way. Thus each n-bit input can be used to assigned a value in {0, 1} to each
input node. Next, since the graph is acyclic, we can associate an integral
depth to each node (using breadth-first search, or the so-called topological
sorting of the graph) such that each node has incoming edges only from
nodes of higher depth. Now each node can be assigned a value from {0, 1}
in a unique way as follows. Process the nodes in decreasing order of depth.
For each node, examine its incoming edges and the values assigned to the
nodes at the other end, and then apply the boolean operation (∨,∧, or ¬)
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that this node is labeled with on those values. This gives a value to each
node; the values assigned to the m output nodes by this process constitute
an m-bit output of the circuit.

For every string u ∈ {0, 1}n, we denote by C(u) the output of the circuit
C on input u.

We recall that the Boolean operations OR, AND, and NOT form a uni-
versal basis, by which we mean that every function from {0, 1}n to {0, 1}m
can be implemented by a boolean circuit (in fact, a boolean formula). See
Claim 2.15. Furthermore, the “silicon chip” that we all know about is noth-
ing but2 an implementation of a boolean circuit using a technology called
VLSI. Thus if we have a small circuit for a computational task, we can im-
plement it very efficiently as a silicon chip. Of course, the circuit can only
solve problems on inputs of a certain size. Nevertheless, this may not be a
big restriction in our finite world. For instance, what if a small circuit exists
that solves 3SAT instances of up to say 100, 000 variables? If so, one could
imagine a government-financed project akin to the Manhattan project that
would try to discover such a small circuit, and then implement it as a silicon
chip. This could be used in all kinds of commercial products (recall our
earlier depiction of a world in which P = NP) and in particular would jeop-
ardize every encryption scheme that does not use a huge key. This scenario
is hinted at in the quote from Karp and Lipton at the start of the chapter.

As usual, we resort to asymptotic analysis to study the complexity of
deciding a language by circuits.

Definition 6.2 (Circuit families and language recognition)
Let T : N → N be a function. A T (n)-sized circuit family is a sequence
{Cn}n∈N of Boolean circuits, where Cn has n inputs and a single output,
such that |Cn| ≤ T (n) for every n.

We say that a language L is in SIZE(T (n)) if there exists a T (n)-size
circuit family {Cn}n∈N such that for every x ∈ {0, 1}n, x ∈ L⇔ C(x) = 1.

As noted in Claim 2.15, every language is decidable by a circuit family of
size O(n2n), since the circuit for input length n could contain 2n “hardwired”
bits indicating which inputs are in the language. Given an input, the circuit
looks up the answer from this table. (The reader may wish to work out an
implementation of this circuit.) The following definition formalizes what we
can think of as “small” circuits.

2Actually, the circuits in silicon chips are not acyclic; in fact the cycles in the circuit
are crucial for implementing ”memory.” However any computation that runs on a silicon
chip of size C and finishes in time T can be performed by a boolean circuit of size O(C ·T ).
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Definition 6.3
P/poly is the class of languages that are decidable by polynomial-sized cir-
cuit families, in other words, ∪cSIZE(nc).

Of course, one can make the same kind of objections to the practicality of
P/poly as for P: viz., in what sense is a circuit family of size n100 practical,
even though it has polynomial size. This was answered to some extent
in Section 1.4.1. Another answer is that as complexity theorists we hope
(eventually) to show that languages such as SAT are not in P/poly. Thus
the result will only be stronger if we allow even such large circuits in the
definition of P/poly.

The class P/poly contains P. This is a corollary of Theorem 6.7 that we
show below. Can we give a reasonable upperbound on the computational
power of P/poly? Unfortunately not, since it contains even undecidable
languages.

Example 6.4
Recall that we say that a language L is unary if it is a subset of {1n : n ∈ N}.
Every unary language has linear size circuits since the circuit for an input
size n only needs to have a single “hardwired” bit indicating whether or not
1n is in the language. Hence the following unary language has linear size
circuits, even though it is undecidable:

{1n : Mn outputs 1 on input 1n} . (1)

where Mn is the machine represented by (the binary expansion of) the num-
ber n.

This example suggests that it may be fruitful to consider the restriction
to circuits that can actually be built, say using a fairly efficient Turing ma-
chine. It will be most useful to formalize this using logspace computations.

Recall that a function f : {0, 1}∗ → {0, 1}∗ is implicitly logspace com-
putable if the mapping x, i 7→ f(x)i can be computed in logarithmic space
(see Definition 3.14).

Definition 6.5 (logspace-uniform circuit families)
A circuit family {Cn} is logspace uniform if there is an implicitly logspace
computable function mapping 1n to the description of the circuit Cn.
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Actually, to make this concrete we need to fix some representation of the
circuits as strings. We will assume that the circuit of size N is represented
by its N ×N adjacency matrix and in addition an array of size N that gives
the labels (gate type and input/output) of each node. This means that {Cn}
is logspace uniform if and only if the following functions are computable in
O(log n) space:

• SIZE(n) returns the size m (in binary representation) of the circuit
Cn.

• TYPE(n, i), where i ∈ [m], returns the label and type of the ith node
of Cn. That is it returns one of {∨,∧,¬, NONE} and in addition
〈OUTPUT, j〉 or 〈INPUT, j〉 if i is the jth input or output node of
Cn.

• EDGE(n, i, j) returns 1 if there is a directed edge in Cn between the ith

node and the jth node.

Note that both the inputs and the outputs of these functions can be
encoded using a logarithmic (in |Cn|) number of bits. The requirement that
they run in O(log n) space means that we require that log |Cn| = O(log n)
or in other words that Cn is of size at most polynomial in n.

Remark 6.6
Exercise 7 asks you to prove that the class of languages decided by such
circuits does not change if we use the adjacency list (as opposed to matrix)
representation. We will use the matrix representation from now on.

Polynomial circuits that are logspace-uniform correspond to a familiar
complexity class:

Theorem 6.7
A language has logspace-uniform circuits of polynomial size iff it is in P.

Remark 6.8
Note that this implies that P ⊆ P/poly.

Proof sketch: The only if part is trivial. The if part follows the proof of
the Cook-Levin Theorem (Theorem 2.11). Recall that we can simulate every
time O(T (n)) TM M by an oblivious TM M̃ (whose head movement is in-
dependent of its input) running in time O(T (n)2) (or even O(T (n) log T (n))
if we are more careful). In fact, we can ensure that the movement of the
oblivious TM M̃ do not even depend on the contents of its work tape, and
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so, by simulating M̃while ignoring its read/write instructions, we can com-
pute in O(log T (n)) space for every i the position its heads will be at the ith

step.3

Given this insight, it is fairly straightforward to translate the proof of
Theorem 2.11 to prove that every language in P has a logspace-uniform
circuit family. The idea is that if L ∈ P then it is decided by an oblivious
TM M̃ of the form above. We will use that to construct a logspace uniform
circuit family {Cn}n∈N such that for every x ∈ {0, 1}n, Cn(x) = M̃(x).

Recall that, as we saw in that proof, the transcript of M̃ ’s execution on
input x is the sequence z1, . . . , zT of snapshots (machine’s state and symbols
read by all heads) of the execution at each step in time. Assume that each
such zi is encoded by a string (that needs only to be of constant size). We
can compute the string zi based the previous snapshots zi−1 and zi1 , . . . , zik
where zij denote the last step that M̃ ’s jth head was in the same position
as it is in the ith step. Because these are only a constant number of strings
of constant length, we can compute zi from these previous snapshot using
a constant-sized circuit. Also note that, under our assumption above, given
the indices i and i′ < i we can easily check whether zi depends on zi′ .

The composition of all these constant-sized circuits gives rise to a circuit
that computes from the input x, the snapshot zT of the last step of M̃ ’s
execution on x. There is a simple constant-sized circuit that, given zT
outputs 1 if and only if zT is an accepting snapshot (in which M̃ outputs
1 and halts). Thus, we get a circuit C such that C(x) = M̃(x) for every
x ∈ {0, 1}n.

Because our circuit C is composed of many small (constant-sized) cir-
cuits, and determining which small circuit is applied to which nodes can be
done in logarithmic space, it is not hard to see that we can find out every
individual bit of C’s representation in logarithmic space. (In fact, one can
show that the functions SIZE, TYPE and EDGE above can be computed using
only logarithmic space and polylogarithmic time.) �

6.1.1 Turing machines that take advice

There is a way to define P/poly using Turing machines that ”take advice.”

Definition 6.9
Let T, a : N→ N be functions. The class of languages decidable by time-T (n)

3In fact, typically the movement pattern is simple enough (for example a sequence
of T (n) left to right and back sweeps of the tape) that for every i we can compute this
information using only O(log T (n)) space and polylogT (n) time.
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TM’s with a(n) advice, denoted DTIME(T (n))/a(n), contains every L such
that there exists a sequence {αn}n∈N of strings with αn ∈ {0, 1}a(n) and a
TM M satisfying

M(x, αn) = 1⇔ x ∈ L

for every x ∈ {0, 1}n, where on input (x, αn) the machine M runs for at
most O(T (n)) steps.

Example 6.10
Every unary language can be be decided by a polynomial time Turing ma-
chine with 1 bit of advice. The advice string for inputs of length n is the
single bit indicating whether or not 1n is in the language. In particular this
is true of the language of Example 6.4.

This is an example of a more general phenomenon described in the next
theorem.

Theorem 6.11
P/poly = ∪c,dDTIME(nc)/nd

Proof: If L ∈ P/poly, we can provide the polynomial-sized description of
its circuit family as advice to a Turing machine. When faced with an input
of size n, the machine just simulates the circuit for this circuit provided to
it.

Conversely, if L is decidable by a polynomial-time Turing machine M
with access to an advice family {αn}n∈N of size a(n) for some polynomial a,
then we can use the construction of Theorem 6.7 to construct for every n, a
polynomial-sized circuit Dn such that on every x ∈ {0, 1}n, α ∈ {0, 1}a(n),
Dn(x, α) = M(x, α). We let the circuit Cn be the polynomial circuit that
maps x to Dn(x, αn). That is, Cn is equal to the circuit Dn with the string
αn “hardwired” as its second input. �

Remark 6.12
By “hardwiring” an input into a circuit we mean taking a circuit C with
two inputs x ∈ {0, 1}n , y ∈ {0, 1}m and transforming it into the circuit Cy
that for every x returns C(x, y). It is easy to do so while ensuring that the
size of Cy is not greater than the size of C. This simple idea is often used
in complexity theory.
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6.2 Karp-Lipton Theorem

Karp and Lipton formalized the question of whether or not SAT has small
circuits as: Is SAT in P/poly? They showed that the answer is “NO” if the
polynomial hierarchy does not collapse.

Theorem 6.13 (Karp-Lipton, with improvements by Sipser)
If NP ⊆ P/poly then PH = Σp

2.

Proof: To show that PH = Σp
2 it is enough to show that Πp

2 ⊆ Σp
2 and

in particular it suffices to show that Σp
2 contains the Πp

2-complete language
Π2SAT consisting of all true formulae of the form

∀u ∈ {0, 1}n ∃v ∈ {0, 1}n ϕ(u, v) = 1 . (2)

where ϕ is an unquantified Boolean formula.
If NP ⊆ P/poly then there is a polynomial p and a p(n)-sized circuit

family {Cn}n∈N such that for every Boolean formula ϕ and u ∈ {0, 1}n,
Cn(ϕ, u) = 1 if and only if there exists v ∈ {0, 1}n such that ϕ(u, v) = 1.
Yet, using the search to decision reduction of Theorem 2.20, we actually
know that there is a q(n)-sized circuit family {C ′n}n∈N such that for every
such formula ϕ and u ∈ {0, 1}n, if there is a string v ∈ {0, 1}n such that
ϕ(u, v) = 1 then C ′n(ϕ, u) outputs such a string v. Since C ′n can be described
using 10q(n)2 bits, this implies that if (2) is true then the following quantified
formula is also true:

∃w∈ {0, 1}10q(n)2 ∀u∈ {0, 1}nw describes a circuit C ′ s.t. ϕ(u,C ′(ϕ, u)) = 1 .
(3)

Yet if (2) is false then certainly (regardless of whether P = NP) the
formula (3) is false as well, and hence (3) is actually equivalent to (2)!
However, since evaluating a circuit on an input can be done in polynomial
time, evaluating the truth of (3) can be done in Σp

2. �

Similarly the following theorem can be proven, though we leave the proof
as Exercise 3.

Theorem 6.14 (Karp-Lipton, attributed to A. Meyer)
If EXP ⊆ P/poly then EXP = Σp

2.

Combining the time hierarchy theorem (Theorem 4.1) with the previous
theorem implies that if P = NP then EXP 6⊆ P/poly. Thus upperbounds
(in this case, NP ⊆ P) can potentially be used to prove circuit lowerbounds.
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6.3 Circuit lowerbounds

Since P ⊆ P/poly, if NP * P/poly then P 6= NP. The Karp-Lipton
theorem gives hope that NP 6⊆ P/poly. Can we resolve P versus NP by
proving NP * P/poly? There is reason to invest hope in this approach as
opposed to proving direct lowerbounds on Turing machines. By representing
computation using circuits we seem to actually peer into the guts of it rather
than treating it as a blackbox. Thus we may be able to get around the
limitations of relativizing methods shown in Chapter 4.

Sadly, such hopes have not yet come to pass. After two decades, the
best circuit size lowerbound for an NP language is only 5n. (However, see
Exercise 1 for a better lowerbound for a language in PH.) On the positive
side, we have had notable success in proving lowerbounds for more restricted
circuit models, as we will see in Chapter 13.

By the way, it is easy to show that for large enough n, almost every
boolean function on n variables requires large circuits.

Theorem 6.15
For n ≥ 100, almost all boolean functions on n variables require circuits of
size at least 2n/(10n).

Proof: We use a simple counting argument. There are at most s3s circuits
of size s (just count the number of labeled directed graphs, where each node
has indegree at most 2). Hence this is an upperbound on the number of
functions on n variables with circuits of size s. For s = 2n/(10n), this
number is at most 22n/10, which is miniscule compared 22n , the number of
boolean functions on n variables. Hence most Boolean functions do not have
such small circuits. �

Remark 6.16
Another way to present this result is as showing that with high probability, a
random function from {0, 1}n to {0, 1} does not have a circuit of size 2n/10n.
This kind of proof method, showing the existence of an object with certain
properties by arguing that a random object has these properties with high
probability, is called the probabilistic method, and will be repeatedly used in
this book.

The problem with the above counting argument is of course, that it does
not yield an explicit Boolean function (say an NP language) that requires
large circuits.
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6.4 Non-uniform hierarchy theorem

As in the case of deterministic time, non-deterministic time and space bounded
machines, Boolean circuits also have a hierarchy theorem. That is, larger
circuits can compute strictly more functions than smaller ones:

Theorem 6.17
For every functions T, T ′ : N→ N with 2n/(100n) > T ′(n) > T (n) > n and
T (n) log T (n) = o(T ′(n)),

SIZE(T (n)) ( SIZE(T ′(n))

Proof: The diagonalization methods of Chapter 4 do not seem to work for
such a function, but nevertheless, we can prove it using the counting argu-
ment from above. To show the idea, we prove that SIZE(n) ( SIZE(n2).

For every `, there is a function f : {0, 1}` → {0, 1} that is not computable
by 2`/(10`)-sized circuits. On the other hand, every function from {0, 1}`
to {0, 1} is computable by a 2`10`-sized circuit.

Therefore, if we set ` = 1.1 log n and let g : {0, 1}n → {0, 1} be the
function that applies f on the first ` bits of its input, then

g ∈ SIZE(2`10`) = SIZE(11n1.1 log n) ⊆ SIZE(n2)

g 6∈ SIZE(2`/(10`)) = SIZE(n1.1/(11 log n)) ⊇ SIZE(n)

�

6.5 Finer gradations among circuit classes

There are two reasons why subclasses of P/poly are interesting. First, prov-
ing lowerbounds for these subclasses may give insight into how to separate
NP from P/poly. Second, these subclasses correspond to interesting com-
putational models in their own right.

Perhaps the most interesting connection is to massively parallel comput-
ers. In such a computer one uses simple off-the-shelf microprocessors and
links them using an interconnection network that allows them to send mes-
sages to each other. Usual interconnection networks such as the hypercube
allows linking n processors such that interprocessor communication is pos-
sible —assuming some upperbounds on the total load on the network—in
O(log n) steps. The processors compute in lock-step (for instance, to the
ticks of a global clock) and are assumed to do a small amount of computa-
tion in each step, say an operation on O(log n) bits. Thus each processor
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computers has enough memory to remember its own address in the inter-
connection network and to write down the address of any other processor,
and thus send messages to it. We are purposely omitting many details of
the model (Leighton [Lei92] is the standard reference for this topic) since
the validity of Theorem 6.24 below does not depend upon them. (Of course,
we are only aiming for a loose characterization of parallel computation, not
a very precise one.)

6.5.1 Parallel computation and NC

Definition 6.18
A computational task is said to have efficient parallel algorithms if inputs
of size n can be solved using a parallel computer with nO(1) processors and
in time logO(1) n.

Example 6.19
Given two n bit numbers x, y we wish to compute x+y fast in parallel. The
gradeschool algorithm proceeds from the least significant bit and maintains
a carry bit. The most significant bit is computed only after n steps. This
algorithm does not take advantage of parallelism. A better algorithm called
carry lookahead assigns each bit position to a separate processor and then
uses interprocessor communication to propagate carry bits. It takes O(n)
processors and O(log n) time.

There are also efficient parallel algorithms for integer multiplication and
division (the latter is quite nonintuitive and unlike the gradeschool algo-
rithm!).

Example 6.20
Many matrix computations can be done efficiently in parallel: these include
computing the product, rank, determinant, inverse, etc. (See exercises.)

Some graph theoretic algorithms such as shortest paths and minimum
spanning tree also have fast parallel implementations.

But many well-known polynomial-time problems such as minimum match-
ing, maximum flows, and linear programming are not known to have any
good parallel implementations and are conjectured not to have any; see our
discussion of P-completeness below.
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Now we relate parallel computation to circuits. The depth of a circuit
is the length of the longest directed path from an input node to the output
node.

Definition 6.21 (Nick’s class or NC)
A language is in NCi if there are constants c, d > 0 such that it can be
decided by a logspace-uniform family of circuits {Cn} where Cn has size
O(nc) and depth O(logd n). The class NC is ∪i≥1NCi.

A related class is the following.

Definition 6.22 (AC)
The class ACi is defined similarly to NCi except gates are allowed to have
unbounded fanin. The class AC is ∪i≥0ACi.

Since unbounded (but poly(n)) fanin can be simulated using a tree of
ORs/ANDs of depth O(log n), we have NCi ⊆ ACi ⊆ NCi+1, and the
inclusion is known to be strict for i = 0 as we will see in Chapter 13. (Notice,
NC0 is extremely limited since the circuit’s output depends upon a constant
number of input bits, but AC0 does not suffer from this limitation.)

Example 6.23
The language PARITY ={x : x has an odd number of 1s} is in NC1. The
circuit computing it has the form of a binary tree. The answer appears at
the root; the left subtree computes the parity of the first |x| /2 bits and the
right subtree computes the parity of the remaining bits. The gate at the top
computes the parity of these two bits. Clearly, unwrapping the recursion
implicit in our description gives a circuit of dept O(log n).

The classes AC, NC are important because of the following.

Theorem 6.24
A language has efficient parallel algorithms iff it is in NC.

Proof: Suppose a language L ∈ NC and is decidable by a circuit family
{Cn} where Cn has size N = O(nc) and depth D = O(logd n). Take a gen-
eral purpose parallel computer with N nodes and configure it to decide L
as follows. Compute a description of Cn and allocate the role of each circuit
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node to a distinct processor. (This is done once, and then the computer is
ready to compute on any input of length n.) Each processor, after comput-
ing the output at its assigned node, sends the resulting bit to every other
circuit node that needs it. Assuming the interconnection network delivers
all messages in O(logN) time, the total running time is O(logd+1N).

The reverse direction is similar, with the circuit having N · D nodes
arranged in D layers, and the ith node in the tth layer performs the com-
putation of processor i at time t. The role of the interconnection network is
played by the circuit wires. �

6.5.2 P-completeness

A major open question in this area is whether P = NC. We believe that
the answer is NO (though we are currently even unable to separate PH
from NC1). This motivates the theory of P-completeness, a study of which
problems are likely to be in NC and which are not.

Definition 6.25
A language is P-complete if it is in P and every language in P is logspace-
reducible to it (as per Definition 3.14).

The following easy theorem is left for the reader as Exercise 12.

Theorem 6.26
If language L is P-complete then

1. L ∈ NC iff P = NC.

2. L ∈ L iff P = L. (Where L is the set languages decidable in logarith-
mic space, see Definition 3.5.)

The following is a fairly natural P-complete language:

Theorem 6.27
Let CIRCUIT-EVAL denote the language consisting of all pairs 〈C, x〉 such
that C is an n-inputs single-output circuit and x ∈ {0, 1}n satisfies C(x) = 1.
Then CIRCUIT-EVAL is P-complete.

Proof: The language is clearly in P. A logspace-reduction from any other
language in P to this language is implicit in the proof of Theorem 6.7. �
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6.6 Circuits of exponential size

As noted, every language has circuits of size O(n2n). However, actually
finding these circuits may be difficult— sometimes even undecidable. If we
place a uniformity condition on the circuits, that is, require them to be
efficiently computable then the circuit complexity of some languages could
exceed n2n. In fact it is possible to give alternative definitions of some
familiar complexity classes, analogous to the definition of P in Theorem 6.7.

Definition 6.28 (DC-Uniform)
Let {Cn}n≥1 be a circuit family. We say that it is a Direct Connect uniform
(DC uniform) family if, given 〈n, i〉, we can compute in polynomial time the
ith but of (the representation of) the circuit Cn. More concretely, we use the
adjacency matrix representation and hence a family {Cn}n∈N is DC uniform
iff the functions SIZE, TYPE and EDGE defined in Remark ?? are computable
in polynomial time.

Note that the circuits may have exponential size, but they have a suc-
cinct representation in terms of a TM which can systematically generate any
required node of the circuit in polynomial time.

Now we give a (yet another) characterization of the class PH, this time
as languages computable by uniform circuit families of bounded depth. We
leave it as Exercise 13.

Theorem 6.29
L ∈ PH iff L can be computed by a DC uniform circuit family {Cn} that

• uses AND, OR, NOT gates.

• has size 2n
O(1)

and constant depth (i.e., depth O(1)).

• gates can have unbounded (exponential) fanin.

• the NOT gates appear only at the input level.

If we drop the restriction that the circuits have constant depth, then we
obtain exactly EXP (see Exercise 14).

6.7 Circuit Satisfiability and an alternative proof
of the Cook-Levin Theorem

Boolean circuits can be used to define the following NP-complete language:
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Definition 6.30
The circuit satisfiability language CKT-SAT consists of all (strings represent-
ing) circuits with a single output that have a satisfying assignment. That
is, a string representing an n-input circuit C is in CKT-SAT iff there exists
u ∈ {0, 1}n such that C(u) = 1.

CKT-SAT is clearly in NP because the satisfying assignment can serve
as the certificate. It is also clearly NP-hard as every CNF formula is in
particular a Boolean circuit. However, CKT-SAT can also be used to give an
alternative proof (or, more accurately, a different presentation of the same
proof) for the Cook-Levin Theorem by combining the following two lemmas:

Lemma 6.31
CKT-SAT is NP-hard.

Proof: Let L be an NP-language and let p be a polynomial and M a
polynomial-time TM such that x ∈ L iffM(x, u) = 1 for some u ∈ {0, 1}p(|x|).
We reduce L to CKT-SAT by mapping (in polynomial-time) x to a circuit
Cx with p(|x|) inputs and a single output such that Cx(u) = M(x, u) for
every u ∈ {0, 1}p(|x|). Clearly, x ∈ L ⇔ Cx ∈ CKT-SAT and so this suffices
to show that L ≤P CKT-SAT.

Yet, it is not hard to come up with such a circuit. Indeed, the proof of
Theorem 6.7 yields a way to map M,x into the circuit Cx in logarithmic
space (which in particular implies polynomial time). �

Lemma 6.32
CKT-SAT ≤p 3SAT

Proof: As mentioned above this follows from the Cook-Levin theorem but
we give here a direct reduction. If C is a circuit, we map it into a 3CNF
formula ϕ as follows:

For every node vi of C we will have a corresponding variable zi in ϕ. If
the node vi is an AND of the nodes vj and vk then we add to ϕ clauses that
are equivalent to the condition “zi = (zj ∧ zk)”. That is, we add the clauses

(zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) ∧ (zi ∨ zj ∨ zk) .

Similarly, if vi is an OR of vj and vk then we add clauses equivalent to “zi =
(zj∨zk)”, and if vi is the NOT of vj then we add the clauses (zi∨zj)∧(zi∨zj).

Finally, if vi is the output node of C then we add the clause zi to ϕ. It
is not hard to see that the formula ϕ will be satisfiable if and only if the
circuit C is. �
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What have we learned?

• Boolean circuits can be used as an alternative computational model to TMs.
The class P/poly of languages decidable by polynomial-sized circuits is a strict
superset of P but does not contain NP unless the hierarchy collapses.

• Almost every function from {0, 1}n to {0, 1} requires exponential-sized circuits.
Finding even one function in NP with this property would show that P 6= NP.

• The class NC of languages decidable by (uniformly constructible) circuits with
polylogarithmic depth and polynomial size corresponds to computational tasks
that can be efficiently parallelized.

Chapter notes and history

Karp-Lipton theorem is from [KL82]. Karp and Lipton also gave a more
general definition of advice that can be used to define the class C/a(n)
for every complexity class C and function a. However, we do not use this
definition here since it does not seem to capture the intuitive notion of advice
for classes such as NP ∩ coNP, BPP and others.

The class of NC algorithms as well as many related issues in parallel
computation are discussed in Leighton [?].

Exercises

§1 [Kannan [Kan82]] Show for every k > 0 that PH contains languages
whose circuit complexity is Ω(nk).

Hint:Keepinmindtheproofoftheexistenceoffunctionswith
highcircuitcomplexity.

§2 Solve the previous question with PH replaced by Σp
2.

§3 ([KL82], attributed to A. Meyer) Show that if EXP ⊆ P/poly then
EXP = Σp

2.

§4 Show that if P = NP then there is a language in EXP that requires
circuits of size 2n/n.
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§5 A language L ⊆ {0, 1}∗ is sparse if there is a polynomial p such that
|L∩{0, 1}n | ≤ p(n) for every n ∈ N. Show that every sparse language
is in P/poly.

§6 (X’s Theorem 19??) Show that if a sparse language is NP-complete
then P = NP. (This is a strengthening of Exercise 13 of Chapter 2.)

Hint:Showarecursiveexponential-timealgorithmSthatonin-
putan-variableformulaϕandastringv∈{0,1}

n
outputs1iff

ϕhasasatisfyingassignmentvsuchthatv>uwhenbothare
interpretedasthebinaryrepresentationofanumberin[2

n
].Use

thereductionfromSATtoLtoprunepossibilitiesintherecursion
treeofS.

§7 Show a logspace implicitly computable function f that maps any n-
vertex graph in adjacency matrix representation into the same graph
in adjacency list representation. You can think of the adjacency list
representation of an n-vertex graph as a sequence of n strings of size
O(n log n) each, where the ith string contains the list of neighbors of
the ith vertex in the graph (and is padded with zeros if necessary).

§8 (Open) Suppose we make a stronger assumption than NP ⊆ P/poly:
every language in NP has linear size circuits. Can we show something
stronger than PH = Σp

2?

§9 (a) Describe an NC circuit for the problem of computing the product
of two given n× n matrices A,B.

(b) Describe an NC circuit for computing, given an n × n matrix,
the matrix An.

Hint:Userepeatedsquaring:A
2

k

=(A
2

k−1
)
2
.

(c) Conclude that the PATH problem (and hence every NL language)
is in NC.

Hint:Whatisthemeaningofthe(i,j)thentryofA
n
?

§10 A formula is a circuit in which every node (except the input nodes) has
outdegree 1. Show that a language is computable by polynomial-size
formulae iff it is in (nonuniform) NC1.

Hint:aformulamaybeviewed—onceweexcludetheinput
nodes—asadirectedbinarytree,andinabinarytreeofsizem
thereisalwaysanodewhoseremovalleavessubtreesofsizeat
most2m/3each.
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§11 Show that NC1 = L. Conclude that PSPACE 6= NC1.

§12 Prove Theorem 6.26. That is, prove that if L is P-complete then
L ∈ NC (resp. L) iff P = NC (resp. L).

§13 Prove Theorem 6.29 (that PH is the set of languages with constant-
depth DC uniform circuits).

§14 Show that EXP is exactly the set of languages with DC uniform cir-
cuits of size 2n

c
where c is some constant (c may depend upon the

language).

§15 Show that if linear programming has a fast parallel algorithm then
P = NC.

Hint:inyourreduction,expresstheCIRCUIT-EVALproblemasa
linearprogramandusethefactthatx∨y=1iffx+y≥1.Be
careful;thevariablesinalinearprogramarereal-valuedandnot
boolean!
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Chapter 7

Randomized Computation

“We do not assume anything about the distribution of the in-
stances of the problem to be solved. Instead we incorporate ran-
domization into the algorithm itself... It may seem at first sur-
prising that employing randomization leads to efficient algorithm.
This claim is substantiated by two examples. The first has to do
with finding the nearest pair in a set of n points in Rk. The sec-
ond example is an extremely efficient algorithm for determining
whether a number is prime.”
Michael Rabin, 1976

Thus far our standard model of computation has been the deterministic
Turing Machine. But everybody who is even a little familiar with compu-
tation knows that that real-life computers need not be deterministic since
they have built-in ”random number generators.” In fact these generators
are very useful for computer simulation of ”random” processes such as nu-
clear fission or molecular motion in gases or the stock market. This chapter
formally studies probablistic computation, and complexity classes associated
with it.

We should mention right away that it is an open question whether or not
the universe has any randomness in it (though quantum mechanics seems
to guarantee that it does). Indeed, the output of current ”random number
generators” is not guaranteed to be truly random, and we will revisit this
limitation in Section 7.4.3. For now, assume that true random number gen-
erators exist. Then arguably, a realistic model for a real-life computer is
a Turing machine with a random number generator, which we call a Prob-
abilistic Turing Machine (PTM). It is natural to wonder whether difficult
problems like 3SAT are efficiently solvable using a PTM.
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We will formally define the class BPP of languages decidable by polynomial-
time PTMs and discuss its relation to previously studied classes such as
P/poly and PH. One consequence is that if PH does not collapse, then
3SAT does not have efficient probabilistic algorithms.

We also show that probabilistic algorithms can be very practical by pre-
senting ways to greatly reduce their error to absolutely minuscule quantities.
Thus the class BPP (and its sister classes RP, coRP and ZPP) introduced
in this chapter are arguably as important as P in capturing efficient com-
putation. We will also introduce some related notions such as probabilistic
logspace algorithms and probabilistic reductions.

Though at first randomization seems merely a tool to allow simulations
of randomized physical processes, the surprising fact is that in the past
three decades randomization has led to more efficient —and often simpler—
algorithms for problems in a host of other fields—such as combinatorial
optimization, algebraic computation, machine learning, and network rout-
ing.

In complexity theory too, the role of randomness extends far beyond
a study of randomized algorithms and classes such as BPP. Entire areas
such as cryptography and interactive and probabilistically checkable proofs
rely on randomness in an essential way, sometimes to prove results whose
statement did not call for randomness at all. The groundwork for studying
those areas will be laid in this chapter.

In a later chapter, we will learn something intriguing: to some extent,
the power of randomness may be a mirage. If a certain plausible complexity-
theoretic conjecture is true (see Chapters 17 and 18), then every probabilistic
algorithm can be simulated by a deterministic algorithm (one that does not
use any randomness whatsoever) with only polynomial overhead.

Throughout this chapter and the rest of the book, we will use some no-
tions from elementary probability on finite sample spaces; see the appendix
for a quick review.

7.1 Probabilistic Turing machines

We now define probabilistic Turing machines (PTMs). Syntactically, a PTM
is no different from a nondeterministic TM: it is a TM with two transition
functions δ0, δ1. The difference lies in how we interpret the graph of all
possible computations: instead of asking whether there exists a sequence
of choices that makes the TM accept, we ask how large is the fraction of
choices for which this happens. More precisely, if M is a PTM, then we
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envision that in every step in the computation, M chooses randomly which
one of its transition functions to apply (with probability half applying δ0
and with probability half applying δ1). We say that M decides a language
if it outputs the right answer with probability at least 2/3.

Notice, the ability to pick (with equal probability) one of δ0, δ1 to ap-
ply at each step is equivalent to the machine having a ”fair coin”, which,
each time it is tossed, comes up ”Heads” or ”Tails” with equal probability
regardless of the past history of Heads/Tails. As mentioned, whether or not
such a coin exists is a deep philosophical (or scientific) question.

Definition 7.1 (The classes BPTIME and BPP)
For T : N → N and L ⊆ {0, 1}∗, we say that a PTM M decides L in time T (n), if
for every x ∈ {0, 1}∗, M halts in T (|x|) steps regardless of its random choices, and
Pr[M(x) = L(x)] ≥ 2/3, where we denote L(x) = 1 if x ∈ L and L(x) = 0 if x 6∈ L.
We let BPTIME(T (n)) denote the class of languages decided by PTMs in O(T (n))
time and let BPP = ∪cBPTIME(nc).

Remark 7.2
We will see in Section 7.4 that this definition is quite robust. For instance,
the ”coin” need not be fair. The constant 2/3 is arbitrary in the sense that it
can be replaced with any other constant greater than half without changing
the classes BPTIME(T (n)) and BPP. Instead of requiring the machine
to always halt in polynomial time, we could allow it to halt in expected
polynomial time.

Remark 7.3
While Definition 7.1 allows the PTM M , given input x, to output a value
different from L(x) with positive probability, this probability is only over the
random choices that M makes in the computation. In particular for every
input x, M(x) will output the right value L(x) with probability at least 2/3.
Thus BPP, like P, is still a class capturing worst-case computation.

Since a deterministic TM is a special case of a PTM (where both tran-
sition functions are equal), the class BPP clearly contains P. As alluded
above, under plausible complexity assumptions it holds that BPP = P.
Nonetheless, as far as we know it may even be that BPP = EXP. (Note
that BPP ⊆ EXP, since given a polynomial-time PTM M and input
x ∈ {0, 1}n in time 2poly(n) it is possible to enumerate all possible ran-
dom choices and compute precisely the probability that M(x) = 1.)
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An alternative definition. As we did with NP, we can define BPP
using deterministic TMs where the ”probabilistic choices” to apply at each
step can be provided to the TM as an additional input:

Definition 7.4 (BPP, alternative definition)
BPP contains a language L if there exists a polynomial-time TM M and a
polynomial p : N→ N such that for every x ∈ {0, 1}∗, Pr

r∈R{0,1}p(|x|)
[M(x, r) =

L(x)] ≥ 2/3.

7.2 Some examples of PTMs

The following examples demonstrate how randomness can be a useful tool
in computation. We will see many more examples in the rest of this book.

7.2.1 Probabilistic Primality Testing

In primality testing we are given an integerN and wish to determine whether
or not it is prime. Generations of mathematicians have learnt about prime
numbers and —before the advent of computers— needed to do primality
testing to test various conjectures1. Ideally, we want efficient algorithms,
which run in time polynomial in the size of N ’s representation, in other
words, poly(log n). We knew of no such efficient algorithms2 until the
1970s, when an effficient probabilistic algorithm was discovered. This was
one of the first to demonstrate the power of probabilistic algorithms. In a
recent breakthrough, Agrawal, Kayal and Saxena [?] gave a deterministic
polynomial-time algorithm for primality testing.

Formally, primality testing consists of checking membership in the lan-
guage PRIMES = { xNy : N is a prime number}. Notice, the corresponding
search problem of finding the factorization of a given composite number N
seems very different and much more difficult. It is the famous FACTORING
problem, whose conjectured hardness underlies many current cryptosystems.
Chapter 21 describes Shor’s algorithm to factors integers in polynomial time
in the model of quantum computers.

We sketch an algorithm showing that PRIMES is in BPP (and in fact in

1Though a very fast human computer himself, Gauss used the help of a human super-
computer –an autistic person who excelled at fast calculations—to do primality testing.

2In fact, in his letter to von Neumann quoted in Chapter 2, Gödel explicitly men-
tioned this problem as an example for an interesting problem in NP but not known to be
efficiently solvable.
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coRP). For every number N , and A ∈ [N − 1], define

QRN (A) =


0 gcd(A,N) 6= 1

+1
A is a quadratic residue modulo N
That is, A = B2 (mod N) for some B with gcd(B,N) = 1

−1 otherwise

We use the following facts that can be proven using elementary number
theory:

• For every odd prime N and A ∈ [N − 1], QRN (A) = A(N−1)/2

(mod N).

• For every odd N,A define the Jacobi symbol (NA ) as
∏k
i=1QRPi(A)

where P1, . . . , Pk are all the (not necessarily distinct) prime factors of
N (i.e., N =

∏k
i=1 Pi). Then, the Jacobi symbol is computable in time

O(logA · logN).

• For every odd composite N ,
∣∣{A ∈ [N − 1] : gcd(N,A)=1 and (NA ) =

A(N−1)/2}
∣∣ ≤ 1

2

∣∣{A ∈ [N − 1] : gcd(N,A) = 1}
∣∣

Together these facts imply a simple algorithm for testing primality of N
(which we can assume without loss of generality is odd): choose a random
1 ≤ A < N , if gcd(N,A) > 1 or (NA ) 6= A(N−1)/2 (mod N) then output
“composite”, otherwise output “prime”. This algorithm will always output
“prime” is N is prime, but if N is composite will output “composite” with
probability at least 1/2. (Of course this probability can be amplified by
repeating the test a constant number of times.)

7.2.2 Polynomial identity testing

So far we described probabilistic algorithms solving problems that have
known deterministic polynomial time algorithms. We now describe a prob-
lem for which no such deterministic algorithm is known:

We are given a polynomial with integer coefficients in an implicit form,
and we want to decide whether this polynomial is in fact identically zero. We
will assume we get the polynomial in the form of an arithmetic circuit. This
is analogous to the notion of a Boolean circuit, but instead of the operators
∧,∨ and ¬, we have the operators +,− and ×. Formally, an n-variable
arithmetic circuit is a directed acyclic graph with the sources labeled by
a variable name from the set x1, . . . , xn, and each non-source node has in-
degree two and is labeled by an operator from the set {+,−,×}. There is a
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single sink in the graph which we call the output node. The arithmetic circuit
defines a polynomial from Zn to Z by placing the inputs on the sources and
computing the value of each node using the appropriate operator. We define
ZEROP to be the set of arithmetic circuits that compute the identically zero
polynomial. Determining membership in ZEROP is also called polynomial
identity testing, since we can reduce the problem of deciding whether two
circuits C,C ′ compute the same polynomial to ZEROP by constructing the
circuit D such that D(x1, . . . , xn) = C(x1, . . . , xn)− C ′(x1, . . . , xn).

Since expanding all the terms of a given arithmetic circuit can result in
a polynomial with exponentially many monomials, it seems hard to decide
membership in ZEROP. Surprisingly, there is in fact a simple and efficient
probabilistic algorithm for testing membership in ZEROP. At the heart of
this algorithm is the following fact, typically known as the Schwartz-Zippel
Lemma, whose proof appears in the appendix (see Lemma A.23):

Lemma 7.5
Let p(x1, x2, . . . , xm) be a polynomial of total degree at most d and S is
any finite set of integers. When a1, a2, . . . , am are randomly chosen with
replacement from S, then

Pr[p(a1, a2, . . . , am) 6= 0] ≥ 1− d

|S|
.

Now it is not hard to see that given a size m circuit C on n variables,
it defines a polynomial of degree at most 2m. This suggests the following
simple probabilistic algorithm: choose n numbers x1, . . . , xn from 1 to 10·2m
(this requires O(n ·m) random bits), evaluate the circuit C on x1, . . . , xn to
obtain an output y and then accept if y = 0, and reject otherwise. Clearly
if C ∈ ZEROP then we always accept. By the lemma, if C 6∈ ZEROP then
we will reject with probability at least 9/10.

However, there is a problem with this algorithm. Since the degree of the
polynomial represented by the circuit can be as high as 2m, the output y
and other intermediate values arising in the computation may be as large as
(10 · 2m)2

m
— this is a value that requires exponentially many bits just to

describe!
We solve this problem using the technique of fingerprinting. The idea

is to perform the evaluation of C on x1, . . . , xn modulo a number k that is
chosen at random in [22m]. Thus, instead of computing y = C(x1, . . . , xn),
we compute the value y (mod k). Clearly, if y = 0 then y (mod k) is also
equal to 0. On the other hand, we claim that if y 6= 0, then with probability
at least δ = 1

10m , k does not divide y. (This will suffice because we can
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repeat this procedure O(1/δ) times to ensure that if y 6= 0 then we find
this out with probability at lest 9/10.) Indeed, assume that y 6= 0 and let
S = {p1, . . . , p`} denote set of the distinct prime factors of y. It is sufficient
to show that with probability at δ, the number k will be a prime number
not in S. Yet, by the prime number theorem, the probability that k is prime
is at least 1

5m = 2δ. Also, since y can have at most log y ≤ 5m2m distinct
factors, the probability that k is in S is less than 5m2m

22m � 1
10m = δ. Hence

by the union bound, with probability at least δ, k will not divide y.

7.2.3 Testing for perfect matching in a bipartite graph.

If G = (V1, V2, E) is the bipartite graph where |V1| = |V2| and E ⊆ V1 ×
V2 then a perfect matching is some E′ ⊆ E such that every node appears
exactly once among the edges of E′. Alternatively, we may think of it as a
permutation σ on the set {1, 2, . . . , n} (where n = |V1|) such that for each i ∈
{1, 2, . . . , n}, the pair (i, σ(i)) is an edge. Several deterministic algorithms
are known for detecting if a perfect matching exists. Here we describe a
very simple randomized algorithm (due to Lovász) using the Schwartz-Zippel
lemma.

Consider the n × n matrix X (where n = |V1| = |V2|) whose (i, j) en-
try Xij is the variable xij if (i, j) ∈ E and 0 otherwise. Recall that the
determinant of matrix det(X) is

det(X) =
∑
σ∈Sn

(−1)sign(σ)
n∏
i=1

Xi,σ(i), (1)

where Sn is the set of all permutations of {1, 2, . . . , n}. Note that every per-
mutation is a potential perfect matching, and the corresponding monomial
in det(X) is nonzero iff this perfect matching exists in G. Thus the graph
has a perfect matching iff det(X) 6= 0.

Now observe two things. First, the polynomial in (1) has |E| variables
and total degree at most n. Second, even though this polynomial may be
of exponential size, for every setting of values to the Xij variables it can
be efficiently evaluated, since computing the determinant of a matrix with
integer entries is a simple polynomial-time computation (actually, even in
NC2).

This leads us to Lovász’s randomized algorithm: pick random values for
Xij ’s from [1, . . . , 2n], substitute them in X and compute the determinant.
If the determinant is nonzero, output “accept” else output “reject.” The
advantage of the above algorithm over classical algorithms is that it can be
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implemented by a randomized NC circuit, which means (by the ideas of
Section 6.5.1) that it has a fast implementation on parallel computers.

7.3 One-sided and zero-sided error: RP, coRP,
ZPP

The class BPP captured what we call probabilistic algorithms with two
sided error. That is, it allows the machine M to output (with some small
probability) both 0 when x ∈ L and 1 when x 6∈ L. However, many prob-
abilistic algorithms have the property of one sided error. For example if
x 6∈ L they will never output 1, although they may output 0 when x ∈ L.
This is captured by the definition of RP.
Definition 7.6
RTIME(t(n)) contains every language L for which there is a is a proba-
bilistic TM M running in t(n) time such that

x ∈ L⇒ Pr[M accepts x] ≥ 2
3

x 6∈ L⇒ Pr[M accepts x] = 0

We define RP = ∪c>0RTIME(nc).

Note that RP ⊆ NP, since every accepting branch is a “certificate” that
the input is in the language. In contrast, we do not know if BPP ⊆ NP.
The class coRP = {L | L ∈ RP} captures one-sided error algorithms with
the error in the “other direction” (i.e., may output 1 when x 6∈ L but will
never output 0 if x ∈ L).

For a PTM M , and input x, we define the random variable TM,x to be
the running time of M on input x. That is, Pr[TM,x = T ] = p if with
probability p over the random choices of M on input x, it will halt within
T steps. We say that M has expected running time T (n) if the expectation
E[TM,x] is at most T (|x|) for every x ∈ {0, 1}∗. We now define PTMs that
never err (also called “zero error” machines):

Definition 7.7
The class ZTIME(T (n)) contains all the languages L for which there is an
expected-time O(T (n)) machine that never errs. That is,

x ∈ L⇒ Pr[M accepts x] = 1
x 6∈ L⇒ Pr[M halts without accepting on x] = 1

We define ZPP = ∪c>0ZTIME(nc).
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The next theorem ought to be slightly surprising, since the corresponding
statement for nondeterminism is open; i.e., whether or not P = NP∩coNP.

Theorem 7.8
ZPP = RP ∩ coRP.

We leave the proof of this theorem to the reader (see Exercise 4). To
summarize, we have the following relations between the probabilistic com-
plexity classes:

ZPP =RP ∩ coRP

RP ⊆BPP

coRP ⊆BPP

7.4 The robustness of our definitions

When we defined P and NP, we argued that our definitions are robust
and were likely to be the same for an alien studying the same concepts in a
faraway galaxy. Now we address similar issues for probabilistic computation.

7.4.1 Role of precise constants, error reduction.

The choice of the constant 2/3 seemed pretty arbitrary. We now show that
we can replace 2/3 with any constant larger than 1/2 and in fact even with
1/2 + n−c for a constant c > 0.

Lemma 7.9
For c > 0, let BPPn−c denote the class of languages L for which there is a
polynomial-time PTM M satisfying Pr[M(x) = L(x)] ≥ 1/2+ |x|−c for every
x ∈ {0, 1}∗. Then BPPn−c = BPP.

Since clearly BPP ⊆ BPPn−c , to prove this lemma we need to show that
we can transform a machine with success probability 1/2+n−c into a machine
with success probability 2/3. We do this by proving a much stronger result:
we can transform such a machine into a machine with success probability
exponentially close to one!
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Theorem 7.10 (Error reduction)
Let L ⊆ {0, 1}∗ be a language and suppose that there exists a polynomial-time PTM
M such that for every x ∈ {0, 1}∗, Pr[M(x) = L(x) ≥ 1

2 + |x|−c.
Then for every constant d > 0 there exists a polynomial-time PTM M ′ such that
for every x ∈ {0, 1}∗, Pr[M ′(x) = L(x)] ≥ 1− 2−|x|

d
.

Proof: The machine M ′ is quite simple: for every input x ∈ {0, 1}∗, run
M(x) for k times obtaining k outputs y1, . . . , yk ∈ {0, 1}, where k = 8|x|2d+c.
If the majority of these values are 1 then accept, otherwise reject.

To analyze this machine, define for every i ∈ [k] the random variable Xi

to equal 1 if yi = L(x) and to equal 0 otherwise. Note that X1, . . . , Xk are
independent Boolean random variables with E[Xi] = Pr[Xi = 1] ≥ 1/2+n−c

(where n = |x|). The Chernoff bound (see Theorem A.16 in the appendix)
implies the following corollary:

Corollary 7.11
Let X1, . . . , Xk be independent identically distributed Boolean random vari-
ables, with Pr[Xi = 1] = p for every 1 ≤ i ≤ k. Let δ ∈ (0, 1). Then,

Pr
[∣∣∣∣∣ 1k

k∑
i=1

Xi − p

∣∣∣∣∣ > δ
]
< e−

δ2

4 pk

In our case p = 1/2 + n−c, and plugging in δ = n−c/2, the probability
we output a wrong answer is bounded by

Pr[ 1
n

k∑
i=1

Xi ≤ 1/2 + n−c/2] ≤ e−
1

4n−2c
1
28n2c+d

≤ 2−n
d

�

A similar result holds for the class RP. In fact, there we can replace the
constant 2/3 with every positive constant, and even with values as low as
n−c. That is, we have the following result:

Theorem 7.12
Let L ⊆ {0, 1}∗ such that there exists a polynomial-time PTM M satisfying
for every x ∈ {0, 1}∗: (1) If x ∈ L then Pr[M(x) = 1)] ≥ n−c and (2) if
x 6∈ L, then Pr[M(x) = 1] = 0.

Then for every d > 0 there exists a polynomial-time PTM M ′ such that
for every x ∈ {0, 1}∗, (1) if x ∈ L then Pr[M ′(x) = 1] ≥ 1 − 2−n

d
and (2)

if x 6∈ L then Pr[M ′(x) = 1] = 0.
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These results imply that we can take a probabilistic algorithm that suc-
ceeds with quite modest probability and transform it into an algorithm that
succeeds with overwhelming probability. In fact, even for moderate values
of n an error probability that is of the order of 2−n is so small that for all
practical purposes, probabilistic algorithms are just as good as deterministic
algorithms.

If the original probabilistic algorithm used m coins, then the error re-
duction procedure we use (run k independent trials and output the majority
answer) takes O(m · k) random coins to reduce the error to a value expo-
nentially small in k. It is somewhat surprising that we can in fact do better,
and reduce the error to the same level using only O(m+k) random bits (see
Chapter 16).

7.4.2 Expected running time versus worst-case running time.

When defining RTIME(T (n)) and BPTIME(T (n)) we required the ma-
chine to halt in T (n) time regardless of its random choices. We could have
used expected running time instead, as in the definition of ZPP (Defini-
tion 7.7). It turns out this yields an equivalent definition: we can add a
time counter to a PTM M whose expected running time is T (n) and en-
sure it always halts after at most 100T (n) steps. By Markov’s inequality
(see Lemma A.8), the probability that M runs for more than this time is at
most 1/100. Thus by halting after 100T (n) steps, the acceptance probability
is changed by at most 1/100.

7.4.3 Allowing more general random choices than a fair ran-
dom coin.

One could conceive of real-life computers that have a “coin” that comes up
heads with probability ρ that is not 1/2. We call such a coin a ρ-coin. Indeed
it is conceivable that for a random source based upon quantum mechanics,
ρ is an irrational number, such as 1/e. Could such a coin give probabilistic
algorithms new power? The following claim shows that it will not.

Lemma 7.14
A coin with Pr[Heads] = ρ can be simulated by a PTM in expected time
O(1) provided the ith bit of ρ is computable in poly(i) time.

Proof: Let the binary expansion of ρ be 0.p1p2p3 . . .. The PTM generates
a sequence of random bits b1, b2, . . . , one by one, where bi is generated at
step i. If bi < pi then the machine outputs “heads” and stops; if bi > pi
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Note 7.13 (The Chernoff Bound)
The Chernoff bound is extensively used (sometimes under different names)
in many areas of computer science and other sciences. A typical scenario is
the following: there is a universe U of objects, a fraction µ of them have a
certain property, and we wish to estimate µ. For example, in the proof of
Theorem 7.10 the universe was the set of 2m possible coin tosses of some
probabilistic algorithm and we wanted to know how many of them cause the
algorithm to accept its input. Another example is that U may be the set of
all the citizens of the United States, and we wish to find out how many of
them approve of the current president.
A natural approach to compute the fraction µ is to sample n members of the
universe independently at random, find out the number k of the sample’s
members that have the property and to estimate that µ is k/n. Of course,
it may be quite possible that 10% of the population supports the president,
but in a sample of 1000 we will find 101 and not 100 such people, and so
we set our goal only to estimate µ up to an error of ±ε for some ε > 0.
Similarly, even if only 10% of the population have a certain property, we
may be extremely unlucky and select only people having it for our sample,
and so we allow a small probability of failure δ that our estimate will be
off by more than ε. The natural question is how many samples do we need
to estimate µ up to an error of ±ε with probability at least 1 − δ? The
Chernoff bound tells us that (considering µ as a constant) this number is
O(log(1/δ)/ε2).
This implies that if we sample n elements, then the probability that the
number k having the property is ρ

√
n far from µn decays exponentially with

ρ: that is, this probability has the famous “bell curve” shape:

k

Pr[ ]

0 n
0

1

µn µn+ρn1/2µn-ρn1/2

k have
property

We will use this exponential decay phenomena several times in this book,
starting with the proof of Theorem 7.16, showing that BPP ⊆ P/poly.
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the machine outputs “tails” and halts; otherwise the machine goes to step
i+ 1. Clearly, the machine reaches step i+ 1 iff bj = pj for all j ≤ i, which
happens with probability 1/2i. Thus the probability of “heads” is

∑
i pi

1
2i
,

which is exactly ρ. Furthermore, the expected running time is
∑

i i
c · 1

2i
. For

every constant c this infinite sum is upperbounded by another constant (see
Exercise 1). �

Conversely, probabilistic algorithms that only have access to ρ-coins do
not have less power than standard probabilistic algorithms:

Lemma 7.15 (Von-Neumann)
A coin with Pr[Heads] = 1/2 can be simulated by a probabilistic TM with
access to a stream of ρ-biased coins in expected time O( 1

ρ(1−ρ)).

Proof: We construct a TM M that given the ability to toss ρ-coins, outputs
a 1/2-coin. The machine M tosses pairs of coins until the first time it gets
two different results one after the other. If these two results were first
“heads” and then “tails”, M outputs “heads”. If these two results were first
“tails” and then “heads”, M outputs “tails”. For each pair, the probability
we get two “heads” is ρ2, the probability we get two “tails” is (1− ρ)2, the
probability we get “head” and then“tails” is ρ(1 − ρ), and the probability
we get “tails” and then “head” is (1− ρ)ρ. We see that the probability we
halt and output in each step is 2ρ(1− ρ), and that conditioned on this, we
do indeed output either “heads” or “tails” with the same probability. Note
that we did not need to know ρ to run this simulation. �

Weak random sources. Physicists (and philosophers) are still not com-
pletely certain that randomness exists in the world, and even if it does, it
is not clear that our computers have access to an endless stream of inde-
pendent coins. Conceivably, it may be the case that we only have access
to a source of imperfect randomness, that although unpredictable, does not
consist of independent coins. As we will see in Chapter 17, we do know
how to simulate probabilistic algorithms designed for perfect independent
1/2-coins even using such a weak random source.

7.5 BPP ⊆ P/poly

Now we show that all BPP languages have polynomial sized circuits. To-
gether with Theorem ?? this implies that if 3SAT ∈ BPP then PH = Σp

2.
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Theorem 7.16 (Adleman)
BPP ⊆ P/poly.

Proof: Suppose L ∈ BPP, then by the alternative definition of BPP and
the error reduction procedure of Theorem 7.10, there exists a TM M that
on inputs of size n uses m random bits and satisfies

x ∈ L⇒ Prr [M(x, r) accepts ] ≥ 1− 2−(n+2)

x 6∈ L⇒ Prr [M(x, r) accepts ] ≤ 2−(n+2)

(Such a machine exists by the error reduction arguments mentioned earlier.)
Say that an r ∈ {0, 1}m is bad for an input x ∈ {0, 1}n if M(x, r) is

an incorrect answer, otherwise we say its good for x. For every x, at most
2 · 2m/2(n+2) values of r are bad for x. Adding over all x ∈ {0, 1}n, we
conclude that at most 2n × 2m/2(n+1) = 2m/2 strings r are bad for some x.
In other words, at least 2m−2m/2 choices of r are good for every x ∈ {0, 1}n.
Given a string r0 that is good for every x ∈ {0, 1}n, we can hardwire it to
obtain a circuit C (of size at most quadratic in the running time of M) that
on input x outputs M(x, r0). The circuit C will satisfy C(x) = L(x) for
every x ∈ {0, 1}n. �

7.6 BPP is in PH

At first glance, BPP seems to have nothing to do with the polynomial
hierarchy, so the next theorem is somewhat surprising.

Theorem 7.17 (Sipser-Gács)
BPP ⊆ Σp

2 ∩Πp
2

Proof: It is enough to prove that BPP ⊆ Σp
2 because BPP is closed under

complementation (i.e., BPP = coBPP).
Suppose L ∈ BPP. Then by the alternative definition of BPP and the

error reduction procedure of Theorem 7.10 there exists a polynomial-time
deterministic TM M for L that on inputs of length n uses m = poly(n)
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random bits and satisfies

x ∈ L⇒ Prr [M(x, r) accepts ] ≥ 1− 2−n

x 6∈ L⇒ Prr [M(x, r) accepts ] ≤ 2−n

For x ∈ {0, 1}n, let Sx denote the set of r’s for whichM accepts the input
pair (x, r). Then either |Sx| ≥ (1− 2−n)2m or |Sx| ≤ 2−n2m, depending on
whether or not x ∈ L. We will show how to check, using two alternations,
which of the two cases is true.

Figure 7.1: There are only two possible sizes for the set of r’s such thatM(x, r) =Accept:
either this set is almost all of {0, 1}m or a tiny fraction of {0, 1}m. In the former case, a
few random “shifts” of this set are quite likely to cover all of {0, 1}m. In the latter case
the set’s size is so small that a few shifts cannot cover {0, 1}m

For k = m
n + 1, let U = {u1, . . . , uk} be a set of k strings in {0, 1}m. We

define GU to be a graph with vertex set {0, 1}m and edges (r, s) for every
r, s such that r = s + ui for some i ∈ [k] (where + denotes vector addition
modulo 2, or equivalently, bitwise XOR). Note that the degree of GU is k.
For a set S ⊆ {0, 1}m, define ΓU (S) to be all the neighbors of S in the graph
GU . That is, r ∈ ΓU (S) if there is an s ∈ S and i ∈ [k] such that r = s+ui.
Claim 1: For every set S ⊆ {0, 1}m with |S| ≤ 2m−n and every set U of size
k, it holds that ΓU (S) 6= {0, 1}m. Indeed, since ΓU has degree k, it holds
that |ΓU (S)| ≤ k|S| < 2m.
Claim 2: For every set S ⊆ {0, 1}m with |S| ≥ (1− 2−n)2m there exists a set
U of size k such that ΓU (S) = {0, 1}m. We show this by the probabilistic
method, by proving that for every S, if we choose U at random by taking
k random strings u1, . . . , uk, then Pr[ΓU (S) = {0, 1}m] > 0. Indeed, for
r ∈ {0, 1}m, let Br denote the “bad event” that r is not in ΓU (S). Then,
Br = ∩i∈[k]B

i
r where Bi

r is the event that r 6∈ S + ui, or equivalently, that
r+ui 6∈ S (using the fact that modulo 2, a+ b = c⇔ a = c+ b). Yet, r+ui
is a uniform element in {0, 1}m, and so it will be in S with probability at
least 1 − 2−n. Since B1

r , . . . , B
k
r are independent, the probability that Br

happens is at most (1− 2−n)k < 2−m. By the union bound, the probability
that ΓU (S) 6= {0, 1}m is bounded by

∑
r∈{0,1}m Pr[Br] < 1.
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Together Claims 1 and 2 show x ∈ L if and only if the following statement
is true

∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
k∨
i=1

M(x, r ⊕ ui)accepts

thus showing L ∈ Σ2. �

7.7 State of our knowledge about BPP

We know that P ⊆ BPP ⊆ P/poly, and furthermore, that BPP ⊆ Σp
2 ∩

Πp
2 and so if NP = p then BPP = P. As mentioned above, there are

complexity-theoretic reasons to strongly believe that BPP ⊆ DTIME(2ε)
for every ε > 0, and in fact to reasonably suspect that BPP = P (see
Chapters 17 and 18). However, currently we are not even able to rule out
that BPP = NEXP!

Complete problems for BPP?

Though a very natural class, BPP behaves differently in some ways from
other classes we have seen. For example, we know of no complete languages
for it (under deterministic polynomial time reductions). One reason for this
difficulty is that the defining property of BPTIME machines is semantic,
namely, that for every string they either accept with probability at least 2/3
or reject with probability at least 1/3. Given the description of a Turing
machineM , testing whether it has this property is undecidable. By contrast,
the defining property of an NDTM is syntactic: given a string it is easy to
determine if it is a valid encoding of an NDTM. Completeness seems easier
to define for syntactically defined classes than for semantically defined ones.
For example, consider the following natural attempt at a BPP-complete
language: L = {〈M,x〉 : Pr[M(x) = 1] ≥ 2/3}. This language is indeed
BPP-hard but is not known to be in BPP. In fact, it is not in any level
of the polynomial hierarchy unless the hierarchy collapses. We note that if,
as believed, BPP = P, then BPP does have a complete problem. (One
can sidestep some of the above issues by using promise problems instead of
languages, but we will not explore this.)

Does BPTIME have a hierarchy theorem?

Is BPTIME(nc) contained in BPTIME(n) for some c > 1? One would
imagine not, and this seems as the kind of result we should be able to prove
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using the tools of Chapter 4. However currently we are even unable to show
that BPTIME(nlog2 n) (say) is not in BPTIME(n). The standard diago-
nalization techniques fail, for similar reasons as the ones above. However,
recently there has been some progress on obtaining hierarchy theorem for
some closely related classes (see notes).

7.8 Randomized reductions

Since we have defined randomized algorithms, it also makes sense to define a
notion of randomized reduction between two languages. This proves useful
in some complexity settings (e.g., see Chapters 8 and 9).

Definition 7.18
Language A reduces to language B under a randomized polynomial time
reduction, denoted A ≤r B, if there exists a deterministic, polynomial time
computable function f : {0, 1}∗ → {0, 1}∗ and a polynomial p() such that

∀x ∈ A Pry∈{0,1}p(|x|) [f(x, y) ∈ B] ≥ 2/3

∀x 6∈ A Pry∈{0,1}p(|x|) [f(x, y) ∈ B] ≤ 1/3

We note that if A ≤r B and B ∈ BPP then A ∈ BPP. This alerts us to
the possibility that we could have defined NP-completeness using random-
ized reductions instead of deterministic reductions, since arguably BPP is
as good as P as a formalization of the notion of efficient computation. Re-
call that the Cook-Levin theorem shows that NP may be defined as the set
{L : L ≤p 3SAT}. The following definition is analogous.

Definition 7.19 (BP ·NP)
BP ·NP = {L : L ≤r 3SAT}.

We explore the properties of BP ·NP in the exercises, including whether
or not 3SAT ∈ BP ·NP.

One interesting application of randomized reductions will be shown in
Chapter 8, where we present a (variant of a) randomized reduction from
3SAT to the solving special case of 3SAT where we are guaranteed that the
formula is either unsatisfiable or has a single unique satisfying assignment.

7.9 Randomized space-bounded computation

A PTM is said to work in space S(n) if every branch requires space O(S(n))
on inputs of size n and terminates in 2O(S(n)) time. Recall that the machine
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has a read-only input tape, and the work space only cell refers only to
its read/write work tapes. As a PTM it has two transition functions that
are applied with equal probability. The most interesting case is when the
worktape has O(log n) size and the associated complexity classes RL and
BPL are defined analogously to RP and BPP. That is, L ∈ BPL if
there’s a O(log n)-space PTM M such that for every x ∈ {0, 1}∗, Pr[M(x) =
L(x)] ≥ 2/3, whereas L ∈ RL if there’s a O(log n)-space PTM M such that
(1) for every x ∈ L, Pr[M(x) = L(x)] ≥ 2/3 and (2) for every x 6∈ L,
Pr[M(x) = L(x)] = 0. The reader can verify that the error reduction
procedure described in Chapter 7 can be implemented with only logarithmic
space overhead, and hence also in these definitions the choice of the precise
constant is not significant. We note that RL ⊆ NL, and thus RL ⊆ P.
The exercises ask you to show that BPL ⊆ P as well.

One famous RL-algorithm is the algorithm to solve UPATH: the re-
striction of the NL-complete PATH problem (see Chapter 3) to undirected
graphs. That is, given an n-vertex undirected graph G and two vertices s
and t, determine whether s is connected to t in G. The algorithm is actually
very simple: take a random walk of length n3 starting from s. That is,
initialize the variable v to the vertex s and in each step choose a random
neighbor u of v, and set v ← u. Accept iff the walk reaches t within n3 steps.
Clearly, if s is not connected to t then the algorithm will never accept. It
can be shown that if s is connected to t then the expected number of steps
it takes for a walk from s to hit t is at most 4

27n
3 (see Exercise 9 for a some-

what weaker bound) and hence our algorithm will accept with probability
at least 3

4 . In Chapter 16 we analyze a variant of this algorithm and also
show a recent deterministic logspace algorithm for the same problem.

It is known that BPL (and hence also RL) is contained in SPACE(log3/2 n).
In Chapter 17 we will see a somewhat weaker result: a simulation of BPL
in log2 n space and polynomial time.
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What have we learned?

• The class BPP consists of languages that can be solved by a probabilistic
polynomial-time algorithm. The probability is only over the algorithm’s coins
and not the choice of input. It is arguably a better formalization of efficient
computation than P.

• RP, coRP and ZPP are subclasses of BPP corresponding to probabilistic
algorithms with one-sided and “zero-sided” error.

• Using repetition, we can considerably amplify the success probability of prob-
abilistic algorithms.

• We only know that P ⊆ BPP ⊆ EXP, but we suspect that BPP = P.

• BPP is a subset of both P/poly and PH. In particular, the latter implies
that if NP = P then BPP = P.

• Randomness is used in complexity theory in many contexts beyond BPP. Two
examples are randomized reductions and randomized logspace algorithms, but
we will see many more later.

Chapter notes and history

Early researchers realized the power of randomization since their computa-
tions —e.g., for design of nuclear weapons— used probabilistic tools such as
Monte Carlo simulations. Papers by von Neumann [von61] and de Leeuw
et al. [LMSS56] describe probabilistic Turing machines. The definitions of
BPP, RP and ZPP are from Gill [Gil77]. (In an earlier conference pa-
per [Gil74], Gill studies similar issues but seems to miss the point that a
practical algorithm for deciding a language must feature a gap between the
acceptance probability in the two cases.)

The algorithm used to show PRIMES is in coRP is due to Solovay and
Strassen [SS77]. Another primality test from the same era is due to Ra-
bin [Rab80]. Over the years, better tests were proposed. In a recent break-
through, Agrawal, Kayal and Saxena finally proved that PRIMES ∈ P. Both
the probabilistic and deterministic primality testing algorithms are described
in Shoup’s book [?].

Lovász’s randomized NC algorithm [Lov79] for deciding the existence
of perfect matchings is unsatisfying in the sense that when it outputs “Ac-
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cept,” it gives no clue how to find a matching! Subsequent probabilistic NC
algorithms can find a perfect matching as well; see [KUW86, MVV87].

BPP ⊆ P/poly is from Adelman [Adl78]. BPP ⊆ PH is due to
Sipser [Sip83], and the stronger form BPP ⊆ Σp

2 ∩Πp
2 is due to P. Gács.

Recent work [] shows that BPP is contained in classes that are seemingly
weaker than Σp

2 ∩Πp
2.

Even though a hierarchy theorem for BPP seems beyond our reach,
there has been some success in showing hierarchy theorems for the seemingly
related class BPP/1 (i.e., BPP with a single bit of nonuniform advice)
[Bar02, ?, ?].

Readers interested in randomized algorithms are referred to the excellent
book by Motwani and Raghavan [MR95] from the mid 1990s.

Exercises

§1 Show that for every c > 0, the following infinite sum is finite:∑
i≥1

ic

2i
.

§2 Show, given input the numbers a, n, p (in binary representation), how
to compute an(modp) in polynomial time.

Hint:usethebinaryrepresentationofnandrepeatedsquaring.

§3 Let us study to what extent Claim ?? truly needs the assumption that
ρ is efficiently computable. Describe a real number ρ such that given
a random coin that comes up “Heads” with probability ρ, a Turing
machine can decide an undecidable language in polynomial time.

Hint:thinkoftherealnumberρasanadvicestring.Howcanits
bitsberecovered?

§4 Show that ZPP = RP ∩ coRP.

§5 A nondeterministic circuit has two inputs x, y. We say that it accepts
x iff there exists y such that C(x, y) = 1. The size of the circuit is
measured as a function of |x|. Let NP/poly be the languages that
are decided by polynomial size nondeterministic circuits. Show that
BP ·NP ⊆ NP/poly.
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§6 Show using ideas similar to the Karp-Lipton theorem that if 3SAT ∈
BP ·NP then PH collapses to Σp

3. (Combined with above, this shows
it is unlikely that 3SAT ≤r 3SAT.)

§7 Show that BPL ⊆ P

Hint:trytocomputetheprobabilitythatthemachineendsup
intheacceptconfigurationusingeitherdynamicprogrammingor
matrixmultiplication.

§8 Show that the random walk idea for solving connectivity does not work
for directed graphs. In other words, describe a directed graph on n
vertices and a starting point s such that the expected time to reach t
is Ω(2n) even though there is a directed path from s to t.

§9 Let G be an n vertex graph where all vertices have the same degree.

(a) We say that a distribution p over the vertices of G (where pi
denotes the probability that vertex i is picked by p) is stable if
when we choose a vertex i according to p and take a random
step from i (i.e., move to a random neighbor j or i) then the
resulting distribution is p. Prove that the uniform distribution
on G’s vertices is stable.

(b) For p be a distribution over the vertices ofG, let ∆(p) = maxi{pi−
1/n}. For every k, denote by pk the distribution obtained by
choosing a vertex i at random from p and taking k random steps
on G. Prove that if G is connected then there exists k such that
∆(pk) ≤ (1− n−10n)∆(p). Conclude that

i. The uniform distribution is the only stable distribution for
G.

ii. For every vertices u, v of G, if we take a sufficiently long
random walk starting from u, then with high probability the
fraction of times we hit the vertex v is roughly 1/n. That is,
for every ε > 0, there exists k such that the k-step random
walk from u hits v between (1− ε)k/n and (1 + ε)k/n times
with probability at least 1− ε.

(c) For a vertex u in G, denote by Eu the expected number of steps
it takes for a random walk starting from u to reach back u. Show
that Eu ≤ 10n2.

Hint:considertheinfiniterandomwalkstartingfromu.IfEu>

Kthenbystandardtailbounds,uappearsinlessthana2/K
fractionoftheplacesinthiswalk.
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(d) For every two vertices u, v denote by Eu,v the expected number
of steps it takes for a random walk starting from u to reach v.
Show that if u and v are connected by a path of length at most
k then Eu,v ≤ 100kn2. Conclude that for every s and t that are
connected in a graph G, the probability that an 1000n3 random
walk from s does not hit t is at most 1/10.

Hint:Startwiththecasek=1(i.e.,uandvareconnectedby
anedge),thecaseofk>1canbereducedtothisusinglinearity
ofexpectation.NotethattheexpectationofarandomvariableX
overNisequalto∑m∈NPr[X≥m]andsoitsufficestoshowthat
theprobabilitythatan`n

2
-steprandomwalkfromudoesnothit

vdecaysexponentiallywith`.

(e) Let G be an n-vertex graph that is not necessarily regular (i.e.,
each vertex may have different degree). Let G′ be the graph
obtained by adding a sufficient number of parallel self-loops to
each vertex to make G regular. Prove that if a k-step random
walk in G′ from a vertex s hits a vertex t with probability at
least 0.9, then a 10n2k-step random walk from s will hit t with
probability at least 1/2.
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Chapter 8

Complexity of counting

“It is an empirical fact that for many combinatorial problems the
detection of the existence of a solution is easy, yet no computa-
tionally efficient method is known for counting their number....
for a variety of problems this phenomenon can be explained.”
L. Valiant 1979

The class NP captures the difficulty of finding certificates. However, in
many contexts, one is interested not just in a single certificate, but actually
counting the number of certificates. This chapter studies #P, (pronounced
“sharp p”), a complexity class that captures this notion.

Counting problems arise in diverse fields, often in situations having to
do with estimations of probability. Examples include statistical estimation,
statistical physics, network design, and more. Counting problems are also
studied in a field of mathematics called enumerative combinatorics, which
tries to obtain closed-form mathematical expressions for counting problems.
To give an example, in the 19th century Kirchoff showed how to count the
number of spanning trees in a graph using a simple determinant compu-
tation. Results in this chapter will show that for many natural counting
problems, such efficiently computable expressions are unlikely to exist.

Here is an example that suggests how counting problems can arise in
estimations of probability.

Example 8.1
In the GraphReliability problem we are given a directed graph on n nodes.
Suppose we are told that each node can fail with probability 1/2 and want
to compute the probability that node 1 has a path to n.
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A moment’s thought shows that under this simple edge failure model,
the remaining graph is uniformly chosen at random from all subgraphs of
the original graph. Thus the correct answer is

1
2n

(number of subgraphs in which node 1 has a path to n.)

We can view this as a counting version of the PATH problem.

In the rest of the chapter, we study the complexity class #P, a class
containing the GraphReliability problem and many other interesting count-
ing problems. We will show that it has a natural and important complete
problem, namely the problem of computing the permanent of a given matrix.
We also show a surprising connection between PH and #P, called Toda’s
Theorem. Along the way we encounter related complexity classes such as
PP and ⊕P.

8.1 The class #P

We now define the class #P. Note that it contains functions whose output
is a natural number, and not just 0/1.

Definition 8.2 (#P)
A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N → N and a
polynomial-time TM M such that for every x ∈ {0, 1}∗:

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ .
Remark 8.3
As in the case of NP, we can also define #P using non-deterministic TMs.
That is, #P consists of all functions f such that f(x) is equal to the number
of paths from the initial configuration to an accepting configuration in the
configuration graph GM,x of a polynomial-time NDTM M .

The big open question regarding #P, is whether all problems in this
class are efficiently solvable. In other words, whether #P = FP. (Recall
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that FP is the analog of the class P for functions with more than one bit of
output, that is, FP is the set of functions from {0, 1}∗ to {0, 1}∗ computable
by a deterministic polynomial-time Turing machine. Thinking of the output
as the binary representation of an integer we can identify such functions with
functions from {0, 1}∗ to N. Since computing the number of certificates is
at least as hard as finding out whether a certificate exists, if #P = FP then
NP = P. We do not know whether the other direction also holds: whether
NP = P implies that #P = FP. We do know that if PSPACE = P
then #P = FP, since counting the number of certificates can be done in
polynomial space.

Here are two more examples for problems in #P:

• #SAT is the problem of computing, given a Boolean formula φ, the
number of satisfying assignments for φ.

• #CYCLE is the problem of computing, given a directed graph G, the
number of simple cycles in G. (A simple cycle is one that does not
visit any vertex twice.)

Clearly, if #SAT ∈ FP then SAT ∈ P and so P = NP. Thus presumably
#SAT 6∈ FP. How about #CYCLE? The corresponding decision problem
—given a directed graph decide if it has a cycle—can be solved in linear
time by breadth-first-search. The next theorem suggests that the counting
problem may be much harder.

u v

1 2 m

Figure 8.1: Reducing Ham to #CYCLE: by replacing every edge in G with the above
gadget to obtain G′, every simple cycle of length ` in G becomes (2m)` simple cycles in
G′.

Theorem 8.4
If #CYCLE ∈ FP, then P = NP.

Proof: We show that if #CYCLE can be computed in polynomial time, then
Ham ∈ P, where Ham is the NP-complete problem of deciding whether or
not a given digraph has a Hamiltonian cycle (i.e., a simple cycle that visits
all the vertices in the graph). Given a graph G with n vertices, we construct
a graph G′ such that G has a Hamiltonian cycle iff G′ has at least nn

2
cycles.
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To obtain G′, replace each edge (u, v) in G by the gadget shown in
Figure 8.1. The gadget has m = n log n+ 1 levels. It is an acyclic digraph,
so cycles in G′ correspond to cycles in G. Furthermore, there are 2m directed
paths from u to v in the gadget, so a simple cycle of length ` in G yields
(2m)` simple cycles in G′.

Notice, if G has a Hamiltonian cycle, then G′ has at least (2m)n > nn
2

cycles. If G has no Hamiltonian cycle, then the longest cycle in G has length
at most n− 1. The number of cycles is bounded above by nn−1. So G′ can
have at most (2m)n−1 × nn−1 < nn

2
cycles. �

8.1.1 The class PP: decision-problem analog for #P.

Similar to the case of search problems, even when studying counting com-
plexity, we can often restrict our attention to decision problems. The reason
is that there exists a class of decision problems PP such that

PP = P⇔ #P = FP (1)

Intuitively, PP corresponds to computing the most significant bit of
functions in #P. That is, L is in PP if there exists a polynomial-time TM
M and a polynomial p : N→ N such that for every x ∈ {0, 1}∗,

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ ≥ 1
2
· 2p(|x|)

You are asked to prove the non-trivial direction of (1) in Exercise 1. It
is instructive to compare the class PP, which we believe contains problem
requiring exponential time to solve, with the class BPP, which although
it has a seemingly similar definition, can in fact be solved efficiently using
probabilistic algorithms (and perhaps even also using deterministic algo-
rithms, see Chapter 17). Note that we do not know whether this holds also
for the class of decision problems corresponding to the least significant bit
of #P, namely ⊕P (see Definition 8.13 below).

8.2 #P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-
complete if it is in #P and a polynomial-time algorithm for f implies that
#P = FP. To formally define #P-completeness, we use the notion of oracle
TMs, as defined in Section 4.5. Recall that a TM M has oracle access to a
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language O ⊆ {0, 1}∗ if it can make queries of the form “Is q ∈ O?” in one
computational step. We generalize this to non-Boolean functions by saying
that M has oracle access to a function f : {0, 1}∗ → {0, 1}∗, if it is given
access to the language O = {〈x, i〉 : f(x)i = 1}. We use the same notations
for functions mapping {0, 1}∗ to N, identifying numbers with their binary
representation as strings. For a function f : {0, 1}∗ → {0, 1}∗, we define
FPf to be the set of functions that are computable by polynomial-time
TMs that have access to an oracle for f .

Definition 8.5
A function f is #P-complete if it is in #P and every g ∈ #P is in FPf

If f ∈ FP then FPf = FP. Thus the following is immediate.

Proposition 8.6
If f is #P-complete and f ∈ FP then FP = #P.

Counting versions of many NP-complete languages such as 3SAT,Ham,
and CLIQUE naturally lead to #P-complete problems. We demonstrate this
with #SAT:

Theorem 8.7
#SAT is #P-complete

Proof: Consider the Cook-Levin reduction from any L in NP to SAT
we saw in Section 2.3.1. This is a polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗, x ∈ L ⇔ f(x) ∈ SAT.
However, the proof that the reduction works actually gave us more infor-
mation than that. It provided a Levin reduction, by which we mean the
proof showed a way to transform a certificate that x is in L into a certificate
(i.e., satisfying assignment) showing that f(x) ∈ SAT, and also vice versa
(transforming a satisfying assignment for f(x) into a witness that x ∈ L).

In particular, it means that the mapping from the certificates of x to the
assignments of f(x) was invertible and hence one-to-one. Thus the number
of satisfying assignments for f(x) is equal to the number of certificates for
x. �

As shown below, there are #P-complete problems for which the corre-
sponding decision problems are in fact in P.
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8.2.1 Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n × n matrix A is
defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i) (2)

where Sn denotes the set of all permutations of n elements. Recall that the
expression for the determinant is similar

det(A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

Aiσ(i)

except for an additional “sign” term.1 This similarity does not translate
into computational equivalence: the determinant can be computed in poly-
nomial time, whereas computing the permanent seems much harder, as we
see below.

The permanent function can also be interpreted combinatorially. First,
suppose the matrix A has each entry in {0, 1}. It may be viewed as the
adjacency matrix of a bipartite graph G(X,Y,E), with X = {x1, . . . , xn},
Y = {y1, . . . , yn} and {xi, yj} ∈ E iff Ai,j = 1. Then the term

∏n
i=1Aiσ(i)

is 1 iff σ is a perfect matching (which is a set of n edges such that every
node is in exactly one edge). Thus if A is a 0.1 matrix then perm(A) is
simply the number of perfect matchings in the corresponding graph G and
in particular computing perm(A) is in #P. If A is a {−1, 0, 1} matrix, then
perm(A) =

∣∣{σ :
∏n
i=1Aiσ(i) = 1

}∣∣ − ∣∣{σ :
∏n
i=1Aiσ(i) = −1

}∣∣, so one can
make two calls to a #SAT oracle to compute perm(A). In fact one can show
for general integer matrices that computing the permanent is in FP#SAT

(see Exercise 2).
The next theorem came as a surprise to researchers in the 1970s, since it

implies that if perm ∈ FP then P = NP. Thus, unless P = NP, computing
the permanent is much more difficult then computing the determinant.

1It is known that every permutation σ ∈ Sn can be represented as a composition of
transpositions, where a transposition is a permutation that only switches between two
elements in [n] and leaves the other elements intact (one proof for this statement is the
Bubblesort algorithm). If τ1, . . . , τm is a sequence of transpositions such that their com-
position equals σ, then the sign of σ is equal to +1 if m is even and −1 if m is odd. It
can be shown that the sign is well-defined in the sense that it does not depend on the
representation of σ as a composition of transpositions.
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Theorem 8.8 (Valiant’s Theorem)
perm for 0, 1 matrices is #P-complete.

Before proving Theorem 8.8, we introduce yet another way to look at the
permanent. Consider matrix A as the the adjacency matrix of a weighted n-
node digraph (with possible self loops). Then the expression

∏n
i=1Ai,σ(i) is

nonzero iff σ is a cycle-cover of A (a cycle cover is a subgraph in which each
node has in-degree and out-degree 1; such a subgraph must be composed
of cycles). We define the weight of the cycle cover to be the product of the
weights of the edges in it. Thus perm(A) is equal to the sum of weights of
all possible cycle covers.

G’

+1

+1

+1
-1

-1

-1

+1

+1
-1

+1

-1

-1

weight= -1

weight= +1

Figure 8.2: The above graph G has cycle cover weight zero regardless of the choice of
G′, since for every cycle cover of weight w in G′, there exist two covers of weight +w and
−w in the graph G. (Unmarked edges have +1 weight; we follow this convention through
out this chapter.)

Example 8.9
Consider the graph in Figure 8.2. Even without knowing what the subgraph
G′ is, we show that the permanent of the whole graph is 0. For each cycle
cover in G′ of weight w there are exactly two cycle covers for the three nodes,
one with weight +w and one with weight −w. Any non-zero weight cycle
cover of the whole graph is composed of a cycle cover for G′ and one of these
two cycle covers. Thus the sum of the weights of all cycle covers of G is 0.

Proof of Valiant’s Theorem (Theorem 8.8): We reduce the #P-
complete problem #3SAT to perm. Given a boolean formula φ with n vari-
ables and m clauses, first we shall show how to construct an integer matrix
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variable gadget:

....

False edge

external (true) edges - one per clause

Symbolic description:

...

Gadget:

clause gadget:

external edges - one per variable

external edges

variable gadget

clause gadget

XOR gadget:

u u’

v’ v

-1

-1

-1
2

3

u u’

vv’ `   

The overall construction:

external edges

...
variable gadget

clause gadget

...... ......

............

variable gadget
for every variable

clause gadget
for every clause

connect via XOR external
edges of gadgets for
variables that appear in clauses.

Figure 8.3: The gadgets used in the proof of Valiant’s Theorem.
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A′ with negative entries such that perm(A′) = 4m · (#φ). (#φ stands for the
number of satisfying assignments of φ). Later we shall show how to to get
a 0-1 matrix A from A′ such that knowing perm(A) allows us to compute
perm(A′).

The main idea is that our construction will result in two kinds of cycle
covers in the digraph G′ associated with A′: those that correspond to sat-
isfying assignments (we will make this precise) and those that don’t. We
will use negative weights to ensure that the contribution of the cycle cov-
ers that do not correspond to satisfying assignments cancels out. (This is
similar reasoning to the one used in Example 8.9.) On the other hand, we
will show that each satisfying assignment contributes 4m to perm(A′), and
so perm(A′) = 4m · (#φ).

To construct G′ from φ, we combine the following three kinds of gadgets
shown in Figure 8.3:

Variable gadget The variable gadget has two possible cycle covers, cor-
responding to an assignment of 0 or 1 to that variable. Assigning
1 corresponds to a single cycle taking all the external edges (“true-
edges”), and assigning 0 correspond to taking all the self-loops and
taking the “false-edge”. Each external edge of a variable is associated
with a clause in which the variable appears.

Clause gadget The clause gadget is such that the only possible cycle covers
exclude at least one external edge. Also for a given (proper) subset of
external edges used there is a unique cycle cover (of weight 1). Each
external edge is associated with a variable appearing in the clause.

XOR gadget We also use a graph called the XOR gadget whose purpose
is to ensure that for some pair of edges

−−→
uu′ and

−→
v v′, exactly one of

these edges is present in any cycle cover that counts towards the final
sum.

Suppose that we replace a pair of edges
−−→
uu′ and

−→
v v′ in some graph

G with the XOR gadget as described in Figure count:fig:valiantgad to
obtain some graph G′. Then, via similar reasoning to Example 8.9,
every cycle cover of G of weight w that uses exactly one of the edges−−→
uu′ and

−→
v v′ is mapped to a set of cycle covers in G′ whose total weight

is 4w (i.e., the set of covers that enter the gadget at u and exit at u′

or enter it at v and exit it at v′), while all the other cycle covers of
G′ have total weight 0 (Exercise 3). For this reason, whenever we
replace edges

−−→
uu′ and

−→
v v′ with a XOR gadget, we can consider in the
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analysis only cycle covers that use exactly one of these edges, as the
other covers do not contribute anything to the total sum.

The XOR gadgets are used to connect the variable gadgets to the corre-
sponding clause gadgets so that only cycle covers corresponding to a satis-
fying assignment will be counted towards the total number of cycle covers.
Consider a clause, and a variable appearing in it. Each has an external edge
corresponding to the other, connected by an XOR gadget. If the external
edge in the clause is not taken then by the analysis of the XOR gadget the
external edge in the variable must be taken (and hence the variable is true).
Since at least one external edge of each clause gadget has to be omitted,
each cycle cover that is counted towards the sum corresponds to a satisfy-
ing assignment. Conversely, for each satisfying assignment, there is a a set
of cycle covers with total weight 43m (since they passes through the XOR
gadget exactly 3m times). So perm(G′) = 43m#φ.

Reducing to the case 0, 1 matrices. Finally we have to reduce finding
perm(G′) to finding perm(G), where G is an unweighted graph (or equiva-
lently, its adjacency matrix has only 0, 1 entries). We start by reducing to
the case that all edges have weights in {±1}. First, note that replacing an
edge of weight k by k parallel edges of weight 1 does not change the per-
manent. Parallel edges are not allowed, but we can make edges non-parallel
by cutting each edge −→u v in two and inserting a new node w with an edge
from u to w, w to v and a self loop at w. To get rid of the negative weights,
note that the permanent of an n vertex graph with edge weights in {±1} is
a number x in [−n!,+n!] and hence this permanent can be computed from
y = x (mod 2m+1) where m is sufficiently large (e.g., m = n2 will do). But
to compute y it is enough to compute the permanent of the graph where all
weight −1 edges are replaced with edges of weight 2m. Such edges can be
converted to m edges of weight 2 in series, which again can be transformed
to parallel edges of weight +1 as above. �

8.2.2 Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably
difficult, a natural question is whether we can approximate the number of
certificates in the sense of the following definition.

Definition 8.10
Let f :{0, 1}∗ → N and α < 1. An algorithm A is an α-approximation for f
if for every x, αf(x) ≤ A(x) ≤ f(x)/α.
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Not all #P problems behave identically with respect to this notion. Ap-
proximating certain problems within any constant factor α > 0 is NP-hard
(see Exercise 5). For other problems such as 0/1 permanent, there is a Fully
polynomial randomized approximation scheme (FPRAS), which is an algo-
rithm which, for any ε, δ, approximates the function within a factor 1+ε (its
answer may be incorrect with probability δ) in time poly(n, log 1/δ, log 1/ε).
Such approximation of counting problems is sufficient for many applica-
tions, in particular those where counting is needed to obtain estimates for
the probabilities of certain events (e.g., see our discussion of the graph reli-
ability problem).

The approximation algorithm for the permanent —as well as other sim-
ilar algorithms for a host of #P-complete problems—use the Monte Carlo
Markov Chain technique. The result that spurred this development is due
to Valiant and Vazirani and it shows that under fairly general conditions,
approximately counting the number of elements in a set ( membership in
which is testable in polynomial time) is equivalent —in the sense that the
problems are interreducible via polynomial-time randomized reductions—
to the problem of generating a random sample from the set. We will not
discuss this interesting area any further.

Interestingly, if P = NP then every #P problem has an FPRAS (and in
fact an FPTAS: i.e., a deterministic polynomial-time approximation scheme),
see Exercise 6.

8.3 Toda’s Theorem: PH ⊆ P#SAT

An important question in the 1980s was the relative power of the polynomial-
hierarchy PH and the class of counting problems #P. Both are natural
generalizations of NP, but it seemed that their features— alternation and
the ability to count certificates, respectively — are not directly comparable
to each other. Thus it came as big surprise when in 1989 Toda showed:

Theorem 8.11 (Toda’s theorem [Tod91])
PH ⊆ P#SAT.

That is, we can solve any problem in the polynomial hierarchy given an
oracle to a #P-complete problem.
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Remark 8.12
Note that we already know, even without Toda’s theorem, that if #P = FP
then NP = P and so PH = P. However, this does not imply that any prob-
lem in PH can be computed in polynomial-time using an oracle to #SAT.
For example, one implication of Toda’s theorem is that a subexponential
(i.e., 2n

o(1)
-time) algorithm for #SAT will imply such an algorithm for any

problem in PH. Such an implication is not known to hold from a 2n
o(1)

-time
algorithm for SAT.

8.3.1 The class ⊕P and hardness of satisfiability with unique
solutions.

The following complexity class will be used in the proof:

Definition 8.13
A language L in the class ⊕P (pronounced “parity P”) iff there exists a
polynomial time NTM M such that x ∈ L iff the number of accepting paths
of M on input x is odd.

Thus, ⊕P can be considered as the class of decision problems corre-
sponding to the least significant bit of a #P-problem. As in the proof
of Theorem 8.7, the fact that the standard NP-completeness reduction is
parsimonious implies the following problem ⊕SAT is ⊕P-complete (under
many-to-one Karp reductions):

Definition 8.14
Define the quantifier

⊕
as follows: for every Boolean formula ϕ on n vari-

ables.
⊕

x∈{0,1}n ϕ(x) is true if the number of x’s such that ϕ(x) is true is
odd.2 The language ⊕SAT consists of all the true quantified Boolean for-
mula of the form

⊕
x∈{0,1}n ϕ(x) where ϕ is an unquantified Boolean formula

(not necessarily in CNF form).

Unlike the class #P, it is not known that a polynomial-time algorithm
for ⊕P implies that NP = P. However, such an algorithm does imply that
NP = RP since NP can be probabilistically reduced to ⊕SAT:

2Note that if we identify true with 1 and 0 with false then⊕
x∈{0,1}n ϕ(x) =

∑
x∈{0,1}n ϕ(x) (mod 2). Also note that

⊕
x∈{0,1}n ϕ(x) =⊕

x1∈{0,1} · · ·
⊕

xn∈{0,1} ϕ(x1, . . . , xn).
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Theorem 8.15 (Valiant-Vazirani Theorem)
There exists a probabilistic polynomial-time algorithm A such that for every n-
variable Boolean formula ϕ

ϕ ∈ SAT⇒ Pr[A(ϕ) ∈ ⊕SAT] ≥ 1
8n

ϕ 6∈ SAT⇒ Pr[A(ϕ) ∈ ⊕SAT] = 0

Tool: Pairwise independent hash functions.

To prove Theorem 8.15 we use the notion of pairwise independent hash func-
tions.
Definition 8.16 (Pairwise independent hash functions)
Let Hn,k be a collection of functions from {0, 1}n to {0, 1}k. We say that
Hn,k is pairwise independent if for every x, x′ ∈ {0, 1}n with x 6= x′ and for
every y, y′ ∈ {0, 1}k, Prh∈RHn,k [h(x) = y ∧ h(x′) = y′] = 2−2n

Note that an equivalent formulation is that for every two distinct strings
x, x′ ∈ {0, 1}n the random variable 〈h(x), h(x′)〉 for h chosen at random from
Hn,k is distributed according to the uniform distribution on {0, 1}k×{0, 1}k.

Recall that GF(2n) is the field of 2n elements, whose elements can be
identified with {0, 1}n, and whose addition (+) and multiplication (·) opera-
tions satisfy the usual commutative and distributive laws, and every element
x has an additive inverse (denoted by −x) and, if nonzero, a multiplicative
inverse (denoted by x−1). The following theorem provides a construction
of an efficiently computable pairwise independent hash functions (see also
Exercise 4 for a different construction):

Theorem 8.17 (Efficient pairwise independent hash functions)
For every n define the collection Hn,n to be {ha,b}a,b∈GF(2n) where for every
a, b ∈ GF(2n), the function ha,b : GF(2n)→ GF(2n) maps x to ax+b. Then,
Hn,n is a collection of pairwise independent hash functions.

Remark 8.18
Theorem 8.17 implies the existence of an efficiently computable pairwise
independent hash functions Hn,k for every n, k: if k > n we can use the
collection Hk,k and reduce the size of the input to n by padding it with
zeros. If k < n then we can use the collection Hn,n and truncate the last
n− k bits of the output.
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Proof: For every x 6= x′ ∈ GF(2n) and y, y′ ∈ GF(2n), ha,b(x) = y and
ha,b(x′) = y′ iff a, b satisfy the equations:

a · x+ b =y
a · x′ + b =y′

These imply a · (x − x′) = y − y′ or a = (y − y′)(x − x′)−1. Since b =
y− a · x, the pair 〈a, b〉 is completely determined by these equations, and so
the probability that this happens over the choice of a, b is exactly one over
the number of possible pairs, which indeed equals 1

22n . �

Pairwise independent hash functions have several useful properties that
led to numerous applications in theoretical and applied computer science.
In this section, we will use the following result:

Lemma 8.19 (Valiant-Vazirani Lemma [?])
Let Hn,k be a pairwise independent hash function collection from {0, 1}n to

{0, 1}k and S ⊆ {0, 1}n such that 2k−2 ≤ |S| ≤ 2k−1. Then,

Pr
h∈RHn,k

[
∣∣∣{x ∈ S : h(x) = 0k

}∣∣∣ = 1] ≥ 1
8

Proof: For every x ∈ S, let p = 2−k be the probability that h(x) = 0k when
h ∈R Hn,k. Note that for every x 6= x′, Pr[h(x)=0k∧h(x′)=0k] = p2. Let N
be the random variable denoting the number of x ∈ S satisfying h(x) = 0k.
Note that E[N ] = |S|p ∈ [14 ,

1
2 ]. By the inclusion-exclusion principle

Pr[N ≥ 1] ≥
∑
x∈S

Pr[h(x)=0k]−
∑

x<x′∈S
Pr[h(x)=0k∧h(x′)=0k] = |S|p−

(
|S|
2

)
p2

and by the union bound we get that Pr[N ≥ 2] ≤
(|S|

2

)
p2. Thus

Pr[N = 1] = Pr[N ≥ 1]−Pr[N ≥ 2] ≥ |S|p− 2
(
|S|
2

)
p2 ≥ |S|p− |S|2p2 ≥ 1

8

where the last inequality is obtained using the fact that 1
4 ≤ |S|p ≤

1
2 . �

Proof of Theorem 8.15

We now use Lemma 8.19 to prove Theorem 8.15. Given a formula ϕ on n
variables, our probabilistic algorithmA chooses k at random from {2, . . . , n+ 1}
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Note 8.20 (The Hashing paradigm)
A hash function collection is a collection of functions mapping a large uni-
verse, say {0, 1}n, to a smaller universe, say {0, 1}k for k � n. Typically, we
require of such a collection that it maps its input in a fairly uniform way to
the output range. For example, if S is a subset of {0, 1}n then we wish that,
if h is chosen at random from the collection, then most elements of {0, 1}k
have roughly |S|2−k preimages in S (which is the expected number if h was
a completely random function). In particular, if S has size roughly 2k then
we expect the mapping to be one-to-one or almost one-to-one, and so there
should be a relatively small number of collisions: pairs x 6= x′ ∈ S such that
h(x) = h(x′). Therefore, the image of S under h should look like this:

{0,1}n

{0,1}k
|S|~2k

2n-k

h

......

In databases, hash functions are used to maintain very efficient databases
(that allow fast membership queries to a subset S ⊆ {0, 1}n of size 2k re-
quiring only 2k as opposed to 2n bits of storage). In theoretical computer
science, hash functions have a variety of uses. An example is Lemma 8.19
of this chapter that shows that if the collection is pairwise independent and
S ⊆ {0, 1}n has size roughly 2k, then with good probability the value 0k will
have exactly one preimage in S.
In all these cases it is important that the hash function is chosen at random
from some collection independently of the choice of set S. It is easy to see
that if k is small enough (e.g., k < n/2) then for every h : {0, 1}n → {0, 1}k
there is a set S ⊆ {0, 1}n of size 2k that is “very bad” for h in the sense that
all the members of S map to the same element under h.
Pairwise independent hash functions are but one example of a hash func-
tion collection. Several types of such collections are known in the literature
featuring various tradeoffs between efficiency and uniformity of output.
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and a random hash function h ∈R Hn,k. It then uses the Cook-Levin re-
duction to compute a formula τ on variables x ∈ {0, 1}n , y ∈ {0, 1}m (for
m = poly(n)) such that h(x) = 0 if and only if there exists a unique y such
that τ(x, y) = 1.3 The output of A if the formula

ψ =
⊕

x∈{0,1}n,y∈{0,1}m
ϕ(x) ∧ τ(x, y) ,

It is equivalent to the statement⊕
x∈{0,1}n

ϕ(x) ∧ h(x) = 0k ,

If ϕ is unsatisfiable then ψ is false, since we’ll have no x’s satisfying
the inner formula and zero is an even number. If ϕ is satisfiable, we let S
be the set of its satisfying assignments. With probability 1/n, k satisfies
2k−2 ≤ |S| ≤ 2k, conditioned on which, with probability 1/8, there is a
unique x such that ϕ(x) ∧ h(x) = 0n. Since one happens to be an odd
number, this implies that ψ is true. �

Remark 8.21 (Hardness of Unique Satisfiability)
The proof of Theorem 8.15 implies the following stronger statement: the
existence of an algorithm to distinguish between an unsatisfiable Boolean
formula and a formula with exactly one satisfying assignment implies the
existence of a probabilistic polynomial-time algorithm for all of NP. Thus,
the guarantee that a particular search problem has either no solutions or a
unique solution does not necessarily make the problem easier to solve.

8.3.2 Step 1: Randomized reduction from PH to ⊕P

We now go beyond NP (that is to say, the Valiant-Vazirani theorem) and
show that we can actually reduce any language in the polynomial hierarchy
to ⊕SAT.
Lemma 8.22
Let c ∈ N be some constant. There exists a probabilistic polynomial-time
algorithm A such that for every ψ a Quantified Boolean formula with c levels
of alternations,

ψ is true⇒Pr[A(ψ) ∈ ⊕SAT] ≥ 2
3

ψ is false⇒Pr[A(ψ) ∈ ⊕SAT] = 0
3For some implementations of hash functions, such as the one described in Exercise 4,

one can construct directly (without going through the Cook-Levin reduction) such a for-
mula τ that does not use the y variables.
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Before proving the Lemma, let us make a few notations and observations:
For a Boolean formula ϕ on n variables, let #(ϕ) denote the number of
satisfying assignments of ϕ. We consider also formulae ϕ that are partially
quantified. That is, in addition to the n variables ϕ takes as input it may
also have other variables that are bound by a ∀,∃ or

⊕
quantifiers (for

example ϕ can be of the form ϕ(x1, . . . , xn) = ∀y ∈ {0, 1}n τ(x1, . . . , xn, y)
where τ is, say, a 3CNF Boolean formula).

Given two (possibly partially quantified) formulae ϕ,ψ on variables x ∈
{0, 1}n , y ∈ {0, 1}m we can construct in polynomial-time an n + m vari-
able formula ϕ · ψ and a (max{n,m} + 1)-variable formula ϕ + ψ such
that #(ϕ · ψ) = #(ϕ)#(ϕ) and #(ϕ + ψ) = #(ϕ) + #(ψ). Indeed, take
ϕ ·ψ(x, y) = ϕ(x)∧ϕ(y) and ϕ+ψ(z) =

(
(z0 = 0)∧ϕ(z1, . . . , zn)

)
∨
(
(z0 =

1)∧ψ(z1, . . . , zm)
)
. For a formula ϕ, we use the notation ϕ+1 to denote the

formula ϕ + ψ where ψ is some canonical formula with a single satisfying
assignment. Since the product of numbers is even iff one of the numbers
is even, and since adding one to a number flips the parity, for every two
formulae ϕ,ψ as above(⊕

x

ϕ(x)
)
∧
(⊕
y

ψ(y)
)
⇔
⊕
x,y

(ϕ · ψ)(x, y) (3)

¬
⊕
x

ϕ(x)⇔
⊕
x,z

(ϕ+ 1)(x, z) (4)

(⊕
x

ϕ(x)
)
∨
(⊕
y

ψ(y)
)
⇔
⊕
x,y,z

((ϕ+ 1) · (ψ + 1) + 1)(x, y, z) (5)

Proof of Lemma 8.22: Recall that membership in a PH-language can
be reduced to deciding the truth of a quantified Boolean formula with a
constant number of alternating quantifiers. The idea behind the proof is to
replace one-by-one each ∃/∀ quantifiers with a

⊕
quantifier.

Let ψ be a formula with c levels of alternating ∃/∀ quantifiers, possibly
with an initial

⊕
quantifier. We transform ψ in probabilistic polynomial-

time to a formula ψ′ such that ψ′ has only c − 1 levels of alternating ∃/∀
quantifiers, an initial

⊕
quantifier, satisfying (1) if ψ is false then so is ψ′,

and (2) if ψ is true then with probability at least 1− 1
10c , ψ

′ is true as well.
The lemma follows by repeating this step c times.

For ease of notations, we demonstrate the proof for the case that ψ has
a single

⊕
quantifier and two additional ∃/∀ quantifiers. We can assume

without loss of generality that ψ is of the form

ψ =
⊕

z∈{0,1}`
∃x∈{0,1}n∀w∈{0,1}kϕ(z, x, w) ,
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as otherwise we can use the identities ∀xP (x) = ¬∃x¬P (x) and (4) to trans-
form ψ into this form.

The proof of Theorem 8.15 provides for every n, a probabilistic algorithm
that outputs a formula τ on variables x ∈ {0, 1}n and y ∈ {0, 1}m such that
for every nonempty set S ⊆ {0, 1}n, Pr[⊕x∈{0,1}n,y∈{0,1}mτ(x, y)] ≥ 1/(8n).
Run this algorithm t = 100c` log n times to obtain the formulae τ1, . . . , τt.
Then, for every nonempty set S ⊆ {0, 1}n the probability that there does not
exist i ∈ [t] such that⊕x∈{0,1}n,y∈{0,1}mτ(x, y) is True is less than 2−`/(10c).
We claim that this implies that with probability at least 1 − 1/(10c), the
following formula is equivalent to ψ:⊕

z∈{0,1}`
θ(z) , (6)

where

θ(z) = ∨ti=1

 ⊕
x∈{0,1}n,y∈{0,1}m

∀w∈{0,1}kτi(x, y) ∧ ϕ(x, z, w)


Indeed, for every z ∈ {0, 1}` define Sz =

{
x ∈ {0, 1}n : ∀w∈{0,1}kϕ(x, z, w)

}
.

Then, ψ is equivalent to ⊕z∈{0,1}` |Sz| is nonempty. But by the union bound,
with probability at least 1−1/(10c) it holds that for every z such that Sz is
nonempty, there exists τi satisfying ⊕x,yτi(x, y). This means that for every
such z, θ(z) is true. On the other hand, if Sz is empty then certainly θ(z)
is false, implying that indeed ψ is equivalent to (6).

By applying the identity (5), we can transform (6) into an equivalent
formula of the desired form ⊕

z,x,y,w

∀wϕ′(x, y, z, w)

for some unquantified polynomial-size formula ϕ′. �

8.3.3 Step 2: Making the reduction deterministic

To complete the proof of Toda’s Theorem (Theorem 8.11), we prove the
following lemma:

Lemma 8.23
There is a (deterministic) polynomial-time transformation T that, for every
formula ψ that is an input for ⊕SAT, T (ψ, 1m) is an unquantified Boolean
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formula and

ψ ∈ ⊕SAT⇒#(ϕ) = −1 (mod 2m+1)

ψ 6∈ ⊕SAT⇒#(ϕ) = 0 (mod 2m+1)

Proof of Theorem 8.11 using Lemmas 8.22 and 8.23.: Let L ∈ PH.
We show that we can decide whether an input x ∈ L by asking a single
question to a #SAT oracle. For every x ∈ {0, 1}n, Lemmas 8.22 and 8.23
together imply there exists a polynomial-time TM M such that

x ∈ L⇒ Pr
r∈R{0,1}m

[#(M(x, r)) = −1 (mod 2m+1)] ≥ 2
3

x 6∈ L⇒ ∀r∈R{0,1}m#(M(x, r)) = 0 (mod 2m+1)

where m is the (polynomial in n) number of random bits used by the proce-
dure described in that Lemma. Furthermore, even in the case x ∈ L, we are
guaranteed that for every r ∈ {0, 1}m, #(M(x, r)) ∈ {0,−1} (mod 2m+1).

Consider the function that maps two strings r, u into the evaluation of the
formula M(x, r) on the assignment u. Since this function is computable in
polynomial-time, the Cook-Levin transformation implies that we can obtain
in polynomial-time a CNF formula θx on variables r, u, y such that for every
r, u, M(x, r) is satisfied by u if and only if there exist a unique y such that
θx(r, u, y) is true. Let fx(r) be the number of u, y such that θx(r, u, y) is
true, then

#(θx) =
∑

r∈{0,1}m
fx(r) ,

But if x 6∈ L then fx(r) = 0 (mod 2m+1) for every r, and hence #(θx) = 0
(mod 2m+1). On the other hand, if x ∈ L then fx(r) = −1 (mod 2m+1) for
between 2

32m and 2m values of r, and is equal to 0 on the other values, and
hence #(θx) 6= 0 (mod 2m+1). We see that deciding whether x ∈ L can be
done by computing #(θx).�

Proof of Lemma 8.23: For every pair of formulae ϕ,τ recall that we
defined formulas ϕ + τ and ϕ · τ satisfying #(ϕ + τ) = #(ϕ) + #(τ) and
#(ϕ · τ) = #(ϕ)#(τ), and note that these formulae are of size at most a
constant factor larger than ϕ, τ . Consider the formula 4τ3 + 3τ4 (where τ3

for example is shorthand for τ · (τ · τ)). One can easily check that

#(τ) = −1 (mod 22i)⇒#(4τ3 + 3τ4) = −1 (mod 22i+1
) (7)

#(τ) = 0 (mod 22i)⇒#(4τ3 + 3τ4) = 0 (mod 2)2
i+1

(8)
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Let ψ0 = ψ and ψi+1 = 4ψ3
i + 3ψ4

i . Let ψ∗ = ψdlog(m+1)e. Repeated use of
equations (7), (8) shows that if #(ψ) is odd, then #(ψ∗) = −1 (mod 2m+1)
and if #(ψ) is even, then #(ψ∗) = 0 (mod 2m+1). Also, the size of ψ∗ is
only polynomially larger than size of ψ. �

What have we learned?

• The class #P consists of functions that count the number of certificates for a
given instance. If P 6= NP then it is not solvable in polynomial time.

• Counting analogs of many natural NP-complete problems are #P-complete,
but there are also #P-complete counting problems for which the correspond-
ing decision problem is in P. One example for this is the problem perm of
computing the permanent.

• Surprisingly, counting is more powerful than alternating quantifiers: we can
solve every problem in the polynomial hierarchy using an oracle to a #P-
complete problem.

• The classes PP and ⊕P contain the decision problems that correspond to
the most significant and least significant bits (respectively) of a #P function.
The class PP is as powerful as #P itself, in the sense that if PP = P then
#P = FP. We do not know if this holds for ⊕P but do know that every
language in PH randomly reduces to ⊕P.

8.4 Open Problems

• What is the exact power of ⊕SAT and #SAT ?

• What is the average case complexity of n×n permanent modulo small
prime, say 3 or 5 ? Note that for a prime p > n, random self reducibil-
ity of permanent implies that if permanent is hard to compute on at
least one input then it is hard to compute on 1 − O(p/n) fraction of
inputs, i.e. hard to compute on average (see Theorem ??).

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems
appeared in Valiant’s seminal paper [Val79b]. The #P-completeness of the
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permanent is from his other paper [Val79a]. Toda’s Theorem is proved
in [Tod91]. The proof given here follows the proof of [KVVY93] (although
we use formulas where they used circuits.)

For an introduction to FPRAS’s for computing approximations to many
counting problems, see the relevant chapter in Vazirani [Vaz01] ( an excellent
resource on approximation algorithms in general).

.

Exercises

§1 Let f ∈ #P. Show a polynomial-time algorithm to compute f given
access to an oracle for some language L ∈ PP (see Remark ??).

Hint:withoutlossofgeneralityyoucanthinkthatf=
#CKT−SAT,theproblemofcomputingthenumberofsatisfy-
ingassignmentsforagivenBooleancircuitC,andthatyouare
givenanoraclethattellsyouifagivenn-variablecircuit,hasat
least2

n−1
satisfyingassignmentsornot.Themainobservationyou

canuseisthatifChasatleast2
n−1

satisfyingassignmentsthen
itispossibletousetheoracletofindastringxsuchthatChas
exactly2

n−1
satisfyingassignmentsthatarelargerthanxinthe

naturallexicographicorderingofthestringsin{0,1}
n
.

§2 Show that computing the permanent for matrices with integer entries
is in FP#SAT.

§3 Complete the analysis of the XOR gadget in the proof of Theorem 8.8.
Let G be any weighted graph containing a pair of edges

−−→
uu′ and

−→
v v′,

and let G′ be the graph obtained by replacing these edges with the
XOR gadget. Prove that every cycle cover of G of weight w that uses
exactly one of the edges

−−→
uu′ is mapped to a set of cycle covers in G′

whose total weight is 4w, and all the other cycle covers of G′ have
total weight 0.

§4 Let k ≤ n. Prove that the following family Hn,k is a collection of
pairwise independent functions from {0, 1}n to {0, 1}k: Identify {0, 1}
with the field GF(2). For every k×n matrix A with entries in GF(2),
and k-length vector b ∈ GF(2)n, Hn,k contains the function hA,b :
GF(2)n → GF(2)k defined as follows: hA,b(x) = Ax+ b.

§5 Show that if there is a polynomial-time algorithm that approximates
#CYCLE within a factor 1/2, then P = NP.
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§6 Show that if NP = P then for every f ∈ #P and there is a polynomial-
time algorithm that approximates f within a factor of 1/2. Can you
show the same for a factor of 1−ε for arbitrarily small constant ε > 0?
Can you make these algorithms deterministic?

Note that we do not know whether P = NP implies that exact com-
putation of functions in #P can be done in polynomial time.

Hint:UsehashingandideassimilartothoseintheproofofToda’s
theorem,wherewealsoneededtoestimatethesizeofasetof
strings.Ifyoufindthisquestiondifficultyoumightwanttocome
backtoitafterseeingtheGoldwasser-Sipsersetlowerboundpro-
tocolofChapter9.Tomakethealgorithmdeterministicusethe
ideasoftheproofthatBPP⊆PH(Theorem7.17).

§7 Show that every for every language in AC0 there is a depth 3 circuit
of npoly(logn) size that decides it on 1 − 1/poly(n) fraction of inputs
and looks as follows: it has a single ⊕ gate at the top and the other
gates are ∨,∧ of fanin at most poly(log n).

Hint:usetheproofofLemma8.22.
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Chapter 9

Interactive proofs

“What is intuitively required from a theorem-proving procedure?
First, that it is possible to “prove” a true theorem. Second, that
it is impossible to “prove” a false theorem. Third, that commu-
nicating the proof should be efficient, in the following sense. It
does not matter how long must the prover compute during the
proving process, but it is essential that the computation required
from the verifier is easy.”
Goldwasser, Micali, Rackoff 1985

The standard notion of a mathematical proof follows the certificate def-
inition of NP. That is, to prove that a statement is true one provides a
sequence of symbols that can be written down in a book or on paper, and
a valid sequence exists only for true statements. However, people often use
more general ways to convince one another of the validity of statements:
they interact with one another, with the person verifying the proof (hence-
forth the verifier) asking the person providing it (henceforth the prover) for
a series of explanations before he is convinced.

It seems natural to try to understand the power of such interactive
proofs from the complexity-theoretic perspective. For example, can one
prove that a given formula is not satisfiable? (recall that is this problem
is coNP-complete, it’s not believed to have a polynomial-sized certificate).
The surprising answer is yes. Indeed, interactive proofs turned out to have
unexpected powers and applications. Beyond their philosophical appeal, in-
teractive proofs led to fundamental insights in cryptographic protocols, the
power of approximation algorithms, program checking, and the hardness of
famous “elusive” problems (i.e., NP-problems not known to be in P nor
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to be NP-complete) such as graph isomorphism and approximate shortest
lattice vector.

9.1 Warmup: Interactive proofs with a determin-
istic verifier

Let us consider what happens when we introduce interaction into the NP
scenario. That is, we’d have an interrogation-style proof system where rather
than the prover send a written proof to the verifier, the prover and verifier
interact with the verifier asking questions and the prover responding, where
at the end the verifier decides whether or not to accept the input. Of
course, both verifier and prover can keep state during the interaction, or
equivalently, the message a party sends at any point in the interaction can
be a function of all messages sent and received so far. Formally, we make
the following definition:

Definition 9.1 (Interaction of deterministic functions)
Let f, g : {0, 1}∗ → {0, 1}∗ be functions. A k-round interaction of f and g
on input x ∈ {0, 1}∗, denoted by 〈f, g〉(x) is the sequence of the following
strings a1, . . . , ak ∈ {0, 1}∗ defined as follows:

(1)

a1 = f(x)
a2 = g(x, a1)
. . .

a2i+1 = f(x, a1, . . . , a2i)
a2i+2 = g(x, a1, . . . , a2i+1)

(Where we consider a suitable encoding of i-tuples of strings to strings.)
The output of f (resp. g) at the end of the interaction denoted outf 〈f, g〉(x)

(resp. outg〈f, g〉(x) ) is defined to be f(x, a1, . . . , ak) (resp. g(x, a1, . . . , ak)).

Definition 9.2 (Deterministic proof systems)
We say that a language L has a k-round deterministic interactive proof
system if there’s a deterministic TM V that on input x, a1, . . . , ai runs in
time polynomial in |x|, satisfying:

(Completeness)x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 1
(Soundness)x 6∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗ outV 〈V, P 〉(x) = 1
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The class dIP contains all languages with a k(n)-round deterministic
interactive proof systems with k(n) polynomial in n.

It turns out this actually does not change the class of languages we can
prove:

Theorem 9.3
dIP = NP.

Proof: Clearly, every NP language has a 1-round proof system. Now we
prove that if a L has an interactive proof system of this type then L ∈ NP.
The certificate for membership is just the transcript (a1, a2, . . . , ak) causing
the verifier to accept. To verify this transcript, check that indeed V (x) = a1,
V (x, a1, a2) = a3, . . ., and V (x, a1, . . . , ak) = 1. If x ∈ L then there indeed
exists such a transcript. If there exists such a transcript (a1, . . . , ak) then we
can define a prover function P to satisfy P (x, a1) = a2, P (x, a1, a2, a3) = a4,
etc. We see that outV 〈V, P 〉(x) = 1 and hence x ∈ L. �

9.2 The class IP

In order to realize the full potential of interaction, we need to let the verifier
be probabilistic. The idea is that, similar to probabilistic algorithms, the
verifier will be allowed to come to a wrong conclusion (e.g., accept a proof
for a wrong statement) with some small probability. However, as in the case
of probabilistic algorithms, this probability is over the verifier’s coins and
the verifier will reject proofs for a wrong statement with good probability
regardless of the strategy the prover uses. It turns out that the combination
of interaction and randomization has a huge effect: as we will see, the set
of languages which have interactive proof systems now jumps from NP to
PSPACE.

Example 9.4
As an example for a probabilistic interactive proof system, consider the
following scenario: Marla claims to Arthur that she can distinguish between
the taste of Coke (Coca-Cola) and Pepsi. To verify this statement, Marla
and Arthur repeat the following experiment 50 times: Marla turns her back
to Arthur, as he places Coke in one unmarked cup and Pepsi in another,
choosing randomly whether Coke will be in the cup on the left or on the
right. Then Marla tastes both cups and states which one contained which
drinks. While, regardless of her tasting abilities, Marla can answer correctly
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with probability 1
2 by a random guess, if she manages to answer correctly

for all the 50 repetitions, Arthur can indeed be convinced that she can tell
apart Pepsi and Coke.

To formally define this we extend the notion of interaction to probabilistic
functions (actually, we only need to do so for the verifier). To model an
interaction between f and g where f is probabilistic, we add an additional
m-bit input r to the function f in (1), that is having a1 = f(x, r), a3 =
f(x, r, a1, a2), etc. The interaction 〈f, g〉(x) is now a random variable over
r ∈R {0, 1}m. Similarly the output outf 〈f, g〉(x) is also a random variable.

Definition 9.5 (IP)
Let k : N → N be some function with k(n) computable in poly(n) time. A
language L is in IP[k] if there is a Turing machine V such that on inputs
x, r, a1, . . . , ai, V runs in time polynomial in |x| and such that

(Completeness) x ∈ L⇒ ∃P Pr[outV 〈V, P 〉(x) = 1] ≥ 2/3 (2)
(Soundness) x 6∈ L⇒ ∀P Pr[outV 〈V, P 〉(x) = 1] ≤ 1/3. (3)

We define IP = ∪c≥1IP[nc].

Remark 9.6
The following observations on the class IP are left as an exercise (Exercise 1).

1. Allowing the prover to be probabilistic (i.e., the answer function ai
depends upon some random string used by the prover) does not change
the class IP. The reason is that for any language L, if a probabilistic
prover P results in making verifier V accept with some probability,
then averaging implies there is a deterministic prover which makes V
accept with the same probability.

2. Since the prover can use an arbitrary function, it can in principle use
unbounded computational power (or even compute undecidable func-
tions). However, one can show that given any verifier V , we can com-
pute the optimum prover (which, given x, maximizes the verifier’s ac-
ceptance probability) using poly(|x|) space (and hence 2poly(|x|) time).
Thus IP ⊆ PSPACE.

3. The probabilities of correctly classifying an input can be made arbi-
trarily close to 1 by using the same boosting technique we used for
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BPP (see Section ??): to replace 2/3 by 1 − exp(−m), sequentially
repeat the protocol m times and take the majority answer. In fact,
using a more complicated proof, it can be shown that we can decrease
the probability without increasing the number of rounds using parallel
repetition (i.e., the prover and verifier will run m executions of the
protocol in parallel). We note that the proof is easier for the case of
public coin proofs, which will be defined below.

4. Replacing the constant 2/3 in the completeness requirement (2) by
1 does not change the class IP. This is a nontrivial fact. It was
originally proved in a complicated way but today can be proved using
our characterization of IP later in Section 9.5.

5. In contrast replacing the constant 2/3 by 1 in the soundness condition
(3) is equivalent to having a deterministic verifier and hence reduces
the class IP to NP.

6. We emphasize that the prover functions do not depend upon the ver-
ifier’s random strings, but only on the messages/questions the verifier
sends. In other words, the verifier’s random string is private. (Often
these are called private coin interactive proofs.) Later we will also con-
sider the model where all the verifier’s questions are simply obtained
by tossing coins and revealing them to the prover (this is known as
public coins or Arthur-Merlin proofs).

9.3 Proving that graphs are not isomorphic.

We’ll now see an example of a language in IP that is not known to be in
NP. Recall that the usual ways of representing graphs —adjacency lists,
adjacency matrices— involve a numbering of the vertices. We say two graphs
G1 and G2 are isomorphic if they are the same up to a renumbering of
vertices. In other words, if there is a permutation π of the labels of the
nodes of G1 such that π(G1) = G2. The graphs in figure ??, for example,
are isomorphic with π = (12)(3654). (That is, 1 and 2 are mapped to each
other, 3 to 6, 6 to 5, 5 to 4 and 4 to 1.) If G1 and G2 are isomorphic, we write
G1 ≡ G2. The GI problem is the following: given two graphs G1, G2 (say
in adjacency matrix representation) decide if they are isomorphic. Note
that clearly GI ∈ NP, since a certificate is simply the description of the
permutation π.

The graph isomorphism problem is important in a variety of fields and
has a rich history (see [?]). Along with the factoring problem, it is the most
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Figure unavailable in pdf file.

Figure 9.1: Two isomorphic graphs.

famous NP-problem that is not known to be either in P or NP-complete.
The results of this section show that GI is unlikely to be NP-complete, unless
the polynomial hierarchy collapses. This will follow from the existence of
the following proof system for the complement of GI: the problem GNI of
deciding whether two given graphs are not isomorphic.

Protocol: Private-coin Graph Non-isomorphism

V : pick i ∈ {1, 2} uniformly randomly. Randomly permute the ver-
tices of Gi to get a new graph H. Send H to P .

P : identify which of G1, G2 was used to produce H. Let Gj be that
graph. Send j to V .

V : accept if i = j; reject otherwise.

To see that Definition 9.5 is satisfied by the above protocol, note that
if G1 6≡ G2 then there exists a prover such that Pr[V accepts] = 1, because
if the graphs are non-isomorphic, an all-powerful prover can certainly tell
which one of the two is isomorphic to H. On the other hand, if G1 ≡ G2 the
best any prover can do is to randomly guess, because a random permutation
of G1 looks exactly like a random permutation of G2. Thus in this case for
every prover, Pr[V accepts] ≤ 1/2. This probability can be reduced to 1/3
by sequential or parallel repetition.

9.4 Public coins and AM

Allowing the prover full access to the verifier’s random string leads to the
model of interactive proofs with public-coins.

Definition 9.7 (AM, MA)
For every k we denote by AM[k] the class of languages that can be decided
by a k round interactive proof in which each verifier’s message consists of
sending a random string of polynomial length, and these messages comprise
of all the coins tossed by the verifier. A proof of this form is called a public
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coin proof (it is sometimes also known an Arthur Merlin proof).1

We define by AM the class AM[2].2 That is, AM is the class of lan-
guages with an interactive proof that consist of the verifier sending a random
string, the prover responding with a message, and where the decision to ac-
cept is obtained by applying a deterministic polynomial-time function to
the transcript. The class MA denotes the class of languages with 2-round
public coins interactive proof with the prover sending the first message.
That is, L ∈MA if there’s a proof system for L that consists of the prover
first sending a message, and then the verifier tossing coins and applying a
polynomial-time predicate to the input, the prover’s message and the coins.

Note that clearly for every k, AM[k] ⊆ IP[k]. The interactive proof for
GNI seemed to crucially depend upon the fact that P cannot see the random
bits of V . If P knew those bits, P would know i and so could trivially always
guess correctly. Thus it may seem that allowing the verifier to keep its coins
private adds significant power to interactive proofs, and so the following
result should be quite surprising:

Theorem 9.8 ([GS87])
For every k : N→ N with k(n) computable in poly(n),

IP[k] ⊆ AM[k + 2]

The central idea of the proof of Theorem 9.8 can be gleaned from the
proof for the special case of GNI.

Theorem 9.9
GNI ∈ AM[k] for some constant k ≥ 2.

Proof: The key idea is to look at graph nonisomorphism in a different,
more quantitative, way. (Aside: This is a good example of how nontrivial
interactive proofs can be designed by recasting the problem.) Consider the
set S = {H : H ≡ G1 or H ≡ G2}. Note that it is easy to prove that a graph
H is a member of S, by providing the permutation mapping either G1 or
G2 to H. The size of this set depends on whether G1 is isomorphic to G2.

1Arthur was a famous king of medieval England and Merlin was his court magician.
Babai named these classes by drawing an analogy between the prover’s infinite power and
Merlin’s magic. One “justification” for this model is that while Merlin cannot predict the
coins that Arthur will toss in the future, Arthur has no way of hiding from Merlin’s magic
the results of the coins he tossed in the past.

2Note that AM = AM[2] while IP = IP[poly]. While this is indeed somewhat incon-
sistent, this is the standard notations used in the literature. We note that some sources
denote the class AM[3] by AMA, the class AM[4] by AMAM etc.
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An n vertex graph G has at most n! equivalent graphs. If G1 and G2 have
each exactly n! equivalent graphs (this will happen if for i = 1, 2 there’s no
non-identity permutation π such that π(Gi) = Gi) we’ll have that

if G1 6≡ G2 then |S| = 2n! (4)
if G1 ≡ G2 then |S| = n! (5)

(To handle the general case that G1 or G2 may have less than n! equiv-
alent graphs, we actually change the definition of S to

S = {(H,π) : H ≡ G1 or H ≡ G2 and π ∈ aut(H)}

where π ∈ aut(H) if π(H) = H. It is clearly easy to prove membership in
the set S and it can be verified that S satisfies (4) and (5).)

Thus to convince the verifier that G1 6≡ G2, the prover has to convince
the verifier that case (4) holds rather than (5). This is done by the following
set lowerbound protocol. The crucial component in this protocol is the use
of pairwise independent hash functions (see Definition 8.16).

Protocol: Goldwasser-Sipser Set Lowerbound

Conditions: S ⊆ {0, 1}m is a set such that membership in S can be
certified. Both parties know a number K. The prover’s goal
is to convince the verifier that |S| ≥ K and the verifier should
reject if |S| ≤ K

2 . Let k be a number such that 2k−2 ≤ K ≤
2k−1.

V: Randomly pick a function h : {0, 1}m → {0, 1}k from a pairwise
independent hash function collection Hm,k. Pick y ∈R {0, 1}k.
Send h, y to prover.

P: Try to find an x ∈ S such that h(x) = y. Send such an x to V ,
together with a certificate that x ∈ S.

V’s output: If certificate validates that x ∈ S and h(x) = y, ac-
cept; otherwise reject.

Let p = K
2k

. If |S| ≤ K
2 then clearly |h(S)| ≤ p2k

2 and so the verifier
will accept with probability at most p

2 . The main challenge is to show that
if |S| ≥ K then the verifier will accept with probability noticeably larger
than p/2 (the gap between the probabilities can then be amplified using
repetition). That is, it suffices to prove
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Claim 9.9.1
Let S ⊆ {0, 1}m satisfy |S| ≤ 2k

2 . Then,

Pr
h∈RHm,k,y∈R{0,1}k

[∃x∈Sh(x) = y] ≥ 3
4p

where p = |S|
2k

.

Proof: For every y ∈ {0, 1}m, we’ll prove the claim by showing that

Pr
h∈RHm,k

[∃x∈Sh(x) = y] ≥ 3
4p

. Indeed, for every x ∈ S define the event Ex to hold if h(x) = y. Then,
Pr[∃x∈Sh(x) = y] = Pr[∪x∈SEx] but by the inclusion-exclusion principle this
is at least ∑

x∈S
Pr[Ex]− 1

2

∑
x 6=x′∈§

Pr[Ex ∩ E′x]

However, by pairwise independence we have that for x 6= x′, Pr[Ex] = 2−k

and Pr[Ex ∩ E′x] = 2−2k and so this probability is at least

|S|
2k
− 1

2
|S|2

2k
=
|S|
2k

(
1− |S|

2k+1

)
≥ 3

4
p

�

Given the claim, the proof for GNI consists of the verifier and prover
running several iterations of the set lower bound protocol for the set S
as defined above, where the verifier accepts iff the fraction of accepting
iterations was at least 0.6p (note that both parties can compute p). Using
the Chernoff bound (Theorem A.16) it can be easily seen that a constant
number of iteration will suffices to ensure completeness probability at least
2
3 and soundness error at most 1

3 . �

Remark 9.10
How does this protocol relate to the private coin protocol of Section 9.3? The
set S roughly corresponds to the set of possible messages sent by the verifier
in the protocol, where the verifier’s message is a random element in S. If
the two graphs are isomorphic then the verifier’s message completely hides
its choice of a random i ∈R {1, 2}, while if they’re not then it completely
reveals it (at least to a prover that has unbounded computation time). Thus
roughly speaking in the former case the mapping from the verifier’s coins
to the message is 2-to-1 while in the latter case it is 1-to-1, resulting in

Web draft 2006-09-28 18:09



DRAFT

182 9.4. PUBLIC COINS AND AM

Figure unavailable in pdf file.

Figure 9.2: AM[k] looks like
∏p
k, with the ∀ quantifier replaced by probabilitic choice.

a set that is twice as large. Indeed we can view the prover in the public
coin protocol as convincing the verifier that its probability of convincing the
private coin verifier is large. While there are several additional intricacies
to handle, this is the idea behind the generalization of this proof to show
that IP[k] ⊆ AM[k + 2].

Remark 9.11
Note that, unlike the private coins protocol, the public coins protocol of
Theorem 9.9 does not enjoy perfect completeness, since the set lowerbound
protocol does not satisfy this property. However, we can construct a per-
fectly complete public-coins set lowerbound protocol (see Exercise 3), thus
implying a perfectly complete public coins proof for GNI. Again, this can be
generalized to show that any private-coins proof system (even one not sat-
isfying perfect completeness) can be transformed into a perfectly complete
public coins system with a similar number of rounds.

9.4.1 Some properties of IP and AM

We state the following properties of IP and AM without proof:

1. (Exercise 5) AM[2] = BP ·NP where BP ·NP is the class in Defini-
tion ??. In particular it follows thatAM[2] ⊆ Σp

3.

2. (Exercise 4) For constants k ≥ 2 we have AM[k] = AM[2]. This
“collapse” is somewhat surprising because AM[k] at first glance seems
similar to PH with the ∀ quantifiers changed to “probabilistic ∀” quan-
tifiers, where most of the branches lead to acceptance. See Figure 9.2.

3. It is open whether there is any nice characterization of AM[σ(n)],
where σ(n) is a suitably slow growing function of n, such as log log n.

9.4.2 Can GI be NP-complete?

We now prove that if GI is NP-complete then the polynomial hierarchy
collapses.

Theorem 9.12 ([?])
If GI is NP-complete then Σ2 = Π2.
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Proof: If GI is NP-complete then GNI is coNP-complete which implies
that there exists a function f such that for every n variable formula ϕ,
∀yϕ(y) holds iff f(ϕ) ∈ GNI. Let

ψ = ∃x∈{0,1}n∀y∈{0,1}nϕ(x, y)

be a Σ2SAT formula. We have that ψ is equivalent to

∃x∈{0,1}ng(x) ∈ GNI

where g(x) = f(ϕ�x).
Using Remark 9.11 and the comments of Section 9.4.1, we have that GNI

has a two round AM proof with perfect completeness and (after appropriate
amplification) soundness error less than 2−n. Let V be the verifier algorithm
for this proof system, and denote by m the length of the verifier’s random
tape and by m′ the length of the prover’s message and . We claim that ψ is
equivalent to

ψ∗ = ∀
r∈{0,1}m′∃x∈{0,1}n∃a∈{0,1}mV (g(x), r, a) = 1

Indeed, by perfect completeness if ψ is satisfiable then ψ∗ is satisfiable. If ψ
is not satisfiable then by the fact that the soundness error is at most 2−n,
we have that there exists a single string r ∈ {0, 1}m such that for every x
with g(x) 6∈ GNI, there’s no a such that V (g(x), r, a) = 1, and so ψ∗ is not
satisfiable. Since ψ∗ can easily be reduced to a Π2SAT formula, we get that
Σ2 ⊆ Π2, implying (since Σ2 = coΠ2) that Σ2 = Π2. �

9.5 IP = PSPACE

In this section we show a surprising characterization of the set of languages
that have interactive proofs.

Theorem 9.13 (LFKN, Shamir, 1990)
IP = PSPACE.

Note that this is indeed quite surprising: we already saw that interaction
alone does not increase the languages we can prove beyond NP, and we tend
to think of randomization as not adding significant power to computation
(e.g., we’ll see in Chapter 17 that under reasonable conjectures, BPP = P).
As noted in Section 9.4.1, we even know that languages with constant round
interactive proofs have a two round public coins proof, and are in particular
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contained in the polynomial hierarchy, which is believed to be a proper
subset of PSPACE. Nonetheless, it turns out that the combination of
sufficient interaction and randomness is quite powerful.

By our earlier Remark 9.6 we need only show the direction PSPACE ⊆
IP. To do so, we’ll show that TQBF ∈ IP[poly(n)]. This is sufficient
because every L ∈ PSPACE is polytime reducible to TQBF. We note that
our protocol for TQBF will use public coins and also has the property that if
the input is in TQBF then there is a prover which makes the verifier accept
with probability 1.

Rather than tackle the job of designing a protocol for TQBF right away,
let us first think about how to design one for 3SAT. How can the prover con-
vince the verifier than a given 3CNF formula has no satisfying assignment?
We show how to prove something even more general: the prover can prove
to the verifier what the number of satisfying assignments is. (In other words,
we will design a prover for #SAT.) The idea of arithmetization introduced
in this proof will also prove useful in our protocol for TQBF.

9.5.1 Arithmetization

The key idea will be to take an algebraic view of boolean formulae by repre-
senting them as polynomials. Note that 0, 1 can be thought of both as truth
values and as elements of some finite field F. Thus we have the following
correspondence between formulas and polynomials when the variables take
0/1 values:

x ∧ y ←→ X · Y
¬x ←→ 1−X

x ∨ y ←→ 1− (1−X)(1− Y )
x ∨ y ∨ ¬z ←→ 1− (1−X)(1− Y )Z

Given any 3CNF formula ϕ(x1, x2, . . . , xn) with m clauses, we can write
such a degree 3 polynomial for each clause. Multiplying these polynomials
we obtain a degree 3m multivariate polynomial Pϕ(X1, X2, . . . , Xn) that
evaluates to 1 for satisfying assignments and evaluates to 0 for unsatisfying
assignments. (Note: we represent such a polynomial as a multiplication of
all the degree 3 polynomials without “opening up” the parenthesis, and so
Pϕ(X1, X2, . . . , Xn) has a representation of size O(m).) This conversion of
ϕ to Pϕ is called arithmetization. Once we have written such a polynomial,
nothing stops us from going ahead and and evaluating the polynomial when
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the variables take arbitrary values from the field F instead of just 0, 1. As
we will see, this gives the verifier unexpected power over the prover.

9.5.2 Interactive protocol for #SATD

To design a protocol for 3SAT we give a protocol for #SATD, which is a
decision version of the counting problem #SAT we saw in Chapter ??:

#SATD = {〈φ,K〉 : K is the number of satisfying assignments of φ} .

and φ is a 3CNF formula of n variables and m clauses.

Theorem 9.14
#SATD ∈ IP.

Proof: Given input 〈φ,K〉, we construct, by arithmetization, Pφ. The
number of satisfying assignments #φ of φ is:

#φ =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

Pφ(b1, . . . , bn) (6)

To start, the prover sends to the verifier a prime p in the interval (2n, 22n].
The verifier can check that p is prime using a probabilistic or deterministic
primality testing algorithm. All computations described below are done in
the field F = Fp of numbers modulo p. Note that since the sum in (6) is
between 0 and 2n, this equation is true over the integers iff it is true modulo
p. Thus, from now on we consider (6) as an equation in the field Fp. We’ll
prove the theorem by showing a general protocol, Sumcheck, for verifying
equations such as (6).

Sumcheck protocol.

Given a degree d polynomial g(X1, . . . , Xn), an integer K, and a prime p,
we present an interactive proof for the claim

K =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, . . . , Xn) (7)

(where all computations are modulo p). To execute the protocol V will
need to be able to evaluate the polynomial g for any setting of values to the
variables. Note that this clearly holds in the case g = Pφ.
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For each sequence of values b2, b3, . . . , bn to X2, X3, . . . , Xn, note that
g(X1, b2, b3, . . . , bn) is a univariate degree d polynomial in the variable X1.
Thus the following is also a univariate degree d polynomial:

h(X1) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2 . . . , bn)

If Claim (7) is true, then we have h(0) + h(1) = K.
Consider the following protocol:

Protocol: Sumcheck protocol to check claim (7)

V: If n = 1 check that g(1) + g(0) = K. If so accept, otherwise
reject. If n ≥ 2, ask P to send h(X1) as defined above.

P: Sends some polynomial s(X1) (if the prover is not “cheating”
then we’ll have s(X1) = h(X1)).

V: Reject if s(0)+s(1) 6= K; otherwise pick a random a. Recursively
use the same protocol to check that

s(a) =
∑

b∈{0,1}

· · ·
∑

bn∈{0,1}

g(a, b2, . . . , bn).

If Claim (7) is true, the prover that always returns the correct polynomial
will always convince V . If (7) is false then we prove that V rejects with high
probability:

Pr[V rejects 〈K, g〉] ≥
(

1− d

p

)n
. (8)

With our choice of p, the right hand side is about 1 − dn/p, which is very
close to 1 since d ≤ n3 and p� n4.

Assume that (7) is false. We prove (8) by induction on n. For n = 1,
V simply evaluates g(0), g(1) and rejects with probability 1 if their sum is
not K. Assume the hypothesis is true for degree d polynomials in n − 1
variables.

In the first round, the prover P is supposed to return the polynomial
h. If it indeed returns h then since h(0) + h(1) 6= K by assumption, V
will immediately reject (i.e., with probability 1). So assume that the prover
returns some s(X1) different from h(X1). Since the degree d nonzero poly-
nomial s(X1)−h(X1) has at most d roots, there are at most d values a such
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that s(a) = h(a). Thus when V picks a random a,

Pr
a

[s(a) 6= h(a)] ≥ 1− d

p
. (9)

If s(a) 6= h(a) then the prover is left with an incorrect claim to prove in the
recursive step. By the induction hypothesis, the prover fails to prove this

false claim with probability at least ≥
(
1− d

p

)n−1
. Thus we have

Pr[V rejects] ≥
(

1− d

p

)
·
(

1− d

p

)n−1

=
(

1− d

p

)n
(10)

This finishes the induction.
�

9.5.3 Protocol for TQBF: proof of Theorem 9.13

We use a very similar idea to obtain a protocol for TQBF. Given a quantified
Boolean formula Ψ = ∃x1∀x2∃x3 · · · ∀xnφ(x1, . . . , xn), we use arithmetiza-
tion to construct the polynomial Pφ. We have that Ψ ∈ TQBF if and only
if

0 <
∑

b1∈{0,1}

∏
b2∈{0,1}

∑
b3∈{0,1}

· · ·
∏

bn∈{0,1}

Pφ(b1, . . . , bn) (11)

A first thought is that we could use the same protocol as in the #SATD

case, except check that s(0) · s(1) = K when you have a
∏

. But, alas, mul-
tiplication, unlike addition, increases the degree of the polynomial — after
k steps, the degree could be 2k. Such polynomials may have 2k coefficients
and cannot even be transmitted in polynomial time if k � log n.

The solution is to look more closely at the polynomials that are are
transmitted and their relation to the original formula. We’ll change Ψ into
a logically equivalent formula whose arithmetization does not cause the de-
grees of the polynomials to be so large. The idea is similar to the way circuits
are reduced to formulas in the Cook-Levin theorem: we’ll add auxiliary vari-
ables. Specifically, we’ll change ψ to an equivalent formula ψ′ that is not
in prenex form in the following way: work from right to left and whenever
encountering a ∀ quantifier on a variable xi — that is, when considering a
postfix of the form ∀xiτ(x1, . . . , xi), where τ may contain quantifiers over
additional variables xi+1, . . . , xn — ensure that the variables x1, . . . , xi never
appear to the right of another ∀ quantifier in τ by changing the postfix to
∀xi∃x′1, . . . , x′i(x′1 = x1)∧· · ·∧(x′i = xi)∧τ(x1, . . . , xn). Continuing this way
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we’ll obtain the formula ψ′ which will have O(n2) variables and will be at
most O(n2) larger than ψ. It can be seen that the natural arithmetization
for ψ′ will lead to the polynomials transmitted in the sumcheck protocol
never having degree more than 2.

Note that the prover needs to prove that the arithmetization of Ψ′ leads
to a number K different than 0, but because of the multiplications this
number can be as large as 22n . Nevertheless the prover can find a prime p
between 0 and 2n such that K mod p 6= 0 (in fact as we saw in Chapter 7
a random prime will do). This finishes the proof of Theorem 9.13. �

Remark 9.15
An alternative way to obtain the same result (or, more accurately, an alter-
native way to describe the same protocol) is to notice that for x ∈ {0, 1},
xk = x for all k ≥ 1. Thus, in principle we can convert any polynomial
p(x1, . . . , xn) into a multilinear polynomial q(x1, . . . , xn) (i.e., the degree
of q(·) in any variable xi is at most one) that agrees with p(·) on all
x1, . . . , xn ∈ {0, 1}. Specifically, for any polynomial p(·) let Li(p) be the
polynomial defined as follows

Li(p)(x1, . . . , xn) = xiP (x1, . . . , xi−1, 1, xi+1, . . . , xn)+
(1− xi)P (x1, . . . , xi−1, 0, xi+1, . . . , xn) (12)

then L1(L2(· · · (Ln(p) · · · ) is such a multilinear polynomial agreeing with
p(·) on all values in {0, 1}. We can thus use O(n2) invocations operator to
convert (11) into an equivalent form where all the intermediate polynomials
sent in the sumcheck protocol are multilinear. We’ll use this equivalent form
to run the sumcheck protocol, where in addition to having round for a

∑
or
∏

operator, we’ll also have a round for each application of the operator
L (in such rounds the prover will send a polynomial of degree at most 2).

9.6 Interactive proof for the Permanent

Although the existence of an interactive proof for the Permanent follows
from that for #SAT and TQBF, we describe a specialized protocol as well.
This is both for historical context (this protocol was discovered before the
other two protocols) and also because this protocol may be helpful for further
research. (One example will appear in a later chapter.)
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Definition 9.16
Let A ∈ Fn×n be a matrix over the field F . The permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

The problem of calculating the permanent is #P-complete (notice the con-
trast with the determinant which is defined by a similar formula but is in fact
polynomial time computable). Recall from Chapter ?? that PH ⊆ Pperm

(Toda’s theorem, Theorem 8.11).
Observation:

f(x1, x2, ..., xn) := perm


x1,1 x1,2 . . . x1,n

x2,1
. . . ... x2,n

...
...

. . .
...

xn,1 xn,2 . . . xn,n


is a degree n polynomial since

f(x1, x2, . . . , xn) =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

We now show two properties of the permanent problem. The first is random
self reducibility, earlier encountered in Section ??:

Theorem 9.17 (Lipton ’88)
There is a randomized algorithm that, given an oracle that can compute the
permanent on 1 − 1

3n fraction of the inputs in Fn×n (where the finite field
F has size > 3n), can compute the permanent on all inputs correctly with
high probability.

Proof: Let A be some input matrix. Pick a random matrix R ∈R Fn×n

and let B(x) := A+ x ·R for a variable x. Notice that:

• f(x) := perm(B) is a degree n univariate polynomial.

• For any fixed b 6= 0, B(b) is a random matrix, hence the probability
that oracle computes perm(B(b)) correctly is at least 1− 1

3n .

Now the algorithm for computing the permanent of A is straightforward:
query oracle on all matrices {B(i)|1 ≤ i ≤ n + 1}. According to the union
bound, with probability of at least 1− n+1

n ≈
2
3 the oracle will compute the
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permanent correctly on all matrices.
Recall the fact (see Section ?? in the Appendix) that given n + 1 (point,
value) pairs {(ai, bi)|i ∈ [n+1]}, there exists a unique a degree n polynomial
p that satisfies ∀i p(ai) = bi. Therefore, given that the values B(i) are
correct, the algorithm can interpolate the polynomial B(x) and compute
B(0) = A. �

Note: The above theorem can be strengthened to be based on the assump-
tion that the oracle can compute the permanent on a fraction of 1

2 + ε for
any constant ε > 0 of the inputs. The observation is that not all values of
the polynomial must be correct for unique interpolation. See Chapter ??

Another property of the permanent problem is downward self reducibility,
encountered earlier in context of SAT:

perm(A) =
n∑
i=1

a1iperm(A1,i),

where A1,i is a (n−1)×(n−1) sub-matrix of A obtained by removing the 1’st
row and i’th column of A (recall the analogous formula for the determinant
uses alternating signs).

Definition 9.18
Define a (n − 1) × (n − 1) matrix DA(x), such that each entry contains a
degree n polynomial. This polynomial is uniquely defined by the values of
the matrices {A1,i|i ∈ [n]}. That is:

∀i ∈ [n] . DA(i) = A1,i

Where DA(i) is the matrix DA(x) with i substituted for x. (notice that
these equalities force n points and values on them for each polynomial at
a certain entry of DA(x), and hence according to the previously mentioned
fact determine this polynomial uniquely)

Observation: perm(DA(x)) is a degree n(n− 1) polynomial in x.

9.6.1 The protocol

We now show an interactive proof for the permanent (the decision problem
is whether perm(A) = k for some value k):

• Round 1: Prover sends to verifier a polynomial g(x) of degree n(n−1),
which is supposedly perm(DA(x)).
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• Round 2: Verifier checks whether:

k =
m∑
i=1

a1,ig(i)

If not, rejects at once. Otherwise, verifier picks a random element
of the field b1 ∈R F and asks the prover to prove that g(b1) =
perm(DA(b1)). This reduces the matrix dimension to (n−2)×(n−2).

...

• Round 2(n− 1)− 1: Prover sends to verifier a polynomial of degree 2,
which is supposedly the permanent of a 2× 2 matrix.

• Round 2(n− 1): Verifier is left with a 2× 2 matrix and calculates the
permanent of this matrix and decides appropriately.

Claim 9.19
The above protocol is indeed an interactive proof for perm.

Proof: If perm(A) = k, then there exists a prover that makes the verifier
accept with probability 1, this prover just returns the correct values of the
polynomials according to definition.
On the other hand, suppose that perm(A) 6= k. If on the first round, the
polynomial g(x) sent is the correct polynomial DA(x), then:

k 6=
m∑
i=1

a1,ig(i) = perm(A)

And the verifier would reject. Hence g(x) 6= DA(x). According to the fact on
polynomials stated above, these polynomials can agree on at most n(n− 1)
points. Hence, the probability that they would agree on the randomly chosen
point b1 is at most n(n−1)

|F | . The same considerations apply to all subsequent
rounds if exist, and the overall probability that the verifier will not accepts
is thus (assuming |F | ≥ 10n3 and sufficiently large n):

Pr ≥
(

1− n(n− 1)
|F |

)
·
(

1− (n− 1)(n− 2)
|F |

)
· ...
(

1− 3 · 2
|F |

)
≥

(
1− n(n− 1)

|F |

)n−1

≥ 1
2

�
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9.7 The power of the prover

A curious feature of many known interactive proof systems is that in order
to prove membership in language L, the prover needs to do more powerful
computation than just deciding membership in L. We give some examples.

1. The public coin system for graph nonisomorphism in Theorem 9.9 re-
quires the prover to produce, for some randomly chosen hash function
h and a random element y in the range of h, a graph H such that h(H)
is isomorphic to either G1 or G2 and h(x) = y. This seems harder than
just solving graph non-isomorphism.

2. The interactive proof for 3SAT, a language in coNP, requires the
prover to do #P computations, doing summations of exponentially
many terms. (Recall that all of PH is in P#P.)

In both cases, it is an open problem whether the protocol can be re-
designed to use a weaker prover.

Note that the protocol for TQBF is different in that the prover’s replies
can be computed in PSPACE as well. This observation underlies the follow-
ing result, which is in the same spirit as the Karp-Lipton results described
in Chapter ??, except the conclusion is stronger since MA is contained in
Σ2 (indeed, a perfectly complete MA-proof system for L trivially implies
that L ∈ Σ2).

Theorem 9.20
If PSPACE ⊆ P/poly then PSPACE = MA.

Proof: If PSPACE ⊆ P/poly then the prover in our TQBF protocol can
be replaced by a circuit of polynomial size. Merlin (the prover) can just
give this circuit to Arthur (the verifier) in Round 1, who then runs the
interactive proof using this “prover.” No more interaction is needed. Note
that there is no need for Arthur to put blind trust in Merlin’s circuit, since
the correctness proof of the TQBF protocol shows that if the formula is not
true, then no prover can make Arthur accept with high probability. �

In fact, using the Karp-Lipton theorem one can prove a stronger state-
ment, see Lemma ?? below.

9.8 Program Checking

The discovery of the interactive protocol for the permanent problem was
triggered by a field called program checking. Blum and Kannan’s motivation
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for introducing this field was the fact that program verification (deciding
whether or not a given program solves a certain computational task) is
undecidable. They observed that in many cases we can guarantee a weaker
guarantee of the program’s “correctness” on an instance by instance basis.
This is encapsulated in the notion of a program checker. A checker C for
a program P is itself another program that may run P as a subroutine.
Whenever P is run on an input x, C’s job is to detect if P ’s answer is
incorrect (“buggy”) on that particular instance x. To do this, the checker
may also compute P ’s answer on some other inputs. Program checking is
sometimes also called instance checking, perhaps a more accurate name,
since the fact that the checker did not detect a bug does not mean that P
is a correct program in general, but only that P ’s answer on x is correct.

Definition 9.21
Let P be a claimed program for computational task T . A checker for T is
a probabilistic polynomial time TM, C, that, given any x, has the following
behavior:

1. If P is a correct program for T (i.e., ∀y P (y) = T (y)), then P [CP accepts P (x)] ≥
2
3

2. If P (x) 6= T (x) then P [CP accepts P (x)] < 1
3

Note that in the case that P is correct on x (i.e., P (x) = C(x)) but the
program P is not correct everywhere, there is no guarantee on the output
of the checker.

Surprisingly, for many problems, checking seems easier than actually
computing the problem. (Blum and Kannan’s suggestion was to build check-
ers into the software whenever this is true; the overhead introduced by the
checker would be negligible.)

Example 9.22 (Checker for Graph Non-Isomorphism)
The input for the problem of Graph Non-Isomorphism is a pair of labelled
graphs 〈G1, G2〉, and the problem is to decide whether G1 ≡ G2. As noted,
we do not know of an efficient algorithm for this problem. But it has an
efficient checker.

There are two types of inputs, depending upon whether or not the pro-
gram claims G1 ≡ G2. If it claims that G1 ≡ G2 then one can change the
graph little by little and use the program to actually obtain the permutation
π (). We now show how to check the claim that G1 6≡ G2 using our earlier
interactive proof of Graph non-isomorphism.

Recall the IP for Graph Non-Isomorphism:
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• In case prover admits G1 6≡ G2 repeat k times:

• Choose i ∈R {1, 2}. Permute Gi randomly into H

• Ask the prover 〈G1,H〉; 〈G2,H〉 and check to see if the prover’s first
answer is consistent.

Given a computer program that supposedly computes graph isomorphism,
P , how would we check its correctness? The program checking approach
suggests to use an IP while regarding the program as the prover. Let C be
a program that performs the above protocol with P as the prover, then:

Theorem 9.23
If P is a correct program for Graph Non-Isomorphism then C outputs ”cor-
rect” always. Otherwise, if P (G1, G2) is incorrect then P [C outputs ”correct” ] ≤
2−k. Moreover, C runs in polynomial time.

9.8.1 Languages that have checkers

Whenever a language L has an interactive proof system where the prover can
be implemented using oracle access to L, this implies that L has a checker.
Thus, the following theorem is a direct consequence of the interactive proofs
we have seen:

Theorem 9.24
The problems Graph Isomorphism (GI), Permanent (perm) and True Quan-
tified Boolean Formulae (TQBF) have checkers.

Using the fact that P-complete languages are reducible to each other via
NC-reductions, it suffices to show a checker in NC for one P-complete lan-
guage (as was shown by Blum & Kannan) to obtain the following interesting
fact:

Theorem 9.25
For any P-complete language there exists a program checker in NC

Since we believe that P-complete languages cannot be computed in NC, this
provides additional evidence that checking is easier than actual computation.
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9.9 Multiprover interactive proofs (MIP)

It is also possible to define interactive proofs that involve more than one
prover. The important assumption is that the provers do not communicate
with each other during the protocol. They may communicate before the pro-
tocol starts, and in particular, agree upon a shared strategy for answering
questions. (The analogy often given is that of the police interrogating two
suspects in separate rooms. The suspects may be accomplices who have de-
cided upon a common story to tell the police, but since they are interrogated
separately they may inadvertently reveal an inconsistency in the story.)

The set of languages with multiprover interactive provers is call MIP.
The formal definition is analogous to Definition 9.5. We assume there are two
provers (though one can also study the case of polynomially many provers;
see the exercises), and in each round the verifier sends a query to each of
them —the two queries need not be the same. Each prover sends a response
in each round.

Clearly, IP ⊆ MIP since we can always simply ignore one prover.
However,it turns out that MIP is probably strictly larger than IP (unless
PSPACE = NEXP). That is, we have:

Theorem 9.26 ([BFL91])
NEXP = MIP

We will outline a proof of this theorem in Chapter ??. One thing that
we can do using two rounds is to force non-adaptivity. That is, consider
the interactive proof as an “interrogation” where the verifier asks questions
and gets back answers from the prover. If the verifier wants to ensure that
the answer of a prover to the question q is a function only of q and does
not depend on the previous questions the prover heard, the prover can ask
the second prover the question q and accept only if both answers agree with
one another. This technique was used to show that multi-prover interactive
proofs can be used to implement (and in fact are equivalent to) a model of
a “probabilistically checkable proof in the sky”. In this model we go back
to an NP-like notion of a proof as a static string, but this string may be
huge and so is best thought of as a huge table, consisting of the prover’s
answers to all the possible verifier’s questions. The verifier checks the proof
by looking at only a few entries in this table, that are chosen randomly
from some distribution. If we let the class PCP[r, q] be the set of languages
that can be proven using a table of size 2r and q queries to this table then
Theorem 9.26 can be restated as
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Theorem 9.27 (Theorem 9.26, restated)
NEXP = PCP[poly,poly] = ∪cPCP[nc, nc]

It turns out Theorem 9.26 can be scaled down to to obtain NP =
PCP[polylog,polylog]. In fact (with a lot of work) the following is known:

Theorem 9.28 (The PCP theorem, [AS98, ALM+98])
NP = PCP[O(log n), O(1)]

This theorem, which will be proven in Chapter 19, has had many ap-
plications in complexity, and in particular establishing that for many NP-
complete optimization problems, obtaining an approximately optimal solu-
tion is as hard as coming up with the optimal solution itself. Thus, it
seems that complexity theory has gone a full circle with interactive proofs:
by adding interaction, randomization, and multiple provers, and getting to
classes as high as NEXP, we have gained new and fundamental insights
on the class NP the represents static deterministic proofs (or equivalently,
efficiently verifiable search problems).

What have we learned?

• An interactive proof is a generalization of mathematical proofs in which the
prover and polynomial-time probabilistic verifier interact.

• Allowing randomization and interaction seems to add significantly more power
to proof system: the class IP of languages provable by a polynomial-time
interactive proofs is equal to PSPACE.

• All languages provable by a constant round proof system are in the class AM:
that is, they have a proof system consisting of the the verifier sending a single
random string to the prover, and the prover responding with a single message.

Chapter notes and history

Interactive proofs were defined in 1985 by Goldwasser, Micali, Rackoff [GMR89]
for cryptographic applications and (independently, and using the public coin
definition) by Babai and Moran [BM88]. The private coins interactive proof
for graph non-isomorphism was given by Goldreich, Micali and Wigder-
son [GMW87]. Simulations of private coins by public coins we given by
Goldwasser and Sipser [GS87]. The general feeling at the time was that
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interactive proofs are only a “slight” extension of NP and that not even
3SAT has interactive proofs. The result IP = PSPACE was a big surprise,
and the story of its discovery is very interesting.

In the late 1980s, Blum and Kannan [BK95] introduced the notion of pro-
gram checking. Around the same time, manuscripts of Beaver and Feigen-
baum [BF90] and Lipton [Lip91] appeared. Inspired by some of these de-
velopments, Nisan proved in December 1989 that #SAT has multiprover
interactive proofs. He announced his proof in an email to several colleagues
and then left on vacation to South America. This email motivated a flurry
of activity in research groups around the world. Lund, Fortnow, Karloff
showed that #SAT is in IP (they added Nisan as a coauthor and the final
paper is [LFK92]). Then Shamir showed that IP =PSPACE [Sha92] and
Babai, Fortnow and Lund [BFL91] showed MIP = NEXP. The entire
story —as well as related developments—are described in Babai’s entertain-
ing survey [Bab90].

Vadhan [Vad00] explores some questions related to the power of the
prover.

The result that approximating the shortest vector is probably not NP-
hard (as mentioned in the introduction) is due to Goldreich and Gold-
wasser [GG00].

Exercises

§1 Prove the assertions in Remark 9.6. That is, prove:

(a) Let IP′ denote the class obtained by allowing the prover to be
probabilistic in Definition 9.5. That is, the prover’s strategy can
be chosen at random from some distribution on functions. Prove
that IP′ = IP.

(b) Prove that IP ⊆ PSPACE.

(c) Let IP′ denote the class obtained by changing the constant 2/3
in (2) and (3) to 1− 2−|x|. Prove that IP′ = IP.

(d) Let IP′ denote the class obtained by changing the constant 2/3
in (2) to 1. Prove that IP′ = IP.

(e) Let IP′ denote the class obtained by changing the constant 2/3
in (3) to 1. Prove that IP′ = NP.

§2 We say integer y is a quadratic residue modulo m if there is an integer
x such that y ≡ x2 (mod m). Show that the following language is in
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IP[2]:

QNR = {(y,m) : y is not a quadratic residue modulo m} .

§3 Prove that there exists a perfectly complete AM[O(1)] protocol for
the proving a lowerbound on set size.

Hint:Firstnotethatinthecurrentsetlowerboundprotocolwe
canhavetheproverchoosethehashfunction.Considertheeas-
iercaseofconstructingaprotocoltodistinguishbetweenthecase
|S|≥Kand|S|≤

1
cKwherec>2canbeevenafunctionof

K.Ifcislargeenoughthewecanallowtheprovertouseseveral
hashfunctionsh1,...,hi,anditcanbeproventhatifiislarge
enoughwe’llhave∪ihi(S)={0,1}

k
.Thegapcanbeincreasedby

consideringinsteadofSthesetS
`
,thatisthe`timesCartesian

productofS.

§4 Prove that for every constant k ≥ 2, AM[k + 1] ⊆ AM[k].

§5 Show that AM[2] = BP ·NP

§6 [BFNW93] Show that if EXP ⊆ P/poly then EXP = MA.

Hint:TheinteractiveproofforTQBFrequiresaproverthatisa
PSPACEmachine.

§7 Show that the problem GI is downward self reducible. That is, prove
that given two graphs G1,G2 on n vertices and access to a subroutine
P that solves the GI problem on graphs with up to n− 1 vertices, we
can decide whether or not G1 and G2 are isomorphic in polynomial
time.

§8 Prove that in the case that G1 and G2 are isomorphic we can obtain
the permutation π mapping G1 to G2 using the procedure of the above
exercise. Use this to complete the proof in Example 9.22 and show
that graph isomorphism has a checker. Specifically, you have to show
that if the program claims that G1 ≡ G2 then we can do some further
investigation (including calling the programs on other inputs) and with
high probability conclude that either (a) conclude that the program
was right on this input or (b) the program is wrong on some input and
hence is not a correct program for graph isomorphism.

§9 Define a language L to be downward self reducible there’s a polynomial-
time algorithm R that for any n and x ∈ {0, 1}n, RLn−1(x) = L(x)
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where by Lk we denote an oracle that solves L on inputs of size at most
k. Prove that if L is downward self reducible than L ∈ PSPACE.

§10 Show that MIP ⊆ NEXP.

§11 Show that if we redefine multiprover interactive proofs to allow, instead
of two provers, as many as m(n) = poly(n) provers on inputs of size
n, then the class MIP is unchanged.

Hint:Showhowtosimulatepoly(n)proversusingtwo.Inthis
simulation,oneoftheproversplaystheroleofallm(n)provers,
andtheotherproverisaskedtosimulateoneoftheprovers,chosen
randomlyfromamongthem(n)provers.Thenrepeatthisafew
times.
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Chapter 10

Cryptography

“From times immemorial, humanity has gotten frequent, often
cruel, reminders that many things are easier to do than to re-
verse.”
L. Levin [Lev]

somewhat rough still

The importance of cryptography in today’s online world needs no intro-
duction. Here we focus on the complexity issues that underlie this field. The
traditional task of cryptography was to allow two parties to encrypt their
messages so that eavesdroppers gain no information about the message. (See
Figure 10.1.) Various encryption techniques have been invented throughout
history with one common characteristic: sooner or later they were broken.

Figure unavailable in pdf file.

Figure 10.1: People sending messages over a public channel (e.g., the internet) wish to
use encryption so that eavesdroppers learn “nothing.”

In the post NP-completeness era, a crucial new idea was presented:
the code-breaker should be thought of as a resource-bounded computational
device. Hence the security of encryption schemes ought to be proved by
reducing the task of breaking the scheme into the task of solving some com-
putationally intractable problem (say requiring exponential time complexity
or circuit size), thus one could hope to design encryption schemes that are
efficient enough to be used in practice, but whose breaking will require, say,
millions of years of computation time.
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Early researchers tried to base the security of encyption methods upon
the (presumed) intractability of NP-complete problems. This effort has
not succeeded to date, seemingly because NP-completeness concerns the
intractability of problems in the worst-case whereas cryptography seems to
need problems that are intractable on most instances. After all, when we
encrypt email, we require that decryption should be difficult for an eaves-
dropper for all (or almost all) messages, not just for a few messages. Thus
the concept most useful in this chapter will be average-case complexity1. We
will see a class of functions called one-way functions that are easy to com-
pute but hard to invert for most inputs —they are alluded to in Levin’s quote
above. Such functions exist under a variety of assumptions, including the
famous assumption that factoring integers requires time super-polynomial
time in the integer’s bit-length to solve in the average case (e.g., for a prod-
uct of two random primes).

Furthermore, in the past two decades, cryptographers have taken on
tasks above and beyond the basic task of encryption—from implementing
digital cash to maintaining the privacy of individuals in public databases.
(We survey some applications in Section 10.4.) Surprisingly, many of these
tasks can be achieved using the same computational assumptions used for
encryption. A crucial ingredient in these developments turns out to be an
answer to the question: “What is a random string and how can we generate
one?” The complexity-theoretic answer to this question leads to the notion
of a pseudorandom generator, which is a central object; see Section 10.2.
This notion is very useful in itself and is also a template for several other key
definitions in cryptography, including that of encryption (see Section 10.4).

Private key versus public key: Solutions to the encryption problem
today come in two distinct flavors. In private-key cryptography, one as-
sumes that the two (or more) parties participating in the protocol share a
private “key” —namely, a statistically random string of modest size—that
is not known to the eavesdropper2. In a public-key encryption system (a
concept introduced by Diffie and Hellman in 1976 [DH76]) we drop this
assumption. Instead, a party P picks a pair of keys: an encryption key
and decryption key, both chosen at random from some (correlated) distri-
bution. The encryption key will be used to encrypt messages to P and is

1A problem’s average-case and worst-case complexities can differ radically. For in-
stance, 3COL is NP-complete on general graphs, but on most n-node graphs is solvable in
quadratic time or less. A deeper study of average case complexity appears in Chapter 15.

2Practically, this could be ensured with a face-to-face meeting that might occur long
before the transmission of messages.
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considered public —i.e., published and known to everybody including the
eavesdropper. The decryption key is kept secret by P and is used to decrypt
messages. A famous public-key encryption scheme is based upon the RSA
function of Example 10.4. At the moment we do not know how to base
public key encryption on the sole assumption that one-way functions exist
and current constructions require the assumption that there exist one-way
functions with some special structure (such as RSA, factoring-based, and
Lattice-based one way functions). Most topics described in this chapter are
traditionally labeled private key cryptography.

10.1 Hard-on-average problems and one-way func-
tions

A basic cryptographic primitive is a one-way function. Roughly speaking,
this is a function f that is easy to compute but hard to invert. Notice that
if f is not one-to-one, then the inverse f−1(x) may not be unique. In such
cases “inverting” means that given f(x) the algorithm is able to produce
some preimage, namely, any element of f−1(f(x))). We say that the function
is one-way function if inversion is difficult for the “average” (or “many”) x.
Now we define this formally; a discussion of this definition appears below in
Section 10.1.1. A function family (gn) is a family of functions where gn takes
n-bit inputs. It is polynomial-time computable if there is a polynomial-time
TM that given an input x computes g|x|(x).

Definition 10.1 (One-way function)
A family of functions {fn : {0, 1}n 7→ {0, 1}m(n)} is ε(n) one-way with
security s(n) if it is polynomial-time computable and furthermore for every
algorithm A that runs in time s(n),

Prx∈{0,1}n [A inverts fn(x)] ≤ ε(n). (1)

Now we give a few examples and discuss the evidence that they are hard
to invert “on average inputs.”

Example 10.2
The first example is motivated by the fact that finding the prime factors
of a given integer is the famous FACTORING problem, for which the best
current algorithm has running time about 2O(n1/3) (and even that bounds
relies on the truth of some unproven conjectures in number theory). The
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hardest inputs for current algorithms appear to be of the type x · y, where
x, y are random primes of roughly equal size.

Here is a first attempt to define a one-way function using this observation.
Let {fn} be a family of functions where fn : {0, 1}n × {0, 1}n → {0, 1}2n is
defined as fn([x]2, [y]2) = [x · y]2. If x and y are primes —which by the
Prime Number Theorem happens with probability Θ(1/n2) when x, y are
random n-bit integers— then fn seems hard to invert. It is widely believed
that there are c > 1, f > 0 such that family fn is (1 − 1/nc)-one-way with
security parameter 2n

f
.

An even harder version of the above function is obtained by using the
existence of a randomized polynomial-time algorithm A (which we do not
describe) that, given 1n, generates a random n-bit prime number. Suppose
A uses m random bits, where m = poly(n). Then A may be seen as a
(deterministic) mapping fromm-bit strings to n-bit primes. Now let function
f̃m map (r1, r2) to [A(r1) ·A(r2)]2, where A(r1), A(r2) are the primes output
by A using random strings r1, r2 respectively. This function seems hard
to invert for almost all r1, r2. (Note that any inverse (r′1, r

′
2) for f̃m(r1, r2)

allows us to factor the integer A(r1) ·A(r2) since unique factorization implies
that the prime pair A(r′1), A(r′2) must be the same as A(r1), A(r2).) It is
widely conjecture that there are c > 1, f > 0 such that f̃n is 1/nc-one-way
with security parameter 2n

f
.

The FACTORING problem, a mainstay of modern cryptography, is of
course the inverse of multiplication. Who would have thought that the hum-
ble multiplication, taught to children in second grade, could be the source of
such power? The next two examples also rely on elementary mathematical
operations such as exponentiation, albeit with modular arithmetic.

Example 10.3
Let p1, p2, . . . be a sequence of primes where pi has i bits. Let gi be the
generator of the group Z∗pi , the set of numbers that are nonzero mod pi.
Then for every y ∈ 1, .., pi − 1, there is a unique x ∈ {1, .., p− 1} such that

gxi ≡ y (mod pi).

Then x→ gxi (mod pi) is a permutation on 1, .., pi − 1 and is conjectured to
be one-way. The inversion problem is called the DISCRETE LOG problem.
We show below using random self-reducibility that if it is hard on worst-case
inputs, then it is hard on average.
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We list some more conjectured one-way functions.

Example 10.4
RSA function. Let m = pq where p, q are large random primes and e be
a random number coprime to φ(m) = (p − 1)(q − 1). Let Z∗m be the set
of integers in [1, . . . ,m] coprime to m. Then the function is defined to be
fp,q,e(x) = xe (mod m). This function is used in the famous RSA public-key
cryptosystem.

Rabin function. For a composite numberm, define fm(x) = x2 (mod m).
If we can invert this function on a 1/poly(logm) fraction of inputs then we
can factor m in poly(logm) time (see exercises).

Both the RSA and Rabin functions are useful in public-key cryptography.
They are examples of trapdoor one-way functions: if the factors of m (the
“trapdoor” information) are given as well then it is easy to invert the above
functions. Trapdoor functions are fascinating objects but will not be studied
further here.

Random subset sum. Let m = 10n. Let the inputs to f be n positive
m-bit integers a1, a2, . . . , an, and a subset S of {1, 2, . . . , n}. Its output is
(a1, a2, . . . , an,

∑
i∈S ai). Note that f maps n(m+ 1)-bit inputs to nm+m

bits.
When the inputs are randomly chosen, this function seems hard to invert.

It is conjectured that there is c > 1, d > 0 such that this function is 1/nc-
one-way with security 2n

d
.

10.1.1 Discussion of the definition of one-way function

We will always assume that the the one-way function under consideration is
such that the security parameter s(n) is superpolynomial, i.e., larger than
nk for every k > 0. The functions described earlier are actually believed to
be one-way with a larger security parameter 2n

ε
for some fixed ε > 0.

Of greater interest is the error parameter ε(n), since it determines the
fraction of inputs for which inversion is easy. Clearly, a continuum of values
is possible, but two important cases to consider are (i) ε(n) = (1 − 1/nc)
for some fixed c > 0, in other words, the function is difficult to invert on at
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least 1/nc fraction of inputs. Such a function is often called a weak one-way
function. The simple one-way function fn of Example 10.2 is conjectured to
be of this type. (ii) ε(n) < 1/nk for every k > 1. Such a function is called a
strong one-way function.

Yao showed that if weak one-way functions exist then so do strong one-
way functions. We will prove this surprising theorem (actually, something
close to it) in Chapter 18. We will not use it in this chapter, except as a
justification for our intuition that strong one-way functions exist. (Another
justification is of course the empirical observation that the candidate one-
way functions mentioned above do seem appear difficult to invert on most
inputs.)

10.1.2 Random self-reducibility

Roughly speaking, a problem is random-self-reducible if solving the problem
on any input x reduces to solving the problem on a sequence of random
inputs y1, y2, . . . , where each yi is uniformly distributed among all inputs.
To put it more intuitively, the worst-case can be reduced to the average case.
Hence the problem is either easy on all inputs, or hard on most inputs. (In
other words, we can exclude the possibility that problem is easy on almost
all the inputs but not all.) If a function is one-way and also randomly self-
reducible then it must be a strong one-way function. This is best illustrated
with an example.

Theorem 10.5
Suppose A is an algorithm with running time t(n) that, given a prime p,
a generator g for Z∗p, and an input gx( mod p), manages to find x for δ
fraction of x ∈ Z∗p. Then there is a randomized algorithm A′ with running

time O( 1
δ log 1/ε(t(n)+poly(n))) that solves DISCRETE LOG on every input

with probability at least 1− ε.

Proof: Suppose we are given y = gx( mod p) and we are trying to find
x. Repeat the following trial O(1/(δ log 1/ε)) times: “Randomly pick r ∈
{0, 1, . . . , p− 2} and use A to try to compute the logarithm of y · gr(modp).
Suppose A outputs z. Check if gz−r(modp) is y, and if so, output z −
r(mod(p− 1)) as the answer.”

The main observation is that if r is randomly chosen, then y·gr( mod p) is
randomly distributed in Z∗p and hence the hypothesis implies that A has a δ
chance of finding its discrete log. After O(1/(δ log 1/ε) trials, the probability
that A failed every time is at most ε. �
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Corollary 10.6
If for any infinite sequence of primes p1, p2, . . . , DISCRETE LOG mod pi is
hard on worst-case x ∈ Z∗pi , then it is hard for almost all x.

Later as part of the proof of Theorem 10.14 we give another example of
random self-reducibility: linear functions over GF (2).

10.2 What is a random-enough string?

Cryptography often becomes much easier if we have an abundant supply of
random bits. Here is an example.

Example 10.7 (One-time pad)
Suppose the message sender and receiver share a long string r of random
bits that is not available to eavesdroppers. Then secure communication is
easy. To encode message m ∈ {0, 1}n, take the first n bits of r, say the
string s. Interpret both strings as vectors in GF (2)n and encrypt m by the
vector m+s. The receiver decrypts this message by adding s to it (note that
s+ s = 0 in GF (2)n). If s is statistically random, then so is m+ s. Hence
the eavesdropper provably cannot obtain even a single bit of information
about m regardless of how much computational power he expends.

Note that reusing s is a strict no-no (hence the name “one-time pad”).
If the sender ever reuses s to encrypt another message m′ then the eaves-
dropper can add the two vectors to obtain (m + s) + (m′ + s) = m + m′,
which is some nontrivial information about the two messages.

Of course, the one-time pad is just a modern version of the old idea of
using “codebooks” with a new key prescribed for each day.

One-time pads are conceptually simple, but impractical to use, because
the users need to agree in advance on a secret pad that is large enough to be
used for all their future communications. It is also hard to generate because
sources of quality random bits (e.g., those based upon quantum phenomena)
are often too slow. Cryptography’s suggested solution to such problems is
to use a pseudorandom generator. This is a deterministically computable
function g : {0, 1}n → {0, 1}n

c

(for some c > 1) such that if x ∈ {0, 1}n is
randomly chosen, then g(x) “looks” random. Thus so long as users have
been provided a common n-bit random string, they can use the generator
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to produce nc “random looking” bits, which can be used to encrypt nc−1

messages of length n. (In cryptography this is called a stream cipher.)
Clearly, at this point we need an answer to the question posed in the

Section’s title! Philosophers and statisticians have long struggled with this
question.

Example 10.8
What is a random-enough string? Here is Kolmogorov’s definition: A string
of length n is random if no Turing machine whose description length is
< 0.99n (say) outputs this string when started on an empty tape. This
definition is the “right” definition in some philosophical and technical sense
(which we will not get into here) but is not very useful in the complexity
setting because checking if a string is random according to this definition is
undecidable.

Statisticians have also attempted definitions which boil down to checking
if the string has the “right number” of patterns that one would expect by
the laws of statistics, e.g. the number of times 11100 appears as a substring.
(See Knuth Volume 3 for a comprehensive discussion.) It turns out that
such definitions are too weak in the cryptographic setting: one can find
a distribution that passes these statistical tests but still will be completely
insecure if used to generate the pad for the one-time pad encryption scheme.

10.2.1 Blum-Micali and Yao definitions

Now we introduce two complexity-theoretic definitions of pseudorandomness
due to Blum-Micali and Yao in the early 1980s. For a string y ∈ {0, 1}n and
S ⊆ [n], we let y|S denote the projection of Y to the coordinates of S. In
particular, y|[1..i] denotes the first i bits of y.

The Blum-Micali definition is motivated by the observation that one
property (in fact, the defining property) of a statistically random sequence
of bits y is that given y|[1..i], we cannot predict yi+1 with odds better than
50/50 regardless of the computational power available to us. Thus one could
define a “pseudorandom” string by considering predictors that have limited
computational resources, and to show that they cannot achieve odds much
better than 50/50 in predicting yi+1 from y|[1..i]. Of course, this definition
has the shortcoming that any single finite string would be predictable for a
trivial reason: it could be hardwired into the program of the predictor Turing
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machine. To get around this difficulty the Blum-Micali definition (and also
Yao’s definition below) defines pseudorandomness for distributions of strings
rather than for individual strings. Furthermore, the definition concerns an
infinite sequence of distributions, one for each input size.

Definition 10.9 (Blum-Micali)
Let {gn} be a polynomial-time computable family of functions, where gn :
{0, 1}n → {0, 1}m and m = m(n) > n. We say the family is (ε(n), t(n))-
unpredictable if for every probabilistic polynomial-time algorithm A that
runs in time t(n) and every large enough input size n,

Pr[A(g(x)[1..i]) = g(x)i+1] ≤
1
2

+ ε(n),

where the probability is over the choice of x ∈ {0, 1}n , i ∈ {1, . . . , n} , and
the randomness used by A.

If for every fixed k, the family {gn} is (1/nc, nk)-unpredictable for every
c > 1, then we say in short that it is unpredictable by polynomial-time
algorithms.

Remark 10.10
Allowing the tester to be an arbitrary polynomial-time machine makes per-
fect sense in a cryptographic setting where we wish to assume nothing about
the adversary except an upperbound on her computational power.

Pseudorandom generators proposed in the pre-complexity era, such as
the popular linear or quadtratic congruential generators do not satisfy the
Blum-Micali definition because bit-prediction can in fact be done in poly-
nomial time.

Yao gave an alternative definition in which the tester machine is given
access to the entire string at once. This definition implicitly sets up a test
of randomness analogous to the more famous Turing test for intelligence
(see Figure 10.2). The tester machine A is given a string y ∈ {0, 1}n

c

that is
produced in one of two ways: it is either drawn from the uniform distribution
on {0, 1}n

c

or generated by taking a random string x ∈ {0, 1}n and stretching
it using a deterministic function g : {0, 1}n → {0, 1}n

c

. The tester is asked
to output “1” if the string looks random to it and 0 otherwise. We say that
g is a pseudorandom generator if no polynomial-time tester machine A has
a great chance of being able to determine which of the two distributions the
string came from.
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Definition 10.11 ([Yao82])
Let {gn} be a polynomial-time computable family of functions, where gn :
{0, 1}n → {0, 1}m and m = m(n) > n. We say it is a (δ(n), s(n))-
pseudorandom generator if for every probabilistic algorithm A running in
time s(n) and for all large enough n

|Pr
y∈{0,1}nc [A(y) = 1]−Prx∈{0,1}n [A(gn(x)) = 1]| ≤ δ(n). (2)

We call δ(n) the distinguishing probability and s(n) the security parameter.
If for every c′, k > 1, the family is (1/nc

′
, nk)-pseudorandom then we say

in short that it is a pseudorandom generator.

Figure unavailable in pdf file.

Figure 10.2: Yao’s definition: If c > 1 then g : {0, 1}n → {0, 1}n
c

is a pseudorandom
generator if no polynomial-time tester has a good chance of distinguishing between truly
random strings of length nc and strings generated by applying g on random n-bit strings.

10.2.2 Equivalence of the two definitions

Yao showed that the above two definitions are equivalent —up to minor
changes in the security parameter, a family is a pseudorandom generator iff
it is (bitwise) unpredictable. The hybrid argument used in this proof has
become a central idea of cryptography and complexity theory.

The nontrivial direction of the equivalence is to show that pseudoran-
domness of the Blum-Micali type implies pseudorandomness of the Yao type.
Not surprisingly, this direction is also more important in a practical sense.
Designing pseudorandom generators seems easier for the Blum-Micali defi-
nition —as illustrated by the Goldreich-Levin construction below— whereas
Yao’s definition seems more powerful for applications since it allows the ad-
versary unrestricted access to the pseudorandom string. Thus Yao’s theorem
provides a bridge between what we can prove and what we need.

Theorem 10.12 (Prediction vs. Indistinguishability [?])
Let Let gn :{0, 1}n → {0, 1}N(n) be a family of functions where N(n) = nk for some
k > 1.
If gn is ( ε(n)

N(n) , 2t(n))-unpredictable where t(n) ≥ N(n)2 then it is (ε(n), t(n))-
pseudorandom.
Conversely, if gn is (ε(n), t(n))-pseudorandom, then it is (ε(n), t(n))-unpredictable.
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Proof: The converse part is trivial since a bit-prediction algorithm can in
particular be used to distinguish g(x) from random strings of the same
length. It is left to the reader.

LetN be shorthand forN(n). Suppose g is not (ε(n), t(n))-pseudorandom,
and A is a distinguishing algorithm that runs in t(n) time and satisfies:∣∣∣∣∣ Pr

x∈Bn
[A(g(x)) = 1]− Pr

y∈{0,1}N
[A(y) = 1]

∣∣∣∣∣ > ε(n). (3)

By considering either A or the algorithm that is A with the answer flipped,
we can assume that the |·| can be removed and in fact

Pr
x∈Bn

[A(g(x)) = 1]− Pr
y∈{0,1}N

[A(y) = 1] > ε(n). (4)

Consider B, the following bit-prediction algorithm. Let its input be
g(x)|≤i where x ∈ {0, 1}n and i ∈ {0, . . . , N − 1} are chosen uniformly
at random. B’s program is: “Pick bits ui+1, ui+2, . . . , uN randomly and
run A on the input g(x)|≤iui+1ui+2 . . . uN . If A outputs 1, output ui+1

else output ui+1.” Clearly, B runs in time less than t(n) + O(N(n)) <
2t(n). To complete the proof we show that B predicts g(x)i+1 correctly
with probability at least 1

2 + ε(n)
N .

Consider a sequence of N + 1 distributions D0 through DN defined as
follows (in all cases, x ∈ {0, 1}n and u1, u2, . . . , uN ∈ {0, 1} are assumed to
be chosen randomly)

D0 = u1u2u3u4 · · ·uN
D1 = g(x)1u2u3 · · ·uN

...
...

Di = g(x)≤iui+1 · · ·uN
...

...
DN = g(x)1g(x)2 · · · g(x)N

Furthermore, we denote by Di the distribution obtained from Di by flipping
the ith bit (i.e., replacing g(x)i by g(x)i). If D is any of these 2(N + 1)
distributions then we denote Pry∈D[A(y) = 1] by q(D). With this notation
we rewrite (4) as

q(DN )− q(D0) > ε(n). (5)
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Furthermore, in Di, the (i + 1)th bit is equally likely to be g(x)i+1 and
g(x)i+1, so

q(Di) = 1
2(q(Di+1) + q(Di+1)), (6)

Now we analyze the probability that B predicts g(x)i+1 correctly. Since i is
picked randomly we have

Pr
i,x

[B is correct] =
1
N

n−1∑
i=0

1
2

(
Pr
x,u

[B’s guess for g(x)i+1 is correct | ui+1 = g(x)i+1]

+ Pr
x,u

[B’s guess for g(x)i+1 is correct | ui+1 = g(x)i+1]
)
.

Since B’s guess is ui+1 iff A outputs 1 this is

=
1

2N

N−1∑
i=0

(q(Di+1) + 1− q(Di+1))

=
1
2

+
1

2N

N−1∑
i=0

(q(Di+1)− q(Di+1))

From (6), q(Di+1)− q(Di+1) = 2(q(Di+1)− q(Di)), so this becomes

=
1
2

+
1

2N

N−1∑
i=0

2(q(Di+1)− q(Di))

=
1
2

+
1
N

(q(DN )− q(D0))

>
1
2

+
ε(n)
N

.

This finishes our proof. �

10.3 One-way functions and pseudorandom num-
ber generators

Do pseudorandom generators exist? Surprisingly the answer (though we
will not prove it in full generality) is that they do if and only if one-way
functions exist.

Theorem 10.13
One-way functions exist iff pseudorandom generators do.
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Since we had several plausible candidates for one-way functions in Sec-
tion 10.1, this result helps us design pseudorandom generators using those
candidate one-way functions. If the pseudorandom generators are ever
proved to be insecure, then the candidate one-way functions were in fact
not one-way, and so we would obtain (among other things) efficient algo-
rithms for FACTORING and DISCRETE LOG.

The “if” direction of Theorem 10.13 is trivial: if g is a pseudorandom
generator then it must also be a one-way function since otherwise the algo-
rithm that inverts g would be able to distinguish its outputs from random
strings. The “only if” direction is more difficult and involves using a one-
way function to explicitly construct a pseudorandom generator. We will do
this only for the special case of one-way functions that are permutations,
namely, they map {0, 1}n to {0, 1}n in a one-to-one and onto fashion. As
a first step, we describe the Goldreich-Levin theorem, which gives an easy
way to produce one pseudorandom bit, and then describe how to produce
nc pseudorandom bits.

10.3.1 Goldreich-Levin hardcore bit

Let {fn} be a one-way permutation where fn :{0, 1}n → {0, 1}n. Clearly, the
function g :{0, 1}n×{0, 1}n → {0, 1}2n defined as g(x, r) = (f(x), r) is also a
one-way permutation. Goldreich and Levin showed that given (f(x), r), it is
difficult for a polynomial-time algorithm to predict x�r, the scalar product
of x and r (mod 2). Thus even though the string (f(x), r) in principle
contains all the information required to extract (x, r), it is computationally
difficult to extract even the single bit x � r. This bit is called a hardcore
bit for the permutation. Prior to the Goldreich-Levin result we knew of
hardcore bits for some specific (conjectured) one-way permutations, not all.

Theorem 10.14 (Goldreich-Levin Theorem)
Suppose that {fn} is a family of ε(n))-one-way permutation with security s(n). Let

S(n) = (min
{
s(n), 1

ε(n)

}
)1/8 Then for all algorithms A running in time S(n)

Prx,r∈{0,1}n [A(fn(x), r) = x� r] ≤ 1
2

+O(
1

S(n)
). (7)

Proof: Suppose that some algorithm A can predict x� r with probability
1/2 + δ in time t(n). We show how to invert fn(x) for O(δ) fraction of the
inputs in O(n3t(n)/δ4) time, from which the theorem follows.
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Claim 10.15
Suppose that

Prx,r∈{0,1}n [A(fn(x), r) = x� r] ≥ 1
2

+ δ. (8)

Then for at least δ fraction of x’s

Prr∈{0,1}n [A(fn(x), r) = x� r] ≥ 1
2

+
δ

2
. (9)

Proof: We use an averaging argument. Suppose that p is the fraction of
x’s satisfying (9). We have p · 1 + (1− p)(1/2 + δ/2) ≥ 1/2 + δ. Solving this
with respect to p, we obtain

p ≥ δ

2(1/2− δ/2)
≥ δ.

�

We design an inversion algorithm that given fn(x), where x ∈R {0, 1}n,
will try to recover x. It succeeds with high probability if x is such that (9)
holds, in other words, for at least δ fraction of x. Note that the algorithm
can always check the correctness of its answer, since it has fn(x) available
to it and it can apply fn to its answer and see if fn(x) is obtained.

Warmup: Reconstruction when the probability in (9) is ≥ 3/4 + δ.

Let P be any program that computes some unknown linear function over
GF (2)n but errs on some inputs. Specifically, there is an unknown vector
x ∈ GF (2)n such that

Pr
r

[P (r) = x · r] = 3/4 + δ. (10)

Then we show to add a simple “correction” procedure to turn P into a
probabilistic program P ′ such that

∀ r Pr[P ′(r) = x · r] ≥ 1− 1
n2 . (11)

(Once we know how to compute x · r for every r with high probability, it
is easy to recover x bit-by-bit using the observation that if ei is the n-bit
vector that is 1 in the ith position and zero elsewhere then x · ei = ai, the
ith bit of a.)

“On input r, repeat the following trial O(log n/δ2) times. Pick y ran-
domly from GF (2)n and compute the bit P (r+y)+P (y). At the end, output
the majority value.”
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The main observation is that when y is randomly picked from GF (2)n

then r + y and y are both randomly distributed in GF (2)n, and hence
the probability that P (r + y) 6= a · (r + y) or P (y) 6= a · y is at most
2 · (1/4− δ) = 1/2− 2δ. Thus with probability at least 1/2 + 2δ, each trial
produces the correct bit. Then Chernoff bounds imply that probability is
at least 1− 1/n2 that the final majority is correct.

General Case:

The idea for the general case is very similar, the only difference being
that this time we want to pick r1, . . . , rm so that we already “know” x� ri.
The preceding statement may appear ridiculous, since knowing the inner
product of x with m ≥ n random vectors is, with high probability, enough
to reconstruct x (see exercises). The explanation is that the ri’s will not be
completely random. Instead, they will be pairwise independent. Recall the
following construction of a set of pairwise independent vectors: Pick k ran-
dom vectors t1, t2, . . . , tk ∈ GF (2)n and for each nonempty S ⊆ {1, . . . , k}
define YS =

∑
i∈S ti. This gives 2k − 1 vectors and for S 6= S′ the random

variables YS , YS′ are independent of each other.
Now let us describe the observation at the heart of the proof. Suppose

m = 2k − 1 and our random strings r1, . . . , rm are {YS}’s from the previous
paragraph. Then x� YS = x� (

∑
i∈S ti) =

∑
i∈S x� ti. Hence if we know

x � ti for i = 1, . . . , k, we also know x � YS . Of course, we don’t actually
know x � ti for i = 1, . . . , k since x is unknown and the ti’s are random
vectors. But we can just try all 2k possibilities for the vector (x� ti)i=1,...,k

and run the rest of the algorithm for each of them. Whenever our “guess”
for these innerproducts is correct, the algorithm succeeds in producing x
and this answer can be checked by applying fn on it (as already noted).
Thus the guessing multiplies the running time by a factor 2k, which is only
m. This is why we can assume that we know x� YS for each subset S.

The details of the rest of the algorithm are similar to before. Pick m
pairwise independent vectors YS’s such that, as described above, we “know”
x � YS for all S. For each i = 1, 2, . . . , n, and each S run A on the input
(fn(x), YS ⊕ ei) (where YS ⊕ ei is YS with its ith entry flipped). Compute
the majority value of A(fn(x), YS ⊕ ei)−x�YS among all S’s and use it as
your guess for xi.

Suppose x ∈ GF (2)n satisfies (9). We will show that this algorithm
produces all n bits of x with probability at least 1/2. Fix i. For each
i, the guess for xi is a majority of m bits. The expected number of bits
among these that agree with xi is m(1/2 + δ/2), so for the majority vote
to result in the incorrect answer it must be the case that the number of
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incorrect values deviates from its expectation by more than mδ/2. Now,
we can bound the variance of this random variable and apply Chebyshev’s
inequality (Lemma A.14 in the Appendix) to conclude that the probability
of such a deviation is ≤ 4

mδ2
.

Here is the calculation using Chebyshev’s inequality. Let ξS denote the
event that A produces the correct answer on (fn(x), YS⊕ei). Since x satisfies
(9) and YS ⊕ ei is randomly distributed over GF (2)n, we have E(ξS) =
1/2 + δ/2 and V ar(ξS) = E(ξS)(1−E(ξS)) < 1. Let ξ =

∑
S ξS denote the

number of correct answers on a sample of sizem. By linearity of expectation,
E[ξ] = m(1/2 + δ/2). Furthermore, the YS ’s are pairwise independent,
which implies that the same is true for the outputs ξS ’s produced by the
algorithm A on them. Hence by pairwise independence V ar(ξ) < m. Now,
by Chebyshev’s inequality, the probability that the majority vote is incorrect
is at most 4V ar(ξ)

m2δ2
≤ 4

mδ2
.

Finally, setting m > 8/nδ2, the probability of guessing the ith bit incor-
rectly is at most 1/2n. By the union bound, the probability of guessing the
whole word incorrectly is at most 1/2. Hence, for every x satisfying (9), we
can find the preimage of f(x) with probability at least 1/2, which makes
the overall probability of inversion at least δ/2. The running time is about
m2n× (running time of A), which is n3

δ4
× t(n), as we had claimed. �

10.3.2 Pseudorandom number generation

We saw that if f is a one-way permutation, then g(x, r) = (f(x), r, x� r) is
a pseudorandom generator that stretches 2n bits to 2n+ 1 bits. Stretching
to even more bits is easy too, as we now show. Let f i(x) denote the i-th
iterate of f on x (i.e., f(f(f(· · · (f(x))))) where f is applied i times).

Theorem 10.16
If f is a one-way permutation then gN (x, r) = (r, x � r, f(x) � r, f2(x) �
r, . . . , fN (x)� r) is a pseudorandom generator for N = nc for any constant
c > 0.

Proof: Since any distinguishing machine could just reverse the string as
a first step, it clearly suffices to show that the string (r, fN (x)�r, fN−1(x)�
r, . . . , f(x)�r, x�r) looks pseudorandom. By Yao’s theorem (Theorem 10.12),
it suffices to show the difficulty of bit-prediction. For contradiction’s sake,
assume there is a PPT machine A such that when x, r ∈ {0, 1}n and
i ∈ {1, . . . , N} are randomly chosen,

Pr[A predicts f i(x)� r given (r, fN (x)� r, fN−1(x)� r, . . . , f i+1(x)� r)] ≥ 1
2
+ε.
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We describe an algorithm B that given f(z), r where z, r ∈ {0, 1}n are
randomly chosen, predicts the hardcore bit z�r with reasonable probability,
which contradicts Theorem 10.14.

Algorithm B picks i ∈ {1, . . . , N} randomly. Let x ∈ {0, 1}n be such
that f i(x) = z. There is of course no efficient way for B to find x, but for
any l ≥ 1, B can efficiently compute f i+l(x) = f l−1(f(z))! So it produces
the string r, fN (x)� r, fN−1(x)� r, . . . , f i+1(x)� r and uses it as input to
A. By assumption, A predicts f i(x) � r = z � r with good odds. Thus we
have derived a contradiction to Theorem 10.14. �

10.4 Applications

Now we give some applications of the ideas introduced in the chapter.

10.4.1 Pseudorandom functions

Pseudorandom functions are a natural generalization of (and are easily con-
structed using) pseudorandom generators. This is a function g : {0, 1}m ×
{0, 1}n → {0, 1}m. For eachK ∈ {0, 1}m we denote by g|K the function from
{0, 1}n to {0, 1}m defined by g|K(x) = g(K,x). Thus the family contains
2m functions from {0, 1}n to {0, 1}m, one for each K.

We say g is a pseudorandom function generator if it passes a “Turing
test” of randomness analogous to that in Yao’s definition of a pseudorandom
generator (Definition 10.11).

Recall that the set of all functions from {0, 1}n to {0, 1}m, denoted Fn,m ,
has cardinality (2m)2

n
. The PPT machine is presented with an “oracle” for

a function from {0, 1}n to {0, 1}n. The function is one of two types: either a
function chosen randomly from Fn,m, or a function f |K where K ∈ {0, 1}m
is randomly chosen. The PPT machine is allowed to query the oracle in any
points of its choosing. We say f |K is a pseudorandom function generator
if for all c > 1 the PPT has probability less than n−c of detecting which
of the two cases holds. (A completely formal definition would resemble
Definition 10.1 and talk about a family of generators, one for each n. Then
m is some function of n.)

Now we describe a construction of a pseudorandom function generator
g from a length-doubling pseudorandom generator f : {0, 1}m → {0, 1}2m.
For any K ∈ {0, 1}m let TK be a complete binary tree of depth n whose
each node is labelled with an m-bit string. The root is labelled K. If a node
in the tree has label y then its left child is labelled with the first m bits of
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Figure unavailable in pdf file.

Figure 10.3: Constructing a pseudorandom function from {0, 1}n to {0, 1}m using a
random key K ∈ {0, 1}m and a length-doubling pseudorandom generator g : {0, 1}m →
{0, 1}2m.

f(y) and the right child is labelled with the last m bits of f(y). Now we
define g(K,x). For any x ∈ {0, 1}n interpret x as a label for a path from
root to leaf in TK in the obvious way and output the label at the leaf. (See
Figure 10.3.)

We leave it as an exercise to prove that this construction is correct.
A pseudorandom function generator is a way to turn a random string

K into an implicit description of an exponentially larger “random looking”
string, namely, the table of all values of the function g|K . This has proved
a powerful primitive in cryptography; see the next section. Furthermore,
pseudorandom function generators have also figured in a very interesting
explanation of why current lowerbound techniques have been unable to sep-
arate P from NP; see Chapter ??.

10.4.2 Private-key encryption: definition of security

We hinted at a technique for private-key encryption in our discussion of
a one-time pad (including the pseudorandom version) at the start of Sec-
tion 10.2. But that discussion completely omitted what the design goals of
the encryption scheme were. This is an important point: design of inse-
cure systems often traces to a misunderstanding about the type of security
ensured (or not ensured) by an underlying protocol.

The most basic type of security that a private-key encryption should
ensure is semantic security. Informally speaking, this means that whatever
can be computed from the encrypted message is also computable without
access to the encrypted message and knowing only the length of the message.
The formal definition is omitted here but it has to emphasize the facts
that we are talking about an ensemble of encryption functions, one for each
message size (as in Definition 10.1) and that the encryption and decryption
is done by probabilistic algorithms that use a shared private key, and that
for every message the guarantee of security holds with high probability with
respect to the choice of this private key.

Now we describe an encryption scheme that is semantically secure. Let
f : {0, 1}n × {0, 1}n → {0, 1}n be a pseudorandom function generator. The
two parties share a secret random key K ∈ {0, 1}n. When one of them

Web draft 2006-09-28 18:09



DRAFT

10.4. APPLICATIONS 219

wishes to send a message x ∈ {0, 1}n to the other, she picks a random
string r ∈ {0, 1}n and transmits (r, x⊕ fK(r)). To decrypt the other party
computes fK(r) and then XORs this string with the last n bits in the received
text.

We leave it as an exercise to show that this scheme is semantically secure.

10.4.3 Derandomization

The existence of pseudorandom generators implies subexponential determin-
istic algorithms for BPP: this is usually referred to as derandomization of
BPP. (In this case, the derandomization is only partial since it results in a
subexponential deterministic algorithm. Stronger complexity assumptions
imply a full derandomization of BPP, as we will see in Chapter 17.)
Theorem 10.17
If for every c > 1 there is a pseudorandom generator that is secure against
circuits of size nc, then BPP ⊆ ∩ε>0DTIME(2n

ε
).

Proof: Let us fix an ε > 0 and show that BPP ⊆ DTIME(2n
ε
).

Suppose that M is a BPP machine running in nk time. We can build
another probabilistic machine M ′ that takes nε random bits, streches them
to nk bits using the pseudorandom generator and then simulates M using
this nk bits as a random string. Obviously, M ′ can be simulated by going
over all binary strings nε, running M ′ on each of them, and taking the
majority vote.

It remains to prove that M and M ′ accept the same language. Suppose
otherwise. Then there exists an infinite sequence of inputs x1, . . . , xn, . . . on
which M distinguishes a truly random string from a pseudorandom string
with a high probability, because for M and M ′ to produce different results,
the probability of acceptance should drop from 2/3 to below 1/2. Hence
we can build a distinguisher similar to the one described in the previous
theorem by hardwiring these inputs into a circuit family. �

The above theorem shows that the existence of hard problems implies
that we can reduce the randomness requirement of algorithms. This “hard-
ness versus randomness” tradeoff is studied more deeply in Chapter 17.
Remark 10.18
There is an interesting connection to discrepancy theory, a field of math-
ematics. Let S be a set of subsets of {0, 1}n. Subset A ⊂ {0, 1}n has
discrepancy ε with respect to S if for every s ∈ S,∣∣∣∣ |s ∩A||S|

− |A|
2n

∣∣∣∣ ≤ ε.
Web draft 2006-09-28 18:09



DRAFT

220 10.4. APPLICATIONS

Our earlier result that BPP ⊆ P/poly showed the existence of polynomial-
size sets A that have low discrepancy for all sets defined by polynomial-time
Turing machines (we only described discrepancy for the universe {0, 1}n but
one can define it for all input sizes using lim sup). The goal of derandom-
ization is to explicitly construct such sets; see Chapter 17.

10.4.4 Tossing coins over the phone and bit commitment

How can two parties A and B toss a fair random coin over the phone? (Many
cryptographic protocols require this basic primitive.) If only one of them
actually tosses a coin, there is nothing to prevent him from lying about the
result. The following fix suggests itself: both players toss a coin and they
take the XOR as the shared coin. Even if B does not trust A to use a fair
coin, he knows that as long as his bit is random, the XOR is also random.
Unfortunately, this idea also does not work because the player who reveals
his bit first is at a disadvantage: the other player could just “adjust” his
answer to get the desired final coin toss.

This problem is addressed by the following scheme, which assumes that
A and B are polynomial time turing machines that cannot invert one-way
permutations. The protocol itself is called bit commitment. First, A chooses
two strings xA and rA of length n and sends a message (fn(xA), rA), where
fn is a one-way permutation. This way, A commits the string xA without
revealing it. Now B selects a random bit b and conveys it. Then A reveals
xA and they agree to use the XOR of b and (xA�rA) as their coin toss. Note
that B can verify that xA is the same as in the first message by applying
fn, therefore A cannot change her mind after learning B’s bit. On the other
hand, by the Goldreich–Levin theorem, B cannot predict xA � rA from A’s
first message, so this scheme is secure.

10.4.5 Secure multiparty computations

This concerns a vast generalization of the setting in Section 10.4.4. There
are k parties and the ith party holds a string xi ∈ {0, 1}n. They wish to
compute f(x1, x2, . . . , xk) where f : {0, 1}nk → {0, 1} is a polynomial-time
computable function known to all of them. (The setting in Section 10.4.4
is a subcase whereby each xi is a bit —randomly chosen as it happens—
and f is XOR.) Clearly, the parties can just exchange their inputs (suitably
encrypted if need be so that unauthorized eavesdroppers learn nothing) and
then each of them can compute f on his/her own. However, this leads
to all of them knowing each other’s input, which may not be desirable in
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many situations. For instance, we may wish to compute statistics (such as
the average) on the combination of several medical databases that are held
by different hospitals. Strict privacy and nondisclosure laws may forbid
hospitals from sharing information about individual patients. (The original
example Yao gave in introducing the problem was of k people who wish to
compute the average of their salaries without revealing their salaries to each
other.)

We say that a multiparty protocol for computing f is secure if at the end
no party learns anything new apart from the value of f(x1, x2, . . . , xk). The
formal definition is inspired by the definition of a pseudorandom generator,
and states that for each i, the bits received by party i during the protocol
should be computationally indistinguishable from completely random bits3.

It is completely nonobvious why such protocols must exist. Yao [Yao86]
proved existence for k = 2 and Goldreich, Micali, Wigderson [GMW87]
proved existence for general k. We will not describe this protocol in any
detail here except to mention that it involves “scrambling” the circuit that
computes f .

10.4.6 Lowerbounds for machine learning

In machine learning the goal is to learn a succinct function f : {0, 1}n →
{0, 1} from a sequence of type (x1, f(x1)), (x2, f(x2)), . . . , where the xi’s
are randomly-chosen inputs. Clearly, this is impossible in general since a
random function has no succinct description. But suppose f has a succinct
description, e.g. as a small circuit. Can we learn f in that case?

The existence of pseudorandom functions implies that even though a
function may be polynomial-time computable, there is no way to learn it
from examples in polynomial time. In fact it is possible to extend this
impossibility result (though we do not attempt it) to more restricted function
families such as NC1 (see Kearns and Valiant [KV94]).

10.5 Recent developments

The earliest cryptosystems were designed using the SUBSET SUM problem.
They were all shown to be insecure by the early 1980s. In the last few years,

3Returning to our medical database example, we see that the hospitals can indeed
compute statistics on their combined databases without revealing any information to each
other —at least any information that can be extracted feasibly. Nevetheless, it is unclear
if current privacy laws allow hospitals to perform such secure multiparty protocols using
patient data— an example of the law lagging behind scientific progress.
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interest in such problems —and also the related problems of computing ap-
proximate solutions to the shortest and nearest lattice vector problems—
has revived, thanks to a one-way function described in Ajtai [Ajt96], and
a public-key cryptosystem described in Ajtai and Dwork [AD97] (and im-
proved on since then by other researchers). These constructions are secure
on most instances iff they are secure on worst-case instances. (The idea used
is a variant of random self-reducibility.)

Also, there has been a lot of exploration of the exact notion of secu-
rity that one needs for various cryptographic tasks. For instance, the no-
tion of semantic security in Section 10.4.2 may seem quite strong, but re-
searchers subsequently realized that it leaves open the possibility of some
other kinds of attacks, including chosen ciphertext attacks, or attacks based
upon concurrent execution of several copies of the protocol. Achieving se-
curity against such exotic attacks calls for many ideas, most notably zero
knowledge (a brief introduction to this concept appears in Section ??).

Chapter notes and history

In the 1940s, Shannon speculated about topics reminiscent of complexity-
based cryptography. The first concrete proposal was made by Diffie and
Hellman [DH76], though their cryptosystem was later broken. The inven-
tion of the RSA cryptosystem (named after its inventors Ron Rivest, Adi
Shamir, and Len Adleman) [RSA78] brought enormous attention to this
topic. In 1981 Shamir [Sha83] suggested the idea of replacing a one-time
pad by a pseudorandom string. He also exhibited a weak pseudorandom gen-
erator assuming the average-case intractability of the RSA function. The
more famous papers of Blum and Micali [BM84] and then Yao [Yao82] laid
the intellectual foundations of private-key cryptography. (The hybrid ar-
gument used by Yao is a stronger version of one in an earlier important
manuscript of Goldwasser and Micali [GM84] that proposed probabilistic
encryption schemes.) The construction of pseudorandom functions in Sec-
tion 10.4.1 is due to Goldreich, Goldwasser, and Micali [GGM86]. The
question about tossing coins over a telephone was raised in an influential
paper of Blum [Blu82]. Today complexity-based cryptography is a vast field
with several dedicated conferences. Goldreich [Gol04]’s two-volume book
gives a definitive account.

A scholarly exposition of number theoretic algorithms (including gen-
erating random primes and factoring integers) appears in Victor Shoup’s
recent book [?] and the book of Bach and Shallit [BS96].
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Theorem 10.13 and its very technical proof is in Hȧstad et al. [HILL99]
(the relevant conference publications are a decade older).

Our proof of the Goldreich-Levin theorem is usually attributed to Rackoff
(unpublished).

Exercises

§1 Show that if P = NP then one-way functions and pseudorandom
generators do not exist.

§2 (Requires just a little number theory). Prove that if some algorithm
inverts the Rabin function fm(x) = x2 (mod m) on a 1/poly(logm)
fraction of inputs then we can factor m in poly(logm) time.

Hint:Supposem=pqwherep,qareprimenumbers.Thenx
2

has4“squareroots”modulom.

§3 Show that if f is a one-way permutation then so is fk (namely, f(f(f(· · · (f(x)))))
where f is applied k times) where k = nc for some fixed c > 0.

§4 Assuming one-way functions exist, show that the above fails for one-
way functions.

Hint:Youhavetodesignaone-wayfunctionwheref
k

isnot
one-way.

§5 Suppose a ∈ GF(2)m is an unknown vector. Let r1, r2, . . . , rm ∈
GF(2)m be randomly chosen, and a � ri revealed to us for all i =
1, 2, . . . ,m. Describe a deterministic algorithm to reconstruct a from
this information, and show that the probability (over the choice of the
ri’s) is at least 1/4 that it works.

Hint:Youneedtoshowthatacertaindeterminantisnonzero.

This shows that the “trick” in Goldreich-Levin’s proof is necessary.

§6 Suppose somebody holds an unknown n-bit vector a. Whenever you
present a randomly chosen subset of indices S ⊆ {1, . . . , n}, then with
probability at least 1/2+ε, she tells you the parity of the all the bits in
a indexed by S. Describe a guessing strategy that allows you to guess
a (an n bit string!) with probability at least ( εn)c for some constant
c > 0.
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§7 Suppose g :{0, 1}n → {0, 1}n+1 is any pseudorandom generator. Then
use g to describe a pseudorandom generator that stretches n bits to
nk for any constant k > 1.

§8 Show the correctness of the pseudorandom function generator in Sec-
tion 10.4.1.

Hint:Useahybridargumentwhichreplacesthelabelsonthe
firstklevelsofthetreebycompletelyrandomstrings.Notethat
therandomlabelsdonotneedtobeassignedaheadoftime—
thiswouldtakeatleast2

k
time—butcanbeassignedonthefly

whenevertheyareneededbythedistinguishingalgorithm.

§9 Formalize the definition of semantic security and show that the en-
cryption scheme in Section 10.4.2 is semantically secure.

Hint:Firstshowthatforallmessagepairsx,ytheirencryptions
areindistinguishablebypolynomial-timealgorithms.Whydoes
thissuffice?
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In the next few chapters the topic will be concrete complexity, the study
of lowerbounds on models of computation such as decision trees, communi-
cation games, circuits, etc. Algorithms or devices considered in this lecture
take inputs of a fixed size n, and we study the complexity of these devices
as a function of n.
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Chapter 11

Decision Trees

A decision tree is a model of computation used to study the number of bits
of an input that need to be examined in order to compute some function
on this input. Consider a function f : {0, 1}n → {0, 1}. A decision tree
for f is a tree for which each node is labelled with some xi, and has two
outgoing edges, labelled 0 and 1. Each tree leaf is labelled with an output
value 0 or 1. The computation on input x = x1x2 . . . xn proceeds at each
node by inspecting the input bit xi indicated by the node’s label. If xi = 1
the computation continues in the subtree reached by taking the 1-edge. The
0-edge is taken if the bit is 0. Thus input x follows a path through the tree.
The output value at the leaf is f(x). An example of a simple decision tree
for the majority function is given in Figure 11.1

Figure unavailable in pdf file.

Figure 11.1: A decision tree for computing the majority function Maj(x1, x2, x3) on
three bits. Outputs 1 if at least two input bits are 1, else outputs 0.

Recall the use of decision trees in the proof of the lower bound for
comparison-based sorting algorithms. That study can be recast in the above
framework by thinking of the input —which consisted of n numbers — as
consisting of

(
n
2

)
bits, each giving the outcome of a pairwise comparison

between two numbers.
We can now define two useful decision tree metrics.

Definition 11.1
The cost of tree t on input x, cost(t, x), is the number of bits of x examined
by t.
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Definition 11.2
The decision tree complexity of function f , D(f), is defined as follows,
where T below refers to the set of decision trees that decide f .

D(f) = min
t∈T

max
x∈{0,1}n

cost(t, x) (1)

The decision tree complexity of a function is the number of bits examined
by the most efficient decision tree on the worst case input to that tree. We
are now ready to consider several examples.

Example 11.3
(Graph connectivity) Given a graph G as input, in adjacency matrix form,
we would like to know how many bits of the adjacency matrix a decision
tree algorithm might have to inspect in order to determine whether G is
connected. We have the following result.

Theorem 11.4
Let f be a function that computes the connectivity of input graphs with m
vertices. Then D(f) =

(
m
2

)
.

The idea of the proof of this theorem is to imagine an adversary that
constructs a graph, edge by edge, in response to the queries of a decision
tree. For every decision tree that decides connectivity, the strategy implicitly
produces an input graph which requires the decision tree to inspect each of
the

(
m
2

)
possible edges in a graph of m vertices.

Adversary Strategy:
Whenever the decision tree algorithm asks about edge ei,
answer “no” unless this would force the graph to be disconnected.

After i queries, let Ni be the set of edges for which the adversary has
replied “no”, Yi the set of edges for which the adversary has replied “yes”.
and Ei the set of edges not yet queried. The adversary’s strategy maintains
the invariant that Yi is a disconnected forest for i <

(
m
2

)
and Yi ∪ Ei is

connected. This ensures that the decision tree will not know whether the
graph is connected until it queries every edge.
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Example 11.5
(OR Function) Let f(x1, x2, . . . xn) =

∨n
i=1 xi. Here we can use an adversary

argument to show that D(f) = n. For any decision tree query of an input
bit xi, the adversary responds that xi equals 0 for the first n − 1 queries.
Since f is the OR function, the decision tree will be in suspense until the
value of the nth bit is revealed. Thus D(f) is n.

Example 11.6
Consider the AND-OR function, with n = 2k. We define fk as follows.

fk(x1, . . . , xn) =


fk−1(x1, . . . x2k−1−1) ∧ fk−1(x2k−1 , . . . x2k) if k is even
fk−1(x1, . . . x2k−1−1) ∨ fk−1(x2k−1 , . . . x2k) if k > 1 and is odd
xi if k = 1

(2)
A diagram of a circuit that computes the AND-OR function is shown in
Figure 11.2. It is left as an exercise to prove, using induction, that D(fk) =
2k.

Figure unavailable in pdf file.

Figure 11.2: A circuit showing the computation of the AND-OR function. The circuit
has k layers of alternating gates, where n = 2k.

11.1 Certificate Complexity

We now introduce the notion of certificate complexity, which, in a manner
analogous to decision tree complexity above, tells us the minimum amount
of information needed to be convinced of the value of a function f on input
x.
Definition 11.7
Consider a function f : {0, 1}n → {0, 1}. If f(x) = 0, then a 0-certificate
for x is a sequence of bits in x that proves f(x) = 0. If f(x) = 1, then a
1-certificate is a sequence of bits in x that proves f(x) = 1.
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Definition 11.8
The certificate complexity C(f) of f is defined as follows.

C(f) = max
x:input

{number of bits in the smallest 0- or 1- certificate for x}

(3)

Example 11.9
If f is a function that decides connectivity of a graph, a 0-certificate for an
input must prove that some cut in the graph has no edges, hence it has to
contain all the possible edges of a cut of the graph. When these edges do not
exist, the graph is disconnected. Similarly, a 1-certificate is the edges of a
spanning tree. Thus for those inputs that represent a connected graph, the
minimum size of a 1-certificate is the number of edges in a spanning tree,
n − 1. For those that represent a disconnected graph, a 0 certificate is the
set of edges in a cut. The size of a 0-certificate is at most (n/2)2 = n2/4,
and there are graphs (such as the graph consisting of two disjoint cliques of
size n/2) in which no smaller 0-certificate exists. Thus C(f) = n2/4.

Example 11.10
We show that the certificate complexity of the AND-OR function fk of
Example 11.6 is 2dk/2e. Recall that fk is defined using a circuit of k layers.
Each layer contains only OR-gates or only AND-gates, and the layers have
alternative gate types. The bottom layer receives the bits of input x as
input and the single top layer gate outputs the answer fk(x). If f(x) = 1,
we can construct a 1-certificate as follows. For every AND-gate in the tree
of gates we have to prove that both its children evaluate to 1, whereas for
every OR-gate we only need to prove that some child evaluates to 1. Thus
the 1-certificate is a subtree in which the AND-gates have two children but
the OR gates only have one each. Thus the subtree only needs to involve
2dk/2e input bits. If f(x) = 0, a similar argument applies, but the role of
OR-gates and AND-gates, and values 1 and 0 are reversed. The result is
that the certificate complexity of fk is 2dk/2e, or about

√
n.
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The following is a rough way to think about these concepts in analogy
to Turing machine complexity as we have studied it.

low decision tree complexity↔ P (4)
low 1-certificate complexity↔ NP (5)
low 0-certificate complexity↔ coNP (6)

The following result shows, however, that the analogy may not be exact
since in the decision tree world, P = NP ∩ coNP. It should be noted that
the result is tight, for example for the AND-OR function.

Theorem 11.11
For function f , D(f) ≤ C(f)2.

Proof: Let S0, S1 be the set of minimal 0-certificates and 1-certificates,
respectively, for f . Let k = C(f), so each certificate has at most k bits.

Remark 11.12
Note that every 0-certificate must share a bit position with every 1-certificate,
and furthermore, assign this bit differently. If this were not the case, then
it would be possible for both a 0-certificate and 1-certificate to be asserted
at the same time, which is impossible.

The following decision tree algorithm then determines the value of f in
at most k2 queries.

Algorithm: Repeat until the value of f is determined: Choose a remain-
ing 0-certificate from S0 and query all the bits in it. If the bits are the
values that prove the f to be 0, then stop. Otherwise, we can prune the set
of remaining certificates as follows. Since all 1-certificates must intersect the
chosen 0-certificate, for any c1 ∈ S1, one bit in c1 must have been queried
here. Eliminate c1 from consideration if the certifying value of c1 at at lo-
cation is different from the actual value found. Otherwise, we only need to
consider the remaining k − 1 bits of c1.

This algorithm can repeat at most k times. For each iteration, the
unfixed lengths of the uneliminated 1-certificates decreases by one. This is
because once some values of the input have been fixed due to queries, for
any 0-certificate, it remains true that all 1-certificates must intersect it in
at least one location that has not been fixed, otherwise it would be possible
for both a 0-certificate and a 1-certificate to be asserted. With at most k
queries for at most k iterations, a total of k2 queries is used. �
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11.2 Randomized Decision Trees

There are two equivalent ways to look at randomized decision trees. We
can consider decision trees in which the branch taken at each node is deter-
mined by the query value and by a random coin flip. We can also consider
probability distributions over deterministic decision trees. The analysis that
follows uses the latter model.

We will call P a probability distribution over a set of decision trees
T that compute a particular function. P(t) is then the probability that
tree t is chosen from the distribution. For a particular input x, then, we
define c(P, x) =

∑
tinT P(t)cost(t, x). c(P, x) is thus the expected number of

queries a tree chosen from T will make on input x. We can then characterize
how well randomized decision trees can operate on a particular problem.

Definition 11.13
The randomized decision tree complexity, R(f), of f , is defined as
follows.

R(f) = min
P

max
x

c(P, x) (7)

The randomized decision tree complexity thus expresses how well the
best possible probability distribution of trees will do against the worst pos-
sible input for a particular probability distribution of trees. We can observe
immediately that R(f) ≥ C(f). This is because C(f) is a minimum value of
cost(t, x). Since R(f) is just an expected value for a particular probability
distribution of these cost values, the minimum such value can be no greater
than the expected value.

Example 11.14
Consider the majority function, f = Maj(x1, x2, x3). It is straightforward
to see that D(f) = 3. We show that R(f) ≤ 8/3. Let P be a uniform
distribution over the (six) ways of ordering the queries of the three input
bits. Now if all three bits are the same, then regardless of the order chosen,
the decision tree will produce the correct answer after two queries. For such
x, c(P, x) = 2. If two of the bits are the same and the third is different, then
there is a 1/3 probability that the chosen decision tree will choose the two
similar bits to query first, and thus a 1/3 probability that the cost will be
2. There thus remains a 2/3 probability that all three bits will need to be
inspected. For such x, then, c(P, x) = 8/3. Therefore, R(f) is at most 8/3.
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How can we prove lowerbounds on randomized complexity? For this we
need another concept.

11.3 Lowerbounds on Randomized Complexity

needs cleanup now
To prove lowerbounds on randomized complexity, it suffices by Yao’s

Lemma (see Section 11.6) to prove lowerbounds on distributional complex-
ity. Where randomized complexity explores distributions over the space of
decision trees for a problem, distributional complexity considers probability
distributions on inputs. It is under such considerations that we can speak
of “average case analysis.”

Let D be a probability distribution over the space of input strings of
length n. Then, if A is a deterministic algorithm, such as a decision tree, for
a function, then we define the distributional complexity of A on a function
f with inputs distributed according to D as the expected cost for algorithm
A to compute f , where the expectation is over the distribution of inputs.

Definition 11.15
The distributional complexity d(A,D) of algorithm A given inputs dis-
tributed according to D is defined as:

d(A,D) =
∑

x:input

D(x)cost(A, x) = Ex∈D[cost(A, x)] (8)

From this we can characterize distributional complexity as a function of
a single function f itself.

Definition 11.16
The distributional decision tree complexity, ∆(f) of function f is defined
as:

∆(f) = max
D

min
A
d(A,D) (9)

Where A above runs over the set of decision trees that are deciders for f .

So the distributional decision tree complexity measures the expected
efficiency of the most efficient decision tree algorithm works given the worst
case distribution of inputs.

The following theorem follows from Yao’s lemma.

Theorem 11.17
R(f) = ∆(f).
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So in order to find a lower bound on some randomized algorithm, it
suffices to find a lower bound on ∆(f). Such a lower bound can be found
by postulating an input distribution D and seeing whether every algorithm
has expected cost at least equal to the desired lower bound.

Example 11.18
We return to considering the majority function, and we seek to find a lower
bound on ∆(f). Consider a distribution over inputs such that inputs in
which all three bits match, namely 000 and 111, occur with probability 0.
All other inputs occur with probability 1/6. For any decision tree, that is,
for any order in which the three bits are examined, there is exactly a 1/3
probability that the first two bits examined will be the same value, and thus
there is a 1/3 probability that the cost is 2. There is then a 2/3 probability
that the cost is 3. Thus the overall expected cost for this distribution is
8/3. This implies that ∆(f) ≥ 8/3 and in turn that R(f) ≥ 8/3. So
∆(f) = R(f) = 8/3.

11.4 Some techniques for decision tree lowerbounds

Definition 11.19 (Sensitivity)
If f :{0, 1}n → {0, 1} is a function and x ∈ {0, 1}n then the sensitivity of f
on x, denoted sx(f), is the number of bit positions i such that f(x) 6= f(xi),
where xi is x with its ith bit flipped. The sensitivity of f , denoted s(f), is
maxx {sx(f)}.

The block sensitivity of f on x, denoted bsx(f), is the maximum number
b such that there are disjoint blocks of bit positions B1,2 , . . . , Bb such that
f(x) 6= f(xBi) where xBi is x with all its bits flipped in block Bi. The block
sensitivity of f denoted bs(f) is maxx {bsx(f)}.

It is conjectured that there is a constant c (as low as 2) such that bs(f) =
O(s(f)c) for all f but this is wide open. The following easy observation is
left as an exercise.
Lemma 11.20
For any function, s(f) ≤ bs(f) ≤ D(f).

Theorem 11.21 (Nisan)
C(f) ≤ s(f)bs(f).
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Proof: For any input x ∈ {0, 1}n we describe a certificate for x of size
s(f)bs(f). This certificate is obtained by considering the largest number of
disjoint blocks of variables B1, B2, . . . , Bb that achieve b = bsx(f) ≤ bs(f).
We claim that setting these variables according to x constitutes a certificate
for x.

Suppose not, and let x′ be an input that is consistent with the above
certificate. Let Bb+1 be a block of variables such that x′ = xBb+1 . Then
Bb+1 must be disjoint from B1, B2, . . . Bb, which contradicts b = bsx(f).

Note that each of B1, B2, . . . , Bb has size at most s(f) by definition of
s(f), and hence the size of the certificate we have exhibited is at most
s(f)bs(f). �

Recent work on decision tree lowerbounds has used polynomial repre-
sentations of boolean functions. Recall that a multilinear polynomial is a
polynomial whose degree in each variable is 1.

Definition 11.22
An n-variate polynomial p(x1, x2, . . . , xn) represents f : {0, 1}n → {0, 1} if
p(x) = f(x) for all x ∈ {0, 1}n.

The degree of f , denoted deg(f), is the degree of the multilinear polyno-
mial that represents f .

(The exercises ask you to show that the multilinear polynomial representa-
tion is unique, so deg(f) is well-defined.)

Example 11.23
The AND of n variables x1, x2, . . . , xn is represented by the multilinear poly-
nomial

∏n
i=1 xi and OR is represented by 1−

∏n
i=1(1− xi).

The degree of AND and OR is n, and so is their decision tree complexity.
There is a similar connection for other problems too, but it is not as tight.
The first part of the next theorem is an easy exercise; the second part is
nontrivial.

Theorem 11.24
1. deg(f) ≤ D(f).

2. (Nisan-Smolensky) D(f) ≤ deg(f)2bs(f) ≤ O(deg(f)4).
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11.5 Comparison trees and sorting lowerbounds

to be written

11.6 Yao’s MinMax Lemma

This section presents Yao’s minmax lemma, which is used in a variety of set-
tings to prove lowerbounds on randomized algorithms. Therefore we present
it in a very general setting.

Let X be a finite set of inputs and A be a finite set of algorithms that
solve some computational problem on these inputs. For x ∈ X , a ∈ A,
we denote by cost(A, x) the cost incurred by algorithm A on input x. A
randomized algorithm is a probability distribution R on A. The cost of
R on input x, denoted cost(R, x), is EA∈R[cost(A, x)]. The randomized
complexity of the problem is

min
R

max
x∈X

cost(R, x). (10)

Let D be a distribution on inputs. For any deterministic algorithm A,
the cost incurred by it on D, denoted cost(A,D), is Ex∈D[cost(A, x)]. The
distributional complexity of the problem is

max
D

min
A∈A

cost(A,D). (11)

Yao’s Lemma says that these two quantitities are the same. It is easily
derived from von Neumann’s minmax theorem for zero-sum games, or with
a little more work, from linear programming duality.

Yao’s lemma is typically used to lowerbound randomized complexity. To
do so, one defines (using some insight and some luck) a suitable distribution
D on the inputs. Then one proves that every deterministic algorithm incurs
high cost, say C, on this distribution. By Yao’s Lemma, it follows that the
randomized complexity then is at least C.

Exercises

§1 Suppose f is any function that depends on all its bits; in other words,
for each bit position i there is an input x such that f(x) 6= f(xi). Show
that s(f) = Ω(log n).
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§2 Consider an f defined as follows. The n-bit input is partitioned into
b
√
nc blocks of size about

√
n. The function is 1 iff there is at least

one block in which two consecutive bits are 1 and the remaining bits
in the block are 0. Estimate s(f), bs(f), C(f), D(f) for this function.

§3 Show that there is a unique multilinear polynomial that represents
f :{0, 1}n → {0, 1}. Use this fact to find the multilinear representation
of the PARITY of n variables.

§4 Show that deg(f) ≤ D(f).

Chapter notes and history

The result that the decision tree complexity of connectivity and many other
problems is

(
n
2

)
has motivated the following conjecture (atributed variously

to Anderaa, Karp, Yao):
Every monotone graph property has D(·) =

(
n
2

)
.

Here “monotone” means that adding edges to the graph cannot make it
go from having the property to not having the property (e.g., connectivity).
“Graph property” means that the property does not depend upon the vertex
indices (e.g., the property that vertex 1 and vertex 2 have an edge between
them). This conjecture is known to be true up to a O(1) factor; the proof
uses topology and is excellently described in Du and Ko [DK00]. A more
ambitious conjecture is that even the randomized decision tree complexity
of monotone graph properties is Ω(n2) but here the best lowerbound is close
to n4/3.

The polynomial method for decision tree lowerbounds is surveyed in
Buhrman and de Wolf [BdW02]. The method can be used to lowerbound
randomized decision tree complexity (and more recently, quantum decision
tree complexity) but then one needs to consider polynomials that approxi-
mately represent the function.
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Chapter 12

Communication Complexity

Communication complexity concerns the following scenario. There are two
players with unlimited computational power, each of whom holds an n bit
input, say x and y. Neither knows the other’s input, and they wish to
collaboratively compute f(x, y) where function f :{0, 1}n×{0, 1}n → {0, 1}
is known to both. Furthermore, they had foreseen this situation (e.g., one of
the parties could be a spacecraft and the other could be the base station on
earth), so they had already —before they knew their inputs x, y— agreed
upon a protocol for communication1. The cost of this protocol is the number
of bits communicated by the players for the worst-case choice of x, y.

Researchers have studied many modifications of the above basic sce-
nario, including randomized protocols, nondeterministic protocols, average-
case protocols (where x, y are assumed to come from a distribution), multi-
party protocols, etc. Truly, this is a self-contained mini-world within com-
plexity theory. Furthermore, lowerbounds on communication complexity
have uses in a variety of areas, including lowerbounds for parallel and VLSI
computation, circuit lowerbounds, polyhedral theory, data structure lower-
bounds, etc. We give a very rudimentary introduction to this area; an
excellent and detailed treatment can be found in the book by Kushilevitz
and Nisan [KN97].

1Do not confuse this situation with information theory, where an algorithm is given
messages that have to be transmitted over a noisy channel, and the goal is to transmit them
robustly while minimizing the amount of communication. In communication complexity
the channel is not noisy and the players determine what messages to send.

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

241



DRAFT

242 12.1. DEFINITION

12.1 Definition

Now we formalize the informal description of communication complexity
given above.

A t-round communication protocol for f is a sequence of function pairs
(S1, C1), (S2, C2), . . . , (St, Ct), (f1, f2). The input of Si is the communication
pattern of the first i − 1 rounds and the output is from {1, 2}, indicating
which player will communicate in the ith round. The input of Ci is the input
string of this selected player as well as the communication pattern of the first
i− 1 rounds. The output of Ci is the bit that this player will communicate
in the ith round. Finally, f1, f2 are 0/1-valued functions that the players
apply at the end of the protocol to their inputs as well as the communication
pattern in the t rounds in order to compute the output. These two outputs
must be f(x, y). The communication complexity of f is

C(f) = min
protocols P

max
x,y

{Number of bits exchanged by P on x, y.}

Notice, C(f) ≤ n + 1 since the trivial protocol is for one player to
communicate his entire input, whereupon the second player computes f(x, y)
and communicates that single bit to the first. Can they manage with less
communication?

Example 12.1 (Parity)
Suppose the function f(x, y) is the parity of all the bits in x, y. We claim
that C(f) = 2. Clearly, C(f) ≥ 2 since the function depends nontrivially on
each input, so each player must transmit at least one bit. Next, C(f) ≤ 2
since it suffices for each player to transmit the parity of all the bits in his
possession; then both know the parity of all the bits.

Remark 12.2
Sometimes students ask whether a player can communicate by not saying
anything? (After all, they have three options: send a 0, or 1, or not say
anything in that round.) We can regard such protocols as communicating
with a ternary, not binary, alphabet, and analyze them analogously.

12.2 Lowerbound methods

Now we discuss methods for proving lowerbounds on communication com-
plexity. As a running example in this chapter, we will use the equality
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function:

EQ(x, y) =

{
1 if x = y

0 otherwise

We will see that C(EQ) ≥ n.

12.2.1 Fooling set

We show C(EQ) ≥ n. For contradiction’s sake, suppose a protocol exists
whose complexity is at most n−1. Then there are only 2n−1 communication
patterns possible between the players. Consider the set of all 2n pairs (x, x).
Using the pigeonhole principle we conclude there exist two pairs (x, x) and
(x′, x′) on which the communication pattern is the same. Of course, thus far
we have nothing to object to, since the answers EQ(x, x) and EQ(x′, x′) on
both pairs are 1. However, now imagine giving one player x and the other
player x′ as inputs. A moment’s thought shows that the communication
pattern will be the same as the one on (x, x) and (x′, x′). (Formally, this
can be shown by induction. If player 1 communicates a bit in the first round,
then clearly this bit is the same whether his input is x or x′. If player 2
communicates in the 2nd round, then his bit must also be the same on both
inputs since he receives the same bit from player 1. And so on.) Hence the
player’s answer on (x, x) must agree with their answer on (x, x′). But then
the protocol must be incorrect, since EQ(x, x′) = 0 6= EQ(x, x).

The lowerbound argument above is called a fooling set argument. It is
formalized as follows.

Definition 12.3
A fooling set for f :{0, 1}n × {0, 1}n → {0, 1} is a set S ⊆ {0, 1}n × {0, 1}n
and a value b ∈ {0, 1} such that:

1. For every (x, y) ∈ S, f(x, y) = b.

2. For every two distinct pairs (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= b
or f(x2, y1) 6= b.

Lemma 12.4
If f has a fooling set with m pairs then C(f) ≥ log2m.

Example 12.5 (Disjointness)
Let x, y be interpreted as characteristic vectors of subsets of {1, 2, . . . , n}.
Let DISJ(x, y) = 1 if these two subsets are disjoint, otherwise DISJ(x, y) =
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0. Then C(DISJ) ≥ n since the following 2n pairs constitute a fooling set:

S =
{
(A,A) : A ⊆ {1, 2, . . . , n}

}
.

12.2.2 The tiling lowerbound

The tiling lowerbound takes a more global view of f . Consider the matrix of
f , denoted M(f), which is a 2n× 2n matrix whose (x, y)’th entry is f(x, y).
See Figure 12.1. We visualize the communication protocol in terms of this

Figure unavailable in pdf file.

Figure 12.1: Matrix M(f) for the equality function when the inputs to the players have
3 bits. The numbers in the matrix are values of f .

matrix. A combinatorial rectangle (or just rectangle) in the matrix is a
submatrix corresponding to A × B where A ⊆ {0, 1}n, B ⊆ {0, 1}n. If the
protocol begins with the first player sending a bit, then M(f) partitions
into two rectangles of the type A0 × {0, 1}n, A1 × Bn, where Ab is the
subset of strings for which the first player communicates bit b. Notice,
A0 ∪A1 = {0, 1}n. If the next bit is sent by the second player, then each of
the two rectangles above is further partitioned into two smaller rectangles
depending upon what this bit was. If the protocol continues for k steps, the
matrix gets partitioned into 2k rectangles. Note that each rectangle in the
partition corresponds to a subset of input pairs for which the communication
sequence thus far has been identical. (See Figure 12.2 for an example.)

Figure unavailable in pdf file.

Figure 12.2: Two-way communication matrix after two steps. The large number labels
are the concatenation of the bit sent by the first player with the bit sent by the second
player.

If the protocol stops, then the value of f is determined within each
rectangle, and thus must be the same for all pairs x, y in that rectangle.
Thus the set of all communication patterns must lead to a partition of the
matrix into monochromatic rectangles. (A rectangle A×B is monochromatic
if for all x in A and y in B, f(x, y) is the same.)
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Definition 12.6
A monochromatic tiling ofM(f) is a partition ofM(f) into disjoint monochro-
matic rectangles. We denote by χ(f) the minimum number of rectangles in
any monochromatic tiling of M(f).

The following theorem is immediate from our discussion above.
Theorem 12.7
If f has communication complexity C then it has a monochromatic tiling
with at most 2C rectangles. Consequently, C ≥ log2 χ(f).

The following observation shows that the tiling bound subsumes the
fooling set bound.
Lemma 12.8
If f has a fooling set with m pairs, then χ(f) ≥ m.

Proof: If (x1, y1) and (x2, y2) are two of the pairs in the fooling set, then
they cannot be in a monochromatic rectangle since not all of (x1, y1), (x2, y2),
(x1, y2), (x2, y1) have the same f value. �

12.2.3 Rank lowerbound

Now we introduce an algebraic method to lowerbound χ(f) (and hence com-
munication complexity). Recall the high school notion of rank of a square
matrix: it is the size of the largest subset of rows/colums that are indepen-
dent. The following is another definition.
Definition 12.9
If a matrix has entries from a field F then the rank of an n × n matrix M
is the minimum value of l such that M can be expressed as

M =
l∑

i=1

αiBi,

where αi ∈ F \ {0} and each Bi is an n× n matrix of rank 1.

Note that 0, 1 are elements of every field, so we can compute the rank over
any field we like. The choice of field can be crucial; see Problem 5 in the
exercises.

The following theorem is trivial, since each monochromatic rectangle can
be viewed (by filling out entries outside the rectangle with 0’s) as a matrix
of rank at most 1 .
Theorem 12.10
For every function f , χ(f) ≥ rank(M(f)).
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12.2.4 Discrepancy

The discrepancy of a rectangle A×B in M(f) is

1
22n
|number of 1’s in A×B − number of 0’s in A×B| . (1)

The discrepancy of the matrix M(f), denote Disc(f), is the largest dis-
crepancy among all rectangles. The following Lemma relates it to χ(f).

Lemma 12.11

χ(f) ≥ 1
Disc(f)

.

Proof: For a monochromatic rectangle, the discrepancy is its size divided
by 22n. The total number of entries in the matrix is 22n. The bound follows.
�

Example 12.12
Lemma 12.11 can be very loose. For the EQ() function, the discrepancy
is at least 1 − 2−n (namely, the discrepancy of the entire matrix), which
would only give a lowerbound of 2 for χ(f). However, χ(f) is at least 2n, as
already noted.

Now we describe a method to upperbound the discrepancy using eigen-
values.
Lemma 12.13 (eigenvalue bound)
For any matrixM , the discrepancy of a rectangleA×B is at most λmax(M)

√
|A| |B|/22n,

where λmax(M) is the magnitude of the largest eigenvalue of M .

Proof: Let 1A, 1B ∈ Rn denote the characteristic vectors of A,B. Then
|1A|2 =

√∑
i∈A 12 =

√
|A|.

The discrepancy of the rectangle A×B is

1
22n

1TAM1B ≤
1

22n
λmax(M)

∣∣1TA1B
∣∣ ≤ 1

22n
λmax(M)

√
|A| |B|.

explain this.
�
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Example 12.14
The mod 2 inner product function defined as f(x, y) = (x·y)2 =

∑
i xiyi( mod

2) has been encountered a few times in this book. To bound its discrepancy,
we consider the matrix 2M(f)− 1. This transformation makes the range of
the function {−1, 1} and will be useful again later. Let this new matrix be
denoted N . It is easily checked that every two distinct rows (columns) of
N are orthogonal, every row has `2 norm 2n/2, and that NT = N . Thus we
conclude that N2 = 2nI where I is the unit matrix. Hence every eigenvalue
is either +2n/2 or −2n/2, and thus Lemma 12.13 implies that the discrepancy
of a rectangle A×B is at most 2n/2

√
|A| |B| and the overall discrepancy is

at most 23n/2 (since |A| , |B| ≤ 2n).

A technique for upperbounding the discrepancy

Now we describe an upperbound technique for the discrepancy that will later
be useful in the multiparty setting (Section 12.3). For ease of notation, in
this section we change the range of f to {−1, 1} by replacing 1’s in M(f)
with −1’s and replacing 0’s with 1’s. Note that now

Disc(f) = max
A,B

1
22n

∣∣∣∣∣∣
∑

a∈A,b∈B
f(a, b)

∣∣∣∣∣∣ .
Definition 12.15
E(f) = Ea1,a2,b1,b2

[∏
i=1,2

∏
j=1,2 f(ai, bj)

]
.

Note that E(f) can be computed, like the rank, in polynomial time given
the M(f) as input.

Lemma 12.16

Disc(f) ≤ E(f)1/4.

Proof: The proof follows in two steps.

Claim 1: For every function h : {0, 1}n × {0, 1}n → {1,−1}, E(h) ≥
(Ea,b[f(a, b)])4.
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We will use the Cauchy-Schwartz inequality, specifically, the version ac-
cording to which E[z2] ≥ (E[z])2 for every random variable z.

E(h) = Ea1,a2

Eb1,b2

∏
i=1,2

∏
j=1,2

h(ai, bj)

 (2)

= Ea1,a2

[
(Eb[h(a1, b)h(a2, b)])

2
]

(3)

≥ (Ea1,a2 [Eb[h(a1, b)h(a2, b)]])
2 (Cauchy Schwartz) (4)

≥ (Ea,b[h(a, b)])
4 . (repeating prev. two steps) (5)

Claim 2: For every function f there is a function h such that E(f) = E(h)
and Ea,b[h(a, b)] ≥ Disc(f).

First, we note that for every two functions g1, g2 : {0, 1}n → {−1, 1}, if
we define h = f ◦ g1 ◦ g2 as

h(a, b) = f(a, b)g1(a)g2(b)

then E(f) = E(h). The reason is that for all a1, a2, b1, b2,∏
i=1,2

∏
j=1,1

h(ai, bj) = g1(a1)2g1(a2)2g2(b1)2g2(b2)2
∏
i=1,2

∏
j=1,2

f(ai, bj)

and the square of any value of g1, g2 is 1.
Now we prove Claim 2 using the probabilistic method. Define two ran-

dom functions g1, g2 :{0, 1}n → {−1, 1} as follows:

g1(a) =

{
1 if a ∈ A
ra ra ∈ {−1, 1} is randomly chosen

g2(b) =

{
1 if b ∈ B
sb sb ∈ {−1, 1} is randomly chosen

Let h = f ◦ g1 ◦ g2, and therefore E(h) = E(f). Furthermore

Eg1,g2 [Ea,b[h(a, b)]] = Ea,b [Eg1,g2 [f(a, b)g1(a)g2(b)]] (6)

=
1

22n

∑
a∈A,b∈B

f(a, b) (7)

= Disc(f) (8)

where the second line follows from the fact that Eg1 [g1(a)] = Eg2 [g2(b)] = 0
for a 6∈ A and b 6∈ B.

Thus in particular there exist g1, g2 such that |Ea,b[h(a, b)]| ≥ Disc(f).
�
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12.2.5 Comparison of the lowerbound methods

As already noted, discrepancy upperbounds imply lowerbounds on χ(f).
Of the other three methods, the tiling argument is the strongest, since it
subsumes the other two. The rank method is the weakest, since the rank
lowerbound always implies a tiling lowerbound and a fooling set lowerbound
(the latter follows from Problem 3 in the exercises).

Also, we can separate the power of these lowerbound arguments. For
instance, we know functions for which there is a significant gap between
logχ(f) and log rank(M(f)). However, the following conjecture (we only
state one form of it) says that all three methods (except discrepancy, which
as already noted can be arbitrarily far from χ(f)) give the same bound up
to a polynomial factor.

Conjecture 12.17 (log rank conjecture)
There is a constant c > 1 such that C(f) = O(log(rank(M(f)))c) for all f
and all input sizes n.

12.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a
multiplayer setting. The most interesting model is the “number on the fore-
head” model often encountered in math puzzles that involve people in a
room, each person having a bit on their head which everybody else can see
but they cannot. More formally, there is some function f : ({0, 1}n)k →
{0, 1}, and the input is (x1, x2, . . . , xk) where each xi ∈ {0, 1}n. The ith
player can see all the xj such that j 6= i. As in the 2-player case, the k
players have an agreed-upon protocol for communication, and all this com-
munication is posted on a “public blackboard”. At the end of the protocol
all parties must know f(x1, . . . , xk).

Example 12.18
Consider computing the function

f(x1, x2, x3) =
n⊕
i=1

maj(x1i, x2i, x3i)

in the 3-party model where x1, x2, x3 are n bit strings. The communication
complexity of this function is 3: each player counts the number of i’s such
that she can determine the majority of x1i, x2i, x3i by examining the bits
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available to her. She writes the parity of this number on the blackboard,
and the final answer is the parity of the players’ bits. This protocol is correct
because the majority for each row is known by either 1 or 3 players, and
both are odd numbers.

Example 12.19 (Generalized Inner Product)
The generalized inner product function GIPk,n maps nk bits to 1 bit as
follows

f(x1, . . . , xk) =
n⊕
i=1

k∧
j=1

xij . (9)

Notice, for k = 2 this reduces to the mod 2 inner product of Example 12.14.

In the 2-party model we introduced the notion of a monochromatic rect-
angle in order to prove lower bounds. For the k-party case we will use cylin-
der intersections. A cylinder in dimension i is a subset S of the inputs such
that if (x1, . . . , xk) ∈ S then for all x′i we have that (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈

S also. A cylinder intersection is ∩ki=1Ti where Ti is a cylinder in dimension
i.

As noted in the 2-party case, a communication protocol can be viewed as
a way of partitioning the matrix M(f). Here M(f) is a k-dimensional cube,
and player i’s communication does not depend upon xi. Thus we conclude
that if f has a multiparty protocol that communicates c bits, then its matrix
has a tiling using at most 2c monochromatic cylinder intersections.

Lemma 12.20
If every partition ofM(f) into monochromatic cylinder intersections requires
at least R cylinder intersections, then the k-party communication complexity
isat least log2R.

Discrepancy-based lowerbound

In this section, we will assume as in our earlier discussion of discrepancy that
the range of the function f is {−1, 1}. We define the k-party discrepancy of
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f by analogy to the 2-party case

Disc(f) =
1

2nk
max
T

∣∣∣∣∣∣
∑

(a1,a2,...,ak)∈T

f(a1, a2, . . . , ak)

∣∣∣∣∣∣ ,
where T ranges over all cylinder intersections.

To upperbound the discrepancy we introduce the k-party analogue of
E(f). Let a cube be a set D in {0, 1}nk of 2k points of the form {a1,1, a2,1}×
{a1,2, a2,2} × · · · × {a1,k, a2,k}, where each ai,j ∈ {0, 1}n.

E(f) = ED

[∏
a∈D

f(a)

]
.

Notice that the definition of E() for the 2-party case is recovered when
k = 2. The next lemma is also an easy generalization.

Lemma 12.21

Disc(f) ≤ (E(f))1/2
k
.

Proof: The proof is analogous to Lemma 12.16 and left as an exercise.
The only difference is that instead of defining 2 random functions we need
to define k random functions g1, g2, gk :{0, 1}nk → {−1, 1}, where gi depends
on every one of the k coordinates except the ith. �

Now we can prove a lowerbound for the Generalized Inner Product func-
tion. Note that since we changed the range to {−1, 1} it is now defined as

GIPk,n(x1, x2, . . . , xk) = (−1)
∑
i≤n

∏
j≤k xij(mod2). (10)

Theorem 12.22
The function GIPk,n has k-party communication complexity Ω(n/8k) as n
grows larger.

Proof: We use induction on k. For k ≥ 1 let βk be defined using β1 = 0
and βk+1 = 1+βk

2 . We claim that

E(GIPk,n) ≤ βnk .
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Assuming truth for k − 1 we prove for k. A random cube D in {0, 1}nk is
picked by picking a11, a21 ∈ {0, 1}n and then picking a random cube D′ in
{0, 1}(k−1)n.

E(GIPk,n) = Ea11,a21

ED′

 ∏
a∈{a11,a21}×D′

GIPk,n(a)

 (11)

The proof proceeds by considering the number of coordinates where strings
a11 and a21 are identical. Examining the expression for GIPk,n in (10) we
see that these coordinates contribute nothing once we multiply all the terms
in the cube, since their contributions get squared and thus become 1. The
coordinates that contribute are

to be completed �

12.4 Probabilistic Communication Complexity

Will define the model, give the protocol for EQ, and describe the discrepancy-
based lowerbound.

12.5 Overview of other communication models

We outline some of the alternative settings in which communication com-
plexity has been studied.

Nondeterministic protocols: These are defined by analogy to NP. In a
nondeterministic protocol, the players are both provided an additional
third input z (“nondeterministic guess”). Apart from this guess, the
protocol is deterministic. The cost incurred on x, y is

min
z

{|z|+ number of bits exchanged by protocol when guess is z} .

The nondeterministic communication complexity of f is the minimum
k such that there is a nondeterministic protocol whose cost for all
input pairs is at most k.

In general, one can consider communication protocols analogous to
NP, coNP, PH etc.

Randomized protocols: These are defined by analogy to RP,BPP. The
players are provided with an additional input r that is chosen uni-
formly at random from m-bit strings for some m. Randomization
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can significantly reduce the need for communication. For instance we
can use fingerprinting with random primes (explored in Chapter 7), to
compute the equality function by exchanging O(log n) bits: the players
just pick a random prime p of O(log n) bits and exchange x (mod p)
and y (mod p).

Average case protocols: Just as we can study average-case complexity in
the Turing machine model, we can study communication complexity
when the inputs are chosen from a distribution D. This is defined as

CD(f) = min
protocols P

∑
x,y

Pr[(x, y) ∈ D]×{Number of bits exchanged by P on x, y.}

Computing a non boolean function: Here the function’s output is not
just {0, 1} but an m-bit number for some m. We discuss one example
in the exercises.

Asymmetric communication: The “cost” of communication is asymmet-
ric: there is some B such that it costs the first player B times as much
to transmit a bit than it does the second player. The goal is to mini-
mize the total cost.

Multiparty settings: The most obvious generalization to multiparty set-
tings is whereby f has k arguments x1, x2, . . . , xk and player i gets
xi. At the end all players must know f(x1, x2, . . . , xk). This is not
as interesting as the so-called “number of the forehead” where player
i can see all of the input except for xi. We discuss it in Section ??
together with some applications.

Computing a relation: There is a relationR ⊆ {0, 1}n×{0, 1}n×{1, 2, . . . ,m}
and given x, y ∈ Bn the players seek to agree on any b ∈ {1, 2, . . . ,m}
such that (x, y, b) ∈ R. See section ??.

These and many other settings are discussed in [KN97].

12.6 Applications of communication complexity

We briefly discussed parallel computation in Chapter 6. Yao [Yao79] in-
vented communication complexity as a way to lowerbound the running time
of parallel computers for certain tasks. The idea is that the input is dis-
tributed among many processors, and if we partition these processors into
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two halves, we may lowerbound the computation time by considering the
amount of communication that must necessarily happen between the two
halves. A similar idea is used to prove time/space lowerbounds for VLSI
circuits. For instance, in a VLSI chip that is an m×m grid, if the commu-
nication complexity for a function is greater than c, then the time required
to compute it is at least c/m.

Communication complexity is also useful in time-space lowerbounds for
Turing machines (see Problem 1 in exercises), and circuit lowerbounds (see
Chapter 13).

Data structures such as heaps, sorted arrays, lists etc. are basic objects
in algorithm design. Often, algorithm designers wish to determine if the
data structure they have designed is the best possible. Communication
complexity lowerbounds can be used to establish such results. See [KN97].

Yannakakis [Yan91] has shown how to use communication complexity
lowerbounds to prove lowerbounds on the size of polytopes representing
NP-complete problems. Solving the open problem mentioned in Problem 8
in the exercises would prove a lowerbound for the polytope representing
vertex cover.

Exercises

§1 If S(n) ≤ n, show that a space S(n) TM takes at least Ω(n/S(n))
steps to decide the language {x#x : x ∈ {0, 1}∗}.

§2 Show that the high school definition of rank (the size of the largest
set of independent rows or columns) is equivalent to that in Defini-
tion 12.9.

§3 Give a fooling set argument that proves that C(f) ≥ dlog rank(M(f))e.

§4 Show that C(f)rank(M(f) + 1.

§5 Consider x, y as vectors over GF (2)n and let f(x, y) be their inner
product mod 2. Prove that the communication complexity is n.

Hint:Lowerboundtherankofthematrix2M(f)−JwhereJis
theall-1matrix.

What field should you use to compute the rank? Does it matter?

§6 Let f : {0, 1}n × {0, 1}n → {0, 1} be such that all rows of M(f) are
distinct. Show that C(f) ≥ log n.
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Hint:Lowerboundtherank.

§7 (Aho, Ullman, Yannakakis) Show that C(f) = O(log2 χ(f)).

Hint:Theplayerstrytodeterminewhichofthe|χ(f)|rectangles
theirinput-pairliesin.TheprotocolhasO(logχ(f))phases,and
ineachphaseO(logχ(f))bitsgetcommunicated.

§8 For any graph G with n vertices, consider the following communication
problem: Player 1 receives a clique C in G, and Player 2 receives an
independent set I. They have to communicate in order to determine
|C ∩ I|. (Note that this number is either 0 or 1.) Prove an O(log2 n)
upperbound on the communication complexity.

Can you improve your upperbound or prove a lower bound better than
Ω(log n)? (Open question)

§9 Prove Lemma 12.21 using the hint given there.

§10 (Karchmer-Wigderson) Consider the following problem about comput-
ing a relation. Associate the following communication problem with
any function f :{0, 1}n → {0, 1}. Player 1 gets any input x such that
f(x) = 0 and player 2 gets any input y such that f(y) = 1. They
have to communicate in order to determine a bit position i such that
xi 6= yi.

Show that the communication complexity of this problem is exactly
the minixmum depth of any circuit that computes f . (The maximum
fanin of each gate is 2.)

§11 Use the previous question to show that computing the parity of n bits
requires depth at least 2 log n.

§12 Show that the following computational problem is in EXP: given
the matrix M(f) of a boolean function, and a number K, decide if
C(f) ≤ K.

(Open since Yao [Yao79]) Can you show this problem is complete for
some complexity class?

Chapter notes and history

Communication complexity was first defined by Yao [Yao79]. Other early pa-
pers that founded the field were Papadimitriou and Sipser [PS84], Mehlhorn
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and Schmidt [MS82] (who introduced the rank lowerbound) and Aho, Ull-
man and Yannakakis [AUY83].

The original log rank conjecture was that C(f) = O(rank(M(f))) but
this was disproved by Raz and Spieker [RS95].

The book by Nisan and Kushilevitz [KN97] is highly recommended.
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Chapter 13

Circuit lowerbounds

Complexity theory’s Waterloo

We believe that NP does not have polynomial-sized circuits. We’ve
seen that if true, this implies that NP 6= P. In the 1970s and 1980s, many
researchers came to believe that the route to resolving P versus NP should
go via circuit lowerbounds, since circuits seem easier to reason about than
Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lowerbound
of n is trivial for any function that depends on all its input bits. We are
unable to prove even a superlinear circuit lowerbound for any NP problem—
the best we can do after years of effort is 4.5n− o(n).

To make life (comparatively) easier, researchers focussed on restricted
circuit classes, and were successful in proving some decent lowerbounds. We
prove some of the major results of this area and indicate where researchers
are currently stuck. In Chapter 23 we’ll explain some of the inherent obsta-
cles that need to be overcome to make further progress.

13.1 AC0 and H̊astad’s Switching Lemma

As we saw in Chapter 6, AC0 is the class of languages computable by
circuit families of constant depth, polynomial size, and whose gates have
unbounded fanin. (Constant depth circuits with fanin 2 can only compute
functions depending on a constant number of input bits.) The burning
question in the late 1970s was whether problems like Clique and TSP have
AC0 circuits. However, in 1981, Furst, Saxe and Sipser and independently,
Ajtai, proved a lowerbound for a much simpler function:
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Theorem 13.1 ([?, ?])
Let

⊕
be the parity function. That is, for every x ∈ {0, 1}n,

⊕
(x1, . . . , xn) =∑n

i=1 xi (mod 2). Then
⊕
6∈ AC0.

Often courses in digital logic design teach students how to do “circuit
minimization” using Karnaugh maps. Note that circuits talked about in
those courses are depth 2 circuits, i.e. CNF or DNF. Indeed, it is easy
to show (using for example the Karnaugh map technique studied in logic
design) that the parity function requires exponentially many gates if the
depth is two. However, those simple ideas do not seem to generalize to even
depth 3 circuits.

The main tool in the proof of Theorem 13.1 is the concept of random
restrictions. Let f be a function computable by a depth d circuit and suppose
that we choose at random a vast majority (i.e., n−nε for some constant ε > 0
depending on d) of the input variables and assign to each such variable either
0 or 1 at random. We’ll prove that with positive probability, the function f
subject to this restriction is constant (i.e., either always zero or always one).
Since the parity function cannot be made a constant by fixing values to a
subset of the variables, it follows that it cannot be computed by a constant
depth circuit.

13.1.1 The switching lemma

Now we prove the main lemma about how a circuit simplifies under a random
restriction. A k-DNF (resp. k-CNF) formula is an OR of AND’s (resp. AND
or OR’s) where each AND (resp. OR) involves at most k variables.

Lemma 13.2 (Håstad’s switching lemma [Has86])
Suppose f is expressible as a k-DNF, and let ρ denote a random restriction
that assigns random values to t randomly selected input bits. Then for every
s ≥ 2.

Prρ[f |ρ is not expressible as s-CNF ] ≤
(

(n− t)k10

n

)s/2
(1)

where f |ρ denotes the function f restricted to the partial assignment ρ.

We’ll typically use this lemma with k, s constant and t ≈ n −
√
n in

which case the guaranteed bound on the probability will be n−c for some
constant c. Note that by applying the lemma to the function ¬f , we can
get the same result with the terms DNF and CNF interchanged.
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Proving Theorem 13.1 from Lemma 13.2. Now we show how H̊astad’s
lemma implies that parity is not in AC0. We start with any AC0 circuit and
assume that the circuit has been simplified as follows (the simplifications are
straightforward to do and are left as Exercises 1 and 2): (a) All fanouts are
1; the circuit is a tree (b) All not gates to the input level of the circuit;
equivalently, the circuit has 2n input wires, with the last n of them being
the negations of the first n (c) ∨ and ∧ gates alternate —at worst this
assumption doubles the depth of the circuit (d) The bottom level has ∧
gates of fanin 1.

We randomly restrict more and more variables, where each step with
high probability will reduce the depth of the circuit by 1 and will keep the
bottom level at a constant fanin. Specifically, letting ni stand for the number
of unrestricted variables after step i, we restrict ni −

√
ni variables at step

i + 1. Since n0 = n, we have ni = n1/2i . Let nb denote an upper bound
on the number of gates in the circuit and let ki = 10b2i. We’ll show that
with high probability, after the ith restriction we’re left with a depth-d − i
circuit with at most ki fanin in the bottom level. Indeed, suppose that the
bottom level contains ∧ gates and the level above it contains ∨ gates. The
function each such ∨ gate computes is a ki-DNF and hence by Lemma 13.2,

with probability 1−
(

k10
i

n1/2i+1

)ki+1/2
, which is at least 1− 1/(10nb) for large

enough n, the function such a gate computes will be expressible as a ki+1-
CNF. We can then merge this CNF with the ∧-gate above it, reducing the
depth of the circuit by one (see Figures 13.1 and 13.2). The symmetric
reasoning applies in the case the bottom level consists of ∨ gates— in this
case we use the lemma to transform the ki-CNF of the level above it into a
ki+1-DNF. Note that we apply the lemma at most once per each of the at
most nb gates of the original circuit. By the union bound, with probability
9/10, if we continue this process for d−2 steps, we’ll get a depth two circuit
with fanin k = kd−2 at bottom level (i.e., a k-CNF or k-DNF formula). If
we then choose to restrict each variable with probability half (i.e., restrict
about half of the variables to a random value), this circuit will be reduced to
a constant function with probability at least 2−k. Since the parity function
is not constant under any restriction of less than n variables, this proves
Theorem 13.1. �

Figure unavailable in pdf file.

Figure 13.1: Circuit before H̊astad switching transformation.
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Figure unavailable in pdf file.

Figure 13.2: Circuit after H̊astad switching transformation. Notice that the new layer
of ∧ gates can be collapsed with the single ∧ parent gate, to reduce the number of levels
by one.

13.1.2 Proof of the switching lemma (Lemma 13.2)

Now we prove the Switching Lemma. The original proof was more com-
plicated; this one is due to Razborov. Let f be expressible as a k-DNF
on n variables. Let t be as in the lemma and let Rt denote the set of all
restrictions to t variables (note we can assume t > n/2). We have that
|Rt| =

(
n
t

)
2t. Let Kt,s denote the set of restrictions ρ such that f |ρ is not a

s-CNF. We need to bound |Kt,s|/|Rt| by the right hand side of (1) to prove
the lemma. We’ll do that by showing a one-to-one function mapping Kt,s

into the set Z×S where Z is the set of restrictions of at least t+ s variables
(i.e. Z = ∪t′≥t+sRt′) and S is some set of size 32ks. This will prove the

lemma since at he range t′ � n/2,
(
n
t′

)
≈
(

n
n−t′

)n−t′
and hence Z will be

of size bounded by roughly n2s
(
n−t
n

)s |Rt|. We leave verifying the exact
bound as Exercise 3.

Mapping Kt,s into Z × S. Let ρ ∈ Kt,s be a restriction fixing t variables
such that f |ρ is not an s-CNF. We need to map ρ in a one-to-one way into
some restriction ρ∗ of at least t + s variables, and some additional element
in a set S of size at most 32ks.

Special case: each term has at most one “live” variable. To get
some intuition for the proof, consider first the case that for each term t in
the k-DNF formula for f , ρ either fixed t to the value 0 or left a single
unassigned variable in t, in which case we say that t′s value is ? (ρ can’t fix
a term to the value 1 since we assume f |ρ is not constant). We denote by
x1, . . . , xs denote the first s such unassigned variables, according to some
canonical ordering of the terms for the k-DNF formula of f (there are more
than s since otherwise f |ρ would be expressible as an s-CNF). For each such
variable xi, let termi be the ?-valued term in which xi appears. Let Ri be
the operation of setting xi to the value that ensures termi is true. We’ll
map ρ to τ1 = R1R2 · · ·Rsρ. That is, apply Rs to ρ, then apply Rk−1 to ρ,
· · · , then apply R1 to ρ. The crucial insight is that given τ1, one can deduce
term1: this is the first term that is true in f |τ1 . One might think that the
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second term that is true in f |τ1 is term2 but that’s not necessarily the case,
since the variable x1 may have appeared several times, and so setting it to
R1 may have set other terms to true (it could not have set other terms to
false, since this would imply that f |ρ includes an OR of xi and ¬xi, and
hence is the constant one function). We thus supply as part of the mapping
a string w1 ∈ {0, 1, ?}s that tells us the assignment of the k variables of
term1 in τ2 = R2 · · ·Rsρ. Given that information we can “undo” R1 and
move from τ1 to τ2. Now in τ2, term2 is the first satisfied term. Continuing
on this way we see that from τ1 (which is an assignment of at least t + s
variables) and strings w1, . . . , ws that are defined as above, we can recover ρ,
implying that we have a one-to-one mapping that takes ρ into an assignment
of at least t+ s variables and a sequence in {0, 1, ?}ks.

The general case. We now consider the general case, where some terms
might have more than one unassigned variable in them. We let term1 be
the first ?-valued term in f |ρ and let x1 be the first unassigned variable
in term1. Once again, we have an operation R1 that will make term1 true,
although this time we think of R1 as assigning to all the k variables in term1

the unique value that makes the term true. We also have an operation L1

assigning a value to x1 such that f |L1ρ cannot be expressed by an s − 1-
CNF. Indeed, if for both possible assignments to x1 we get an s − 1-CNF
then f |ρ is an s-CNF. We note that it’s not necessarily the case that x1’s
value under L1ρ is different from its value under R1ρ, but it is the case that
term1’s value is either ? or False under L1ρ (since otherwise f |L1ρ would
be constant). We let term2 be the first ?-valued term in f |L1ρ (note that
term2 ≥ term1) and let x2 be the first unassigned variable in term2. Once
again, we have an operation R2 such that term2 is the first true term in
f |R2L1ρ and operation L2 such that f |L2L1ρ is not a s− 2-CNF. Continuing
in this way we come up with operations L1, . . . , Ls, R1, . . . , Rs such that if
we let ρi be the assignment Li · · ·L1ρ (with ρ0 = ρ) then for 1 ≤ i ≤ s:

• termi is the first ?-valued term in f |ρi−1 .

• termi is the first true-valued term in f |Riρi−1 .

• Li agrees with ρi−1 on all variables assigned a value by ρi−1.

• Ri agrees with ρi on all variables assigned a value by ρi.

For 1 ≤ i ≤ s, define τi to be RiRi+1 · · ·Rsρs, and define τs+1 = ρs. We
have that termi is the first true term in f |τi : indeed, all the operations in τi
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do not change variables assigned values by ρi−1 and there termi is the first
?-valued term. Thus τi cannot make any earlier term true. However, since
the last operation applied is Ri, termi is true in f |τi .

Let z1, . . . , zs and w1, . . . , ws be 2s strings in {0, 1, ?}s defined as follows:
zi describes the values assigned to the k variables appearing in termi by ρi−1

and wi describes the value assigned to termi’s variables by τi+1. Clearly,
from termi, zi and the assignment ρi one can compute ρi−1 and from termi,
wi and the assignment τi one can compute τi+1. We’ll map ρ to τ1 and the
sequence z1, . . . , zs, w1, . . . , ws. Note that τ1 does assign values to at least
s variables not assigned by ρ, and that from τ1 we can find term1 (as this
is the first true term in f |τ1) and then using w1 recover τ2 and continue in
this way until we recover the original assignment ρ. Thus this mapping is a
one-to-one map from Tt,s to Z × {0, 1, ?}2ks. �

13.2 Circuits With “Counters”:ACC

One way to extend the AC0 lowerbounds of the previous section was to
define a more general class of circuits. What if we allow more general gates?
The simplest example is a parity gate. Clearly, an AC0 circuit provided
with parity gates can can compute the parity function. But are there still
other functions that it cannot compute? Razborov proved the first such
lowerbound using his Method of Approximations. Smolensky later extended
this work and clarified this method for the circuit class considered here.

Normally we think of a modular computation as working with numbers
rather than bit, but it is sufficient to consider modular gates whose output
is always 0/1.

Definition 13.3 (modular gates)
For any integer m, the MODm gate outputs 0 if the sum of its inputs is 0
modulo m, and 1 otherwise.

Definition 13.4 (ACC)
For integersm1,m2, . . . ,mk > 1 we say a language L is in ACC0[m1,m2, . . . ,mk]
if there exists a circuit family {Cn} with constant depth and polynomial size
(and unbounded fan-in) consisting of ∧, ∨, ¬ and MODm1 , . . . ,MODmk

gates accepting L.
The class ACC0 contains every language that is in ACC0(m1,m2, . . . ,mk)

for some k ≥ 0 and m1,m2, . . . ,mk > 1.

Good lowerbounds are known only when the circuit has one kind of
modular gate.
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Theorem 13.5 (Razborov,Smolensky)
For distinct primes p and q, the function MODp is not in ACC0(q).

We exhibit the main idea of this result by proving that the parity function
cannot be computed by an ACC0(3) circuit.
Proof: The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth
h MOD3 circuit on n inputs and size S, there is a polynomial of degree
(2l)h which agrees with the circuit on 1− S/2l fraction of the inputs.
If our circuit C has depth d then we set 2l = n1/2d to obtain a degree√
n polynomial that agrees with C on 1−S/2n1/2d/2 fraction of inputs.

Step 2 We show that no polynomial of degree
√
n agrees with MOD2 on

more than 49/50 fraction of inputs.

Together, the two steps imply that S > 2n
1/2d/2/50 for any depth d

circuit computing MOD2, thus proving the theorem. Now we give details.
Step 1. Consider a node g in the circuit at a depth h . (The input is
assumed to have depth 0.) If g(x1, · · · , xn) is the function computed at this
node, we desire a polynomial g̃(x1, · · · , xn) over GF (3) with degree (2l)h,
such that g(x1, . . . , xn) = g̃(x1, . . . , xn) for “most” x1, . . . , xn ∈ {0, 1}. We
will also ensure that on every input in {0, 1}n ⊆ GF (3), polynomial g̃ takes
a value in {0, 1}. This is without loss of generality since we can just square
the polynomial. (Recall that the elements of GF (3) are 0,−1, 1 and 02 = 0,
12 = 1 and (−1)2 = 1.)

We construct the approximator polynomial by induction. When h = 0
the “gate” is an input wire xi, which is exactly represented by the degree
1 polynomial xi. Suppose we have constructed approximators for all nodes
up to height h− 1 and g is a gate at height h.

1. If g is a NOT gate, then g = ¬f1 for some other gate f1 that is at
height h − 1 or less. The inductive hypothesis gives an approximator
f̃1 for f1. Then we use g̃ = 1− f̃1 as the approximator polynomial for
g; this has the same degree as f̃1. Whenever f̃1 = f1 then g̃ = g, so
we introduced no new error.

2. If g is a MOD3 gate with inputs f1, f2, . . . , fk, we use the approxima-
tion g̃ = (

∑k
i=0 f̃i)

2. The degree increases to at most 2 × (2l)h−1 <
(2l)h. Since 02 = 0 and (−1)2 = 1, we introduced no new error.
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3. If g is an AND or an OR gate, we need to be more careful. Suppose g =
∧ki=0fi. The naive approach would be to replace g with the polynomial
Πi∈I f̃i. For an OR gate g = ∨ki=0fi De Morgan’s law gives a similar
naive approximator 1 −

∏
i∈I(1 − f̃i). Unfortunately, both of these

multiply the degree by k, the fanin of the gate, which could greatly
exceed 2l.

The correct solution involves introducing some error. We give the
solution for OR; De Morgan’s law allows AND gates to be handled
similarly.

If g = ∨ki=0fi, then g = 1 if and only if at least one of the fi = 1.
Furthermore, by the random subsum principle (see Section ?? in the
Appendix) if any of the fi = 1, then the sum (over GF (3)) of a random
subset of {fi} is nonzero with probability at least 1/2.

Randomly pick l subsets S1, · · · , Sl of {1, . . . , k}. Compute the l poly-
nomials (

∑
j∈Si f̃j)

2, each of which has degree at most twice that
of the largest input polynomial. Compute the OR of these l terms
using the naive approach. We get a polynomial of degree at most
2l × (2l)h−1 = (2l)h. For any x, the probability over the choice of
subsets that this polynomial differs from OR(f̃1, . . . , f̃k) is at most 1

2l
.

So, by the probabilistic method, there exists a choice for the l subsets
such that the probability over the choice of x that this polynomial
differs from OR(f̃1, · · · , f̃k) is at most 1

2l
. We use this choice of the

subsets to construct the approximator.

Applying the above procedure for each gate gives an approximator for
the output gate of degree (2l)d where d is depth of the entire circuit. Each
operation of replacing the gate by its approximator polynomial introduces
error on at most 1/2l fraction of all inputs, so the overall fraction of erroneous
inputs for the approximator is at most S/2l. (Note that errors at different
gates may affect each other. Error introduced at one gate may be cancelled
out by errors at another gate higher up. We are being pessimistic in applying
the union bound to upperbound the probability that any of the approximator
polynomials anywhere in the circuit miscomputes.)
Step 2. Suppose that a polynomial f agrees with the MOD2 function for
all inputs in a set G′ ⊆ 0, 1n. If the degree of f is bounded by

√
n, then we

show |G′| <
(
49
50

)
2n.

Consider the change of variables yi = 1 + xi (mod 3). (Thus 0→ 1 and
1→ −1.) Then, G′ becomes some subset G of {−1, 1}n, and f becomes some
other polynomial, say g(y1, y2, . . . , yn), which still has degree

√
n. Moreover,
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MOD2(x1, x2, . . . , xn) =

{
1 ⇒ Πn

i=1yi = −1
0 ⇒ Πn

i=1yi = 1
(2)

Thus g(y1, y2, . . . , yn), a degree
√
n polynomial, agrees with Πn

i=1yi on G.
This is decidedly odd, and we show that any such G must be small. Specif-
ically, let FG be the set of all functions S : G → {0, 1,−1}. Clearly,
|FG| = 3|G|, and we will show |FG| ≤ 3(49

50)2n , whence Step 2 follows.

Lemma 13.6
For every S ∈ FG, there exists a polynomial gS which is a sum of monomials
aI
∏
i∈I yi where |I| ≤ n

2 +
√
n such that gS(x) = S(x) for all x ∈ G.

Proof: Let Ŝ :GF (3)n → GF (3) be any function which agrees with S on
G. Then Ŝ can be written as a polynomial in the variables yi. However, we
are only interested in its values on (y1, y2, . . . , yn) ∈ {−1, 1}n, when y2

i = 1
and so every monomial Πi∈Iy

ri
i has, without loss of generality, ri ≤ 1. Thus

Ŝ is a polynomial of degree at most n. Now consider any of its monomial
terms Πi∈Iyi of degree |I| > n/2. We can rewrite it as

Πi∈Iyi = Πn
i=1yiΠi∈Īyi, (3)

which takes the same values as g(y1, y2, . . . , yn)Πi∈Īyi over {−1, 1}n. Thus
every monomial in Ŝ has degree at most n

2 +
√
n. �

To conclude, we bound the number of polynomials whose every monomial
with a degree at most n

2 +
√
n. Clearly this number is #polynomials ≤

3#monomials, and

#monomials ≤
∣∣∣{N ⊆ {1 · · ·n}| |N | ≤ n

2
+
√
n
∣∣∣ (4)

≤
∑

i≤
n

2
+
√
n

(
n

i

)
(5)

Using knowledge of the tails of a binomial distribution (or alternatively,
direct calculation),

≤ 49
50

2n (6)

�
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13.3 Lowerbounds for monotone circuits

A Boolean circuit is monotone if it contains only AND and OR gates, and no
NOT gates. Such a circuit can only compute monotone functions, defined
as follows.
Definition 13.7
For x, y ∈ {0, 1}n, we denote x 4 y if every bit that is 1 in x is also 1 in y.
A function f :{0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) for every x 4 y.

Remark 13.8
An alternative characterization is that f is monotone if for every input x,
changing a bit in x from 0 to 1 cannot change the value of the function from
1 to 0.

It is easy to check that every monotone circuit computes a monotone
function, and every monotone function can be computed by a (sufficiently
large) monotone circuit. CLIQUE is a monotone function since adding an
edge to the graph cannot destroy any clique that existed in it. In this section
we show that the CLIQUE function can not be computed by polynomial (and
in fact even subexponential) sized monotone circuits:

Theorem 13.9 ([Raz85b, AB87])
Denote by CLIQUEk,n : {0, 1}(

n
2) → {0, 1} be the function that on input an

adjacency matrix of an n-vertex graph G outputs 1 iff G contains a k-vertex
clique.

There exists some constant ε > 0 such that for every k ≤ n1/4, there’s

no monotone circuit of size less than 2ε
√
k that computes CLIQUEk,n.

We believe CLIQUE does not have polynomial-size circuits even allowing
NOT gates (i.e., that NP * P/poly). In fact, a seemingly plausible ap-
proach to proving this might be to show that for every monotone function
f , the monotone circuit complexity of f is polynomially related to the gen-
eral (non-monotone) circuit complexity. Alas, this conjecture was refuted
by Razborov ([Raz85a], see also [Tar88]).

13.3.1 Proving Theorem 13.9

Clique Indicators

To get some intuition why this theorem might be true, lets show that
CLIQUEk,n can’t be computed (or even approximated) by subexponential
monotone circuits of a very special form. For every S ⊆ [n], let CS denote the
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function on {0, 1}(
n
2) that outputs 1 on a graph G iff the set S is a clique in G.

We call CS the clique indicator of S. Note that CLIQUEk,n =
∨
S⊆[n],|S|=k CS .

We’ll now prove that CLIQUEk,n can’t be computed by an OR of less than
n
√
k/20 clique indicators.
Let Y be the following distribution on n-vertex graphs: choose a set

K ⊆ [n] with |K| = k at random, and output the graph that has a clique
on K and no other edges. Let N be the following distribution on n-vertex
graphs: choose a function c : [n] → [k − 1] at random, and place an edge
between u and v iff c(u) 6= c(v). With probability one, CLIQUEn,k(Y) = 1
and CLIQUEn,k(N ) = 0. The fact that CLIQUEn,k requires an OR of at least
n
√
k/20 clique indicators follows immediately from the following lemma:

Lemma 13.10
Let n be sufficiently large, k ≤ n1/4 and S ⊆ [n]. Then either Pr[CS(N ) =
1] ≥ 0.99 or Pr[CS(Y) = 1] ≤ n−

√
k/20

Proof: Let ` =
√
k − 1/10. If |S| ≤ ` then by the birthday bound, we

expect a random f : S → [k − 1] to have less than 0.01 collisions and hence
by Markov the probability f is one to one is at least 0.99. This implies that
Pr[CS(N ) = 1] ≥ 0.99.

If |S| > ` then Pr[CS(Y) = 1] is equal to the probability that S ⊆ K for
a random K ⊆ [n] of size k. This probability is equal to

(
n−`
k−`
)
/
(
n
k

)
which is

at most
(

n
k−

√
k−1/10

)
/
(
n
k

)
which, by the formula for the binomial coefficients,

is less than
(

2k
n

)` ≤ n−0.7` < n−
√
k/20 (for sufficiently large n). �

Approximation by clique indicators.

Together with Lemma 13.10, the following lemma implies Theorem 13.9:

Lemma 13.11
Let C be a monotone circuit of size s. Let ` =

√
k/10. Then, there exist

sets S1, . . . , Sm with m ≤ n
√
k/20 such that

PrG∈RY [
∨
i

CSi(G) ≥ C(G)] >0.9 (7)

PrG∈RN [
∨
i

CSi(G) ≤ C(G)] >0.9 (8)

(9)
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Proof: Set ` =
√
k/10, p = 10

√
k log n and m = (p − 1)``!. Note that

m� n
√
k/20. We can think of the circuit C as the sequence of s monotone

functions f1, . . . , fs from {0, 1}(
n
2) to {0, 1} where each function fk is either

the AND or OR of two functions fk′ , fk′′ for k′, k′′ < k or is the value of
an input variable xu,v for u, v ∈ [n] (i.e., fk = C{u,v}). The function that
C computes is fs. We’ll show a sequence of functions f̃1, . . . , f̃s such that
each function f̃k is (1) an OR of at most m clique indicators CS1 , . . . ,CSm
with |Si| ≤ ` and (2) f̃k approximates fk in the sense of (7) and (8). We
call a function f̃k satisfying (1) an (`,m)-function. The result will follow by
considering the function f̃s.

We construct the functions f̃1, . . . , f̃s by induction. For 1 ≤ k ≤ s, if
fk is an input variable then we let f̃k = fk. If fk = fk′ ∨ fk′′ then we let
f̃k′ t f̃k′′ and if fk = fk′ ∧fk′′ then we let f̃k′ u f̃k′′ , where the operations t,u
will be defined below. We’ll prove that for every f, g : {0, 1}(

n
2) → {0, 1}

(a) if f and g are (m, `)-functions then so is f t g (resp. f u g) and (b)
PrG∈RY [f t g (G) < f ∪ g (G)] < 1/(10S) (resp. PrG∈RY [f u g (G) <
f∩g (G)] < 1/(10S)) and PrG∈RN [ftg (G) > f∪g (G)] < 1/(10S) (resp.
PrG∈RY [fug (G) < f∩g (G)] < 1/(10S)). The lemma will then follow by
showing using the union bound that with probability ≥ 0.9 the equations of
Condition (b) hold for all f̃1, . . . , f̃s. We’ll now describe the two operations
t,u. Condition (a) will follow from the definition of the operations, while
Condition (b) will require a proof.

The operation f t g. Let f, g be two (m, `)-functions: that is f =
∨m
i=1 CSi

and g =
∨m
j=1 CTj (if f or g is the OR of less than m clique indicators we

can add duplicate sets to make the number m). Consider the function
h = CZ1 ∪ · · · ∪ CZ2m where Zi = Si and Zm+j = Tj for 1 ≤ i, j ≤ m. The
function h is not an (m, `)-function since it is the OR of 2m clique indica-
tors. We make it into an (m, `)-function in the following way: as long as
there are more than m distinct sets, find p subsets Zi1 , . . . , Zip that are in a
sunflower formation. That is, there exists a set Z ⊆ [n] such that for every
1 ≤ j, j′ ≤ p, Zij ∩ Zi,j′ = Z. Replace the functions CZi1 , . . . ,CZip in the
function h with the function CZ . Once we obtain an (m, `)-function h′ we
define f t g to be h′. We won’t get stuck because of the following lemma
(whose proof we defer):

Lemma 13.12 (Sunflower lemma [ER60])
Let Z be a collection of distinct sets each of cardinality at most `. If |Z| >
(p−1)``! then there exist p sets Z1, . . . , Zp ∈ Z and set Z such that Zi∩Zj =
Z for every 1 ≤ i, j ≤ p.
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The operation f u g. Let f, g be two (m, `)-functions: that is f =
∨m
i=1 CSi

and g =
∨m
j=1 CTj . Let h be the function

∨
1≤i,j≤m CSi∪Tj . We perform the

following steps on h: (1) Discard any function CZ for |Z| > `. (2) Reduce
the number of functions to m by applying the sunflower lemma as above.

Proving Condition (b). To complete the proof of the lemma, we prove
the following four equations:

• PrG∈RY [ftg (G) < f∪g (G)] < 1/(10S).

If Z ⊆ Z1, . . . , Zp then for every i, CZi(G) implies that CZ(G) and
hence the operation f t g can’t introduce any “false negatives”.

• PrG∈RN [ftg (G) > f∪g (G)] < 1/(10S).

We can introduce a “false positive” on a graph G only if when we
replace the clique indicators for a sunflower Z1, . . . , Zp with the clique
indicator for the common intersection Z, it is the case that CZ(G)
holds even though CZi(G) is false for every i. Recall that we choose
G ∈R N by choosing a random function c : [n] → [k − 1] and adding
an edge for every two vertices u, v with c(u) 6= c(v). Thus, we get
a false positive if c is one-to-one on Z (we denote this event by B)
but not one-to-one on Zi for every 1 ≤ i ≤ p (we denote these events
by A1, . . . , Ap). We’ll show that the intersection of B and A1, . . . , Ap
happens with probability at most 2−p which (by the choice of p) is less
than 1/(10m2s). Since we apply the reduction step at most m times
the equation will follow.

Since ` <
√
k − 1/10, for every i, Pr[Ai|B] < 1/2 (the probability that

there’ll be a collision on the at most ` elements of Zi \ Z is less than
half). Conditioned on B, the events A1, . . . , Ap are independent, since
they depend on the values of c on disjoint sets, and hence we have that
Pr[A1 ∧ · · · ∧Ap ∧B] ≤ Pr[A1 ∧ · · · ∧Ap|B] =

∏p
i=1 Pr[Ap|B] ≤ 2−p.

• PrG∈RY [fug (G) < f∩g (G)] < 1/(10S).

By the distributive law f ∩ g =
∨
i,j(CSi ∩ CTj ). A graph G in the

support of Y consists of a clique over some set K. For such a graph
CSi ∩ CTj holds iff Si, Tj ⊆ K and thus CSi ∩ CTj holds iff CSi∪Tj
holds. We can introduce a false negative when we discard functions
of the form CZ for |Z| > `, but by Lemma 13.10, for such sets Z,
Pr[CZ(Y) = 1] < n−

√
k/20 < 1/(10sm2). The equation follows since

we discard at most m2 such sets.
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• PrG∈RN [fug (G) > f∩g (G)] < 1/(10S).

Since CS∪T implies both CS and CT , we can’t introduce false positives
by moving from f ∩g to

∨
i,j CSi∪Tj . We can’t introduce false positives

by discarding functions from the OR. Thus, the only place where we
can introduce false positives is where we replace the clique indicators
of a sunflower with the clique indicator of the common intersection.
We bound this probability in the same way as this was done for the t
operator.

�

Proof of the sunflower lemma (Lemma 13.12). The proof is by in-
duction on `. The case ` = 1 is trivial since distinct sets of size 1 must
be disjoint. For ` > 1 let M be a maximal subcollection of Z containing
only disjoint sets. Because of M’s maximality for every Z ∈ Z there ex-
ists x ∈ ∪M = ∪M∈MM such that x ∈ Z. If |M| ≥ p we’re done, since
such a collection is already a sunflower. Otherwise, since | ∪M| ≤ (p− 1)`
by averaging there’s an x ∈ ∪M that appears in at least a 1

`(p−1) fraction
of the sets in Z. Let Z1, . . . , Zk be the sets containing x, and note that
k > (p− 1)`−1(`− 1)!. Thus, by induction there are p sets among the `− 1-
sized sets Z1 \ {x}, · · · , Zk \ {x} that form a sunflower, adding back x we
get the desired sunflower among the original sets. Note that the statement
(and proof) assume nothing about the size of the universe the sets in Z live
in. �

13.4 Circuit complexity: The frontier

Now we sketch the “frontier” of circuit lowerbounds, namely, the dividing
line between what we can prove and what we cannot. Along the way we
also define multi-party communication, since it may prove useful for proving
some new circuit lowerbounds.

13.4.1 Circuit lowerbounds using diagonalization

We already mentioned that the best lowerbound on circuit size for an NP
problem is 4.5n− o(n). For PH better lowerbounds are known: one of the
exercises in Chapter 6 asked you to show that some for every k > 0, some
language in PH (in fact in Σp

2) requires circuits of size Ω(nk). The latter
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lowerbound uses diagonalization, and one imagines that classes “higher up”
than PH should have even harder languages.

Frontier 1: Does NEXP have languages that require super-polynomial
size circuits?

If we go a little above NEXP, we can actually prove a super-polynomial
lowerbound: we know that MAEXP * P/poly where MAEXP is the set of
languages accepted by a one round proof with an all powerful prover and
an exponential time probabilistic verifier. This follows from the fact that if
MAEXP ⊆ P/poly then in particular PSPACE ⊆ P/poly. However, by
IP = PSPACE (Theorem 9.13) we have that in this case PSPACE = MA
(the prover can send in one round the circuit for computing the prover
strategy in the interactive proof). However, by simple padding this implies
that MAEXP equals the class of languages in exponential space, which can be
directly shown to not contain P/poly using diagonalization. Interestingly,
this lower bound does not relativize (i.e., there’s an oracle under which
MANEXP ⊆ P/poly [BFT98]).

13.4.2 Status of ACC versus P

The result that PARITY is not in AC0 separates NC1 from AC0. The next
logical step would be to separate ACC0 from NC1. Less ambitiously, we
would like to show even a function in P or NP that is not in ACC0.

The Razborov-Smolenksy method seems to fail when we allow the circuit
even two types of modular gates, say MOD2 and MOD3. In fact if we
allow the bounded depth circuit modular gates that do arithmetic mod q,
when q is not a prime —a prime power, to be exact— we reach the limits
of our knowledge. (The exercises ask you to figure out why the proof of
Theorem 13.5 does not seem to apply when the modulus is a composite
number.) To give one example, it it is consistent with current knowledge
that the majority of n bits can be computed by linear size circuits of constant
depth consisting entirely of MOD6 gates. The problem seems to be that
low-degree polynomials modulo m where m is composite are surprisingly
expressive [BBR94].

Frontier 2: Show Clique is not in ACC0(6).

Or even less ambitiously:

Frontier 2.1: Exhibit a language in NEXP that is not in ACC0(6).

It is worth noting that thus far we are talking about nonuniform circuits
(to which Theorem 13.5 also applies). Stronger lower bounds are known
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Figure unavailable in pdf file.

Figure 13.3: The depth 2 circuit with a symmetric output gate from Theorem 13.13.

for uniform circuits: Allender and Gore [AG94] have shown that a decision
version of the Permanent (and hence the Permanent itself) requires expo-
nential size “Dlogtime-uniform” ACC0 circuits. (A circuit family {Cn} is
Dlogtime uniform if there exists a deterministic Turing machine M that
given a triple (n, g, h) determines in linear time —i.e., O(log n) time when
g, h ≤ poly(n)— what types of gates g and h are and whether g is h’s parent
in Cn.)

But going back to nonuniform ACC0, we wish to mention an alternative
representation of ACC0 circuits that may be useful in further lowerbounds.
Let a symmetric gate be a gate whose output depends only on the number
of inputs that are 1. For example, majority and mod gates are symmetric.
Yao has shown that ACC0 circuits can be simplified to give an equivalent
depth 2 circuits with a symmetric gate at the output (figure ??). Beigel and
Tarui subsequently improved Yao’s result:

Theorem 13.13 (Yao [Yao90], Beigel and Tarui [BT94])
If f ∈ ACC0, then f can be computed by a depth 2 circuit C with a

symmetric gate with quasipolynomial (i.e., 2logk n) fan-in at the output level
and ∨ gates with polylogarithmic fan-in at the input level.

We will revisit this theorem below in Section 13.5.1.

13.4.3 Linear Circuits With Logarithmic Depth

When we restrict circuits to have bounded fanin we necessarily need to allow
them to have nonconstant (in fact, Ω(log n)) depth to have any reasonable
power. With this in mind, the simplest interesting circuit class seems to be
one of circuits wth linear size and logarithmic depth.

Frontier 3: Find an explicit function that cannot be computed by circuits
of linear size and logarithmic depth.

(Note that by counting one can easily show that some function on n bits
requires superpolynomial size circuits and hence bounded fan-in circuits with
more than logarithmic depth; see the exercises on the chapter on circuits.
Hence we want to show this for an explicit function, e.g. CLIQUE.)
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Valiant thought about this problem in the ’70s. His initial candidates
for lowerbounds boiled down to showing that a certain graph called a su-
perconcentrator needed to have superlinear size. He failed to prove thisand
instead ended up proving that such superconcentrators do exist!

Another sideproduct of Valiant’s investigations was the following impor-
tant lemma concerning depth-reduction for such circuits.

Lemma 13.14 (Valiant)
In any circuit with m edges and depth d, there are km/ log d edges whose

removal leaves a circuit with depth at most d/2k−1.

This lemma can be applied as follows. Suppose we have a circuit C of
depth c log n with n inputs {x1, . . . , xn} and n outputs {y1, . . . , yn}, and
suppose 2k ∼ c/ε where ε > 0 is arbitrarily small. Removing O(n/ log log n)
edges from C then results in a circuit with depth at most ε log n. But then,
since C has bounded fan-in, we must have that each output yi is connected to
at most 2ε logn = nε inputs. So each output yi in C is completely determined
by nε inputs and the values of the omitted edges. So we have a “dense”
encoding for the function fi(x1, . . . , xn) = yi. We do not expect this to be
the case for any reasonably difficult function.

13.4.4 Branching Programs

Just as circuits are used to investigate time requirements of Turing Machines,
branching programs are used to investigate space complexity.

A branching program on n input variables x1, x2, . . . , xn is a directed
acyclic graph all of whose nodes of nonzero outdegree are labeled with a
variable xi. It has two nodes of outdegree zero that are labeled with an
output value, ACCEPT or REJECT. The edges are labeled by 0 or 1. One
of the nodes is designated the start node. A setting of the input variables
determines a way to walk on the directed graph from the start node to an
output node. At any step, if the current node has label xi, then we take
an edge going out of the node whose label agrees with the value of xi. The
branching program is deterministic if every nonoutput node has exactly one
0 edge and one 1 edge leaving it. Otherwise it is nondeterministic. The
size of the branching program is the number of nodes in it. The branch-
ing program complexity of a language is defined analogously with circuit
complexity. Sometimes one may also require the branching program to be
leveled, whereby nodes are arranged into a sequence of levels with edges go-
ing only from one level to the next. Then the width is the size of the largest
level.
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Figure unavailable in pdf file.

Figure 13.4: If f is computed by the above circuit, then f has a k-party protocol of
complexity k logN .

Theorem 13.15
If S(n) ≥ log n and L ∈ SPACE(S(n)) then L has branching program

complexity at most cS(n) for some constant c > 1.

Proof: Essentially mimics our proof of Theorem‘?? that SPACE(S(n)) ⊆
DTIME(2O(S(n))). The nodes of the branching program correspond to the
configurations of the space-bounded TM, and it is labeled with variable xi
if the configuration shows the TM reading the ith bit in the input. �

Of course, a similar theorem is true about NDTMs and nondeterministic
branching program complexity.

Frontier 4: Describe a problem in P (or even NP) that requires branching
programs of size greater than n1+ε for some constant ε > 0.

There is some evidence that branching programs are more powerful than
one may imagine. For instance, branching programs of constant width (rem-
iniscent of a TM with O(1) bits of memory) seem inherently weak. Thus
the next result is unexpected.

Theorem 13.16 (Barrington [?])
A language has polynomial size, width 5 branching programs iff it is in NC1.

13.5 Approaches using communication complexity

Here we outline a concrete approach (rather, a setting) in which better lower-
bounds may lead to a resolution of some of the questions above. It relates
to generalizations of communication complexity introduced earlier. Mostly
we will use multiparty communication complexity, though Section 13.5.4 will
use communication complexity of a relation.

13.5.1 Connection to ACC0 Circuits

Suppose f(x1, . . . , xk) has a depth-2 circuit with a symmetric gate with fan-
in N at the output and ∧ gates with fan-in k−1 at the input level (figure 2).
The claim is that f ’s k-party communication complexity is at most k logN .
(This observation is due to Razborov and Wigderson [RW93]). To see the
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claim, first partition the ∧ gates amongst the players. Each bit is not known
to exactly one player, so the input bits of each ∧ gate are known to at least
one player; assign the gate to such a player with the lowest index. Players
then broadcast how many of their gates output 1. Since this number has at
most logN bits, the claim follows.

Our hope is to employ this connection with communication complexity
in conjunction with Theorem 13.13 to obtain lower bounds on ACC0 cir-
cuits. For example, note that the function in Example ?? above cannot have
k < log n/4. However, this is not enough to obtain a lower bound on ACC0

circuits since we need to show that k is not polylogarithmic to employ The-
orem 13.13. Thus a strengthening of the Babai Nisan Szegedy lowerbound
to Ω(n/poly(k)) for say the CLIQUE function would close Frontier 2.

13.5.2 Connection to Linear Size Logarithmic Depth Cir-
cuits

Suppose that f : {0, 1}n × {0, 1}logn → {0, 1}n has bounded fan-in cir-
cuits of linear size and logarithmic depth. If f(x, j, i) denotes the ith bit
of f(x, j), then Valiant’s Lemma implies that f(x, j, i) has a simultaneous
3-party protocol—that is, a protocol where all parties speak only once and
write simultaneously on the blackboard (i.e., non-adaptively)—where,

• (x, j) player sends n/ log log n bits;

• (x, i) player sends nε bits; and

• (i, j) player sends O(log n) bits.

So, if we can show that a function does not have such a protocol, then we
would have a lower bound for the function on linear size logarithmic depth
circuits with bounded fan-in.

Conjecture: The function f(x, j, i) = xj⊕i, where j ⊕ i is the bitwise xor,
is conjectured to be hard, i.e., f should not have a compact representation.

13.5.3 Connection to branching programs

The notion of multiparty communication complexity (at least the “number
on the forehead” model discussed here) was invented by Chandra Furst
and Lipton [?] for proving lowerbounds on branching programs, especially
constant-width branching programs discussed in Section ??
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13.5.4 Karchmer-Wigderson communication games and depth
lowerbounds

The result that PARITY is not in AC0 separates NC1 from AC0. The
next step would be to separate NC2 from NC1. (Of course, ignoring for the
moment the issue of separating ACC0 from NC1.) Karchmer and Wigder-
son [KW90] described how communication complexity can be used to prove
lowerbounds on the minimum depth required to compute a function. They
showed the following result about monotone circuits, which we will not prove
this result.
Theorem 13.17
Detecting whether a graph has a perfect matching is impossible with mono-
tone circuits of depth O(log n)

However, we do describe the basic Karchmer-Wigderson game used to
prove the above result, since it is relevant for nonmonotone circuits as well.
For a function f :{0, 1}n → {0, 1} this game is defined as follows.

There are two players, ZERO and ONE. Player ZERO receives an
input x such that f(x) = 0 and Player ONE receives an input y such that
f(y) = 1. They communicate bits to each other, until they can agree on an
i ∈ {1, 2, . . . , n} such that xi 6= yi.

The mechanism of communication is defined similarly as in Chapter 12;
there is a protocol that the players agree on in advance before receiving the
input. Note that the key difference from the scenario in Chapter 12 is that
the final answer is not a single bit, and furthermore, the final answer is not
unique (the number of acceptable answers is equal to the number of bits
that x, y differ on). Sometimes this is described as computing a relation.
The relation in this case consists of all triples (x, y, i) such that f(x) = 0,
f(y) = 1 and xi 6= yi.

We define CKW (f) as the communication complexity of the above game;
namely, the maximum over all x ∈ f−1(0), y ∈ f−1(1) of the number of bits
exchanged in computing an answer for x, y. The next theorem shows that
this parameter has a suprising alternative characterization. It assumes that
circuits don’t have NOT gates and instead the NOT gates are pushed down
to the inputs using De Morgan’s law. (In other words, the inputs may be
viewed as x1, x2, . . . , xn, x1, x2, . . . , xn.) Furthermore, AND and OR gates
have fanin 2. (None of these assumptions is crucial and affects the theorem
only marginally.)

Theorem 13.18 ([KW90])
CKW (f) is exactly the minimum depth among all circuits that compute f .
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Proof: First, we show that if there is a circuit C of depth K that computes
f then CKW (f) ≤ K. Each player has a copy of C, and evaluates this circuit
on the input given to him. Of course, it ealuates to 0 for Player ZERO and
to 1 for Player ONE. Suppose the top gate is an OR. Then at least one of
the two incoming wires to this gate must be 1, and in the first round, Player
ONE sends one bit communicating which of these wires it was. Note that
this wire is 0 for Player ZERO. In the next round the players focus on
the gate that produced the value on this wire. (If the top gate is an AND
on the other hand, then in the first round Player ZERO speaks, conveying
which of the two incoming wires was 0. This wire will be 1 for Player ONE.)
This goes on and the players go deeper down the circuit, always maintaining
the invariant that the current gate has value 1 for Player ONE and 0 for
Player ZERO. Finally, after at most K steps they arrive at an input bit.
According to the invariant being maintained, this bit must be 1 for Player
ONE and 0 for Player ZERO. Thus they both know an index i that is a
valid answer.

For the reverse direction, we have to show that if CKW (f) = K then
there is a circuit of depth at most K that computes f . We prove a more
general result. For any two disjoint nonempty subsets A ⊆ f−1(0) and B ⊆
f−1(1), let CKW (A,B) be the communication complexity of the Karchmer-
Wigderson game when x always lies in A and y in B. We show that there
is a circuit of depth CKW (A,B) that outputs 0 on every input from A and
1 on every input from B. Such a circuit is called a distinguisher for sets
A,B. The proof is by induction on K = CKW (A,B). The base case K = 0
is trivial since this means the players do not have to communicate at all to
agree on an answer, say i. Hence xi 6= yi for all x ∈ A, y ∈ B, which implies
that either (a) xi = 0 for every x ∈ A and yi = 0 for every y ∈ B or (b)
xi = 1 for every x ∈ A and yi = 1 for every y ∈ B. In case (a) we can use
the depth 0 circuit xi and in case (b) we can use the circuit xi to distinguish
A,B.

For the inductive step, suppose CKW (A,B) = K, and at the first round
Player ZERO speaks. Then A is the disjoint union of two sets A0, A1

where Ab is the set of inputs in A for which Player ZERO sends bit b.
Then CKW (Ab, B) ≤ K − 1 for each b, and the inductive hypothesis gives
a circuit Cb of depth at most K − 1 that distinguishes Ab, B. We claim
that C0 ∧ C1 distinguishes A,B (note that it has depth at most K). The
reason is that C0(y) = C1(y) = 1 for every y ∈ B whereas for every x ∈ A,
C0(x) ∧ C1(x) = 0 since if x ∈ Ab then Cb(x) = 0. �

Thus we have the following frontier.
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Frontier 5: Show that some function f in P (or even NEXP!) has
CKW (f) = Ω(log n log log n).

Karchmer, Raz, and Wigderson [KRW95] describe a candidate function
that may work. It uses the fact a function on k bits has a truth table of
size 2k, and that most functions on k bits are hard (e.g., require circuit size
Ω(2k/k), circuit depth Ω(k), etc.). They define the function by assuming
that part of the n-bit input encodes a very hard function, and this hard
function is applied to the remaining input in a “tree” fashion.

For any function g : {0, 1}k → {0, 1} and s ≥ 1 define g◦s : {0, 1}k
s

→
{0, 1} as follows. If s = 1 then g◦s = g. Otherwise express the input
x ∈ {0, 1}k

s

as x1x2x3 · · ·xk where each xi ∈ {0, 1}k
s−1

and define

g◦s(x1x2 · · ·xk) = g(g◦(s−1)(x1)g◦(s−1)(x2) · · · g◦(s−1)(xk)).

Clearly, if g can be computed in depth d then g◦s can be computed in depth
sd. Furthermore, if one fails to see how one could reduce the depth for an
arbitrary function.

Now we describe the KRW candidate function f : {0, 1}n → {0, 1}. Let
k = dlog n

2 e and s be the largest integer such that ks ≤ n/2 (thus s =
Θ( logn

log logn).) For any n-bit input x, let gx be the function whose truth table
is the first 2k bits of x. Let x|2 be the string of the last ks bits of x. Then

f(x) = g◦sx (x|2).

According to our earlier intuition, when the first 2k bits of x represent
a really hard function —as they must for many choices of the input— then
g◦sx (x|2) should require depth Ω(sk) = Ω( log2 n

log logn). Of course, proving this
seems difficult.

This type of complexity questions, whereby we are asking whether s
instances of a problem are s times as hard as a single instance, are called
direct sum questions. Similar questions have been studied in a variety of
computational models, and sometimes counterintuitive results have been
proven for them. One example is that by a counting argument there exists
an n × n matrix A over {0, 1}, such that the smallest circuit computing
the linear function v 7→ Av for v ∈ {0, 1}n is of size Ω(n2). However,
computing this function on n instances v1, . . . , vn can be done significantly
faster than n3 steps using fast matrix multiplication [Str69] (the current
record is roughly O(n2.38) [CW90]).
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Chapter notes and history

Shannon defined circuit complexity, including monotone circuit complexity,
in 1949. The topic was studied in Russia since the 1950s. (See Trakhten-
brot [Tra84] for some references.) Savage [Sav72] was the first to observe
the close relationship between time required to decide a language on a TM
and its circuit complexity, and to suggest circuit lowerbounds as a way to
separate complexity classes. A burst of results in the 1980s, such as the
separation of P from AC0 [FSS84, Ajt83] and Razborov’s separation of
monotone NP from monotone P/poly [Raz85b] raised hopes that a resolu-
tion of P versus NP might be near. These hopes were dashed by Razborov
himself [Raz89] when he showed that his method of approximations was un-
likely to apply to nonmonotone circuits. Later Razborov and Rudich [RR97]
formalized what they called natural proofs to show that all lines of attack
considered up to that point were unlikely to work. (See Chapter 23.)

Our presentation in Sections 13.2 and 13.3 closely follows that in Bop-
pana and Sipser’s excellent survey of circuit complexity [BS90], which is
still useful and current 15 years later. (It omits discussion of lowerbounds
on algebraic circuits; see [Raz04] for a recent result.)

H̊astad’s switching lemma [Has86] is a stronger form of results from[FSS84,
Ajt83, Yao85]. The Razborov-Smolensky method of using approximator
polynomials is from [Raz87], strengthened in[Smo87]. Valiant’s observa-
tions about superlinear circuit lowerbounds are from a 1975 paper [Val75]
and an unpublished manuscript—lack of progress on this basic problem gets
more embarrassing by the day!.

The 4.5n−o(n) lowerbound on general circuits is from Lachish-Raz [LR01].

Exercises

§1 Suppose that f is computable by an AC 0 circuit C of depth d and size
S. Prove that f is computable by an AC 0 circuit C ′ of size 10S and
depth d that does not contain NOT gates but instead has n additional
inputs that are negations of the original n inputs.

Hint:eachgateintheoldcircuitgetsatwinthatcomputesits
negation.

§2 Suppose that f is computable by an AC 0 circuit C of depth d and
size S. Prove that f is computable by an AC0 C ′ circuit of size (10S)d

and depth d where each gate has fanout 1.
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§3 Prove that for t > n/2,
(
n
t+k

)
≤
(
n
t

) (
n
n−t

)k
. Use this to complete the

proof of Lemma 13.2 (Section 13.1.2).

§4 Show that ACC0 ⊆ NC1.

§5 Identify reasons why the Razborov-Smolensky method does not work
when the circuit has modm gates, where m is a composite number.

§6 Show that representing the OR of n variables x1, x2, . . . , xn exactly
with a polynomial over GF (q) where q is prime requires degree exactly
n.

§7 The Karchmer-Wigderson game can be used to prove upperbounds,
and not just lowerbounds. Show using this game that PARITY and
MAJORITY are in NC1.

§8 Show that if a language is computed by a polynomial-size branching
program of width 5 then it is in NC1.

§9 Prove Valiant’s Lemma (Lemma 13.14).

Hint:Adirectedacyclicgraphcanbebeturnedintoaleveled
graph,suchthatifu→visanedgethenuoccursatalower
levelthanv.Labelthisedgebylookingatthenumbersgivento
thelevelsofu,vandremovetheedgescorrespondingtotheleast
popularlabel.
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Chapter 14

Algebraic computation
models

Somewhat rough

We think of numerical algorithms –root-finding, gaussian elimination etc.
—as operating over R or C, even though the underlying representation of
the real or complex numbers involves finite precision. Therefore, it is natural
to ask about the complexity of computations over the real numbers or even
computations over arbitrary fields. Such an idealized model may not be
implementable, but it provides a useful approximation to the asymptotic
behavior as computers are allowed to use more and more precision in their
computations. However, coming up with a meaningful, well-behaved model
is not an easy task, as the following example suggests.

Example 14.1 (Pitfalls awaiting designers of such models)
A real number can encode infinite amount of information. For example, a
single real number is enough to encode the answer to every instance of SAT
(of any language, in general). Thus, a model that can store any real number
with infinite precision may not be realistic. Shamir has shown how to factor
any integer n in poly(log n) time on a computer that can do real arithmetic
with arbitrary precision.

The usual way to avoid this pitfall is to restrict the algorithms’ ability to
access individual bits (e.g., the machine may require more than polynomial
time to extract a particular digit from a real number).
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In this chapter we define two algebraic computation models: algebraic
trees and algebraic Turing Machines. The latter is closely related to the
standard Turing Machine model and allows us to define similar complexity
classes. Then, we refer to the relation of algebraic and boolean classes. We
conclude with a discussion on decidability for the algebraic Turing Machine.

14.1 Algebraic Computation Trees

Recall the comparison based sorting algorithms; they only allow questions
of the type xi > xj , which is the same as asking whether xi − xj > 0.
The left hand side term of this last inequality is a linear function. We
examine the effect of allowing i) the use of any polynomial function and ii)
the introduction of new variables together with the ability to ask questions
about them. These lead to the following definition:

Definition 14.2
An Algebraic Computation Tree is a binary tree where each of the nodes
has one of the following types:

• Leaf labelled “Accept” or “Reject”.

• Computation node v labelled with yv, where yv = yu ◦ yw and u,w
are either inputs or the labels of ancestor nodes and the operator ◦ is
in {+,−,×,÷,√ } (Note: this is the standard definition for algebraic
trees over fields. We don’t allow division in the case of rings).

• Branch node with out-degree 2. The branch that is taken depends on
the evaluation of some condition, such as yu = 0 or yu ≥ (≤)0, and yu
is some designated ancestor.

The path from the root to an accepting or rejecting leaf depends on the input
x1, . . . , xn ∈ R. The complexity of the computation on the path is measured
using the following costs (which reflect real-life costs to some degree):

• +,− are free.

• ×,÷,√ are charged unit cost.

The depth of the tree is the maximum cost of any path in it.

A fragment of an algebraic decision tree is shown in figure 14.1. The fol-
lowing examples illustrate some of the languages (over real numbers) whose
complexity we want to study.
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Figure unavailable in pdf file.

Figure 14.1: An Algebraic Computation Tree

Figure unavailable in pdf file.

Figure 14.2: A computation path p of length d defines a set of constraints over the n
input variables xi and d additional variables yj , which correspond to the nodes on p.

Example 14.3
[Element Distinctness] Given n numbers x1, x2, . . . , xn we ask whether they
are all distinct. This is equivalent to the question whether

∏
i6=j(xi−xj) 6= 0.

Example 14.4
[Real number version of subset sum] Given a set of n real numbers X =
{x1, x2, . . . , xn} we ask whether there is a subset S ⊆ X such that

∑
i∈S xi =

1.

Remark 14.5
If the depth of a path is d and y1, . . . , yd are variables denoting values of
nodes along this path, then the set of inputs (x1, . . . , xn) that follow this
path satisfy a set C of constraints of the type

pi(y1, . . . , yd, x1, . . . , xn) ./ 0,

where pi is a degree 2 polynomial (this is an effect of introducing a new
variable at each node) and ./ is in {≤,≥,=, 6=}. For example, yv = yu÷yw ↔
yvyw − yu = 0. The set S of points that end up in the same path are the
solution to an algebraic system (see figure 14.2).

By applying the following trick we can replace the “ 6=” constraints from
C. Then, S is defined as a semi-algebraic set and we can apply some known
results to bound its number of connected components (see Definition 14.8).
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Remark 14.6 (Rabinovitch’s Trick)
We can change the “ 6=” to “=” in some constraint

pi(y1, . . . , ym) 6= 0,

by introducing a new variable z and asking whether there is a value of z
such that

qi(y1, . . . , ym, z) ≡ 1− zpi(y1, . . . , ym) = 0.

(This transformation holds for all fields.) Note that we have increased the
degree by 1. Alternatively, one can ask whether

p2
i (y1, . . . , ym) > 0,

which doubles the degree and does not hold for all fields (e.g., the complex
numbers).

Note that after this conversion the maximum degree of the constraints
in C remains 2, because the trick is used only for the branch yu 6= 0 which is
converted to 1−zvyu = 0. (We find Rabinovitch’s trick useful also in section
14.3.2 where we prove a completeness result for Hilbert’s Nullstellensatz.)

Definition 14.7
A set S ⊆ Rn is connected if for all x, y ∈ S there is path p that connects x
and y and lies entirely in S.

Definition 14.8
For S ⊆ Rn we define #(S) to be the number of connected components of
S.

The main idea for proving lowerbounds for the Algebraic Computation
Tree model is to show that #(S) is large. To that end, we will find the
following result useful.

Theorem 14.9 (Simple consequence of Milnor-Thom)
If S ⊆ Rn is defined by degree d constraints with m equalities and h in-
equalities then

#(S) ≤ d(2d− 1)n+h−1

Remark 14.10
Note that the above upperbound is independent of m.
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Figure 14.3: Projection can merge but not add connected components

Definition 14.11
Let W ⊆ Rn. We define the algebraic decision tree complexity of W as

C(W ) = min
computation
trees C for W

{depth of C}

Theorem 14.12 (Ben-Or)

C(W ) = Ω
(

log (max {#(W ),#(Rn −W )})− n
)

Proof: Suppose that the depth of a computation tree for W is d, so that
there are at most 2d leaves. We will use the fact that if S ⊆ Rn and S|k is
the set of points in S with their n − k coordinates removed (projection on
the first k coordinates) then #(S|k) ≤ #(S) (figure 14.3).

For every leaf there is a set of degree 2 constraints. So, consider a leaf `
and the corresponding constraints C`, which are in variables x1, . . . , xn, y1, . . . , yd.
Let W` ⊆ Rn be the subset of inputs that reach ` and S` ⊆ Rn+d the set
of points that satisfy the constraints C`. Note that W` = C`|n i.e., W` is
the projection of C` onto the first n coordinates. So, the number of con-
nected components in W` is upperbounded by #(C`). By Theorem 14.9
#(C`) ≤ 2 ·3n+d−1 ≤ 3n+d. Therefore the total number of connected compo-
nents is at most 2d3n+d, so d ≥ log(#(W ))−O(n). By repeating the same
argument for Rn −W we have that d ≥ log(#(Rn −W ))−O(n). �

Now we can apply the previous result to get a Ω(n log n) lowerbound for
Element Distinctness.

Theorem 14.13 (Lowerbound for Element Distinctness)
Let W = {(x1, . . . , xn)|

∏
i6=j (xi − xj) 6= 0}. Then,

#(W ) ≥ n!

Proof: For each permutation σ let

Wσ = {(x1, . . . , xn) | xσ(1) < xσ(2) < . . . < xσ(n)}.
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That is, let Wσ be the set of n-tuples (x1, . . . , xn) to which σ gives order.
We claim that for all σ′ 6= σ the sets Wσ and Wσ′ are not connected. The
theorem follows immediately from this claim.

Now consider two distinct permutations σ and σ′. There exist two dis-
tinct i, j with 1 ≤ i, j ≤ n, such that σ−1(i) < σ−1(j) but σ−1(i) > σ−1(j).
Thus, in Wσ we have Xj −Xi > 0 while in Wσ′ we have Xi −Xj > 0. But
as we move from the first condition to the second, at some point Xj − Xi

must become 0 (by the intermediate value theorem of calculus). Definition
14.7 then implies that Wσ and Wσ′ cannot be connected. �

14.2 Algebraic circuits

very sketchy still

An arithmetic circuit over a field F is an acyclic graph whose leaves
(nodes of indegree 0) are labeled with a finite set of variables x1, x2, . . . , xn
as well as the constant 1 (a member of F ) and whose each nonleaf node is
labeled by one of the operations of +, −, × and ÷. For any assignment of
values to the input variables, the circuit computes in the obvious way and
produces a value in F as output. The size of an arithmetic circuit is the
number of gates used by the circuit.

It is easy to check (see exercises) that arithmetic circuits have essentially
the same power as boolean circuits when field F is finite, so the case of
interest is when F is infinite.

It is easy to check by simple induction that an algebraic circuit computes
a rational function of the input variables, and thus algebraic circuit com-
plexity is a useful measure only for functions that are themselves rational
functions.

Example 14.14
The determinant of an n× n matrix X = (Xij) is

det(X) =
∑
σ∈Sn

n∏
i=1

xiσ(i), (1)

where Sn is the set of all n! permutations on {1, 2, . . . , n}. The algebraic
circuit complexity of this is O(n3) (using the obvious circuit corresponding
to Gaussian elimination). This is a good illustration how the polynomial
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defining a function may have exponentially many terms —n! in this case—
but nevertheless be computable with a polynomial size circuit.

By contrast, no polynomial size algebraic circuit is conjectured to exist
for the permanent function, which at first sight seems is very similar to the
determinant but as we saw in Section ??, is #P-complete.

permanent(X) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

xiσ(i), (2)

The determinant and permanent functions also play a vital role in the
world of algebraic circuits, since they are complete problems for two impor-
tant classes.

Definition 14.15 (Algebraic P)
To be written.

Definition 14.16 (Algebraic NP)
To be written.

Definition 14.17 (Projection reduction)
To be written.

Theorem 14.18 (Valiant)
Determinant is complete for Algebraic P and Permanent is complete for
Algebraic NP.

14.3 The Blum-Shub-Smale Model

Here we consider a Turing Machine that computes over some arbitrary field
K (e.g., K = R,C,Z2). This is a generalization of the standard Turing
Machine model which operates over the ring Z2. Each cell can hold an
element ofK with a finite number of cells initially not blank. In the standard
model the computation and branch operations can be executed in the same
step. Here we perform these operations separately. So we divide the set of
states into the following three categories:

• Shift state: move the head to the left or to the right of the current
position.

Web draft 2006-09-28 18:09



DRAFT

288 14.3. THE BLUM-SHUB-SMALE MODEL

• Branch state: if the content of the current cell is a then goto state q1
else goto state q2.

• Computation state: replace the contents of the current cell with a new
value. The machine has a hardwired function f and the new contents
of the cell become a ← f(a). In the standard model for rings, f is a
polynomial over K, while for fields f is a rational function p/q where
p, q are polynomials in K[x] and q 6= 0. In either case, f can be
represented using a constant number of elements of K.

• The machine has a “register” onto which it can copy the contents of
the cell currently under the head. This register’s contents can be used
in the computation.

In the next section we define some complexity classes related to the BSS
model. As usual, the time and space complexity of these Turing Machines is
defined with respect to the input size, which is the number of cells occupied
by the input.

Remark 14.19
The following examples show that some modifications of the BSS model can
increase significantly the power of an algebraic Turing Machine.

• If we allow the branch states to check if a > 0, for real a then, the
model becomes unrealistic because it can decide problems that are un-
decidable on the normal Turing machine. In particular, such a machine
can compute P/poly in polynomial time. (Recall that we showed that
P/poly contains undecidable languages.) If a language is in P/poly we
can represent its circuit family by a single real number hardwired into
the Turing machine (specifically, as the coefficient of of some polyno-
mial p(x) belonging to a state). The individual bits of this coefficient
can be accessed by dividing by 2, so the machine can extract the poly-
nomial length encoding of each circuit. Without this ability we can
prove that the individual bits cannot be accessed.

• If we allow rounding (computation of bxc) then it is possible to factor
in polynomial time, a result due to Shamir.

Even without these modifications, the BSS model is in some sense more
powerful than real-world computers: Consider the execution of the operation
x ← x2 for n times. Since we allow each cell to store a real number, the
Turing machine can compute and store in one cell (without overflow) the
number x2n in n steps.
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14.3.1 Complexity Classes over the Complex Numbers

Now we define the corresponding to P and NP complexity classes over C:
Definition 14.20 (PC,NPC)
PC is the set of languages that can be decided by a Turing Machine over C
in polynomial time. NPC is the set of languages L for which there exists
a language L0 in PC, such that an input x is in L iff there exists a string
(y1, . . . , ync) in Cnc such that (x, y) is in L0.

The following definition is a restriction on the inputs of a TM over C.
These classes are useful because they help us understand the relation be-
tween algebraic and binary complexity classes.
Definition 14.21 (0-1-NPC)

0-1-NPC = {L ∩ {0, 1}∗ | L ∈ NPC}

Note that the input for an NPC machine is binary but the nondeter-
ministic “guess” may consist of complex numbers. Trivially, 3SAT is in
0-1-NPC : even though the “guess” consists of a string of complex numbers,
the machine first checks if they are all 0 or 1 using equality checks. Having
verified that the guess represents a boolean assignment to the variables, the
machine continues as a normal Turing Machine to verify that the assignment
satisfies the formula.

It is known that 0-1-NPC ⊆ PSPACE. In 1997 Koiran proved that if
one assumes the Riemann hypothesis, then 0-1-NPC ⊆ AM[2]. Recall that
AM[2] is BP ·NP so Koiran’s result suggests that 0-1-NPC may not be
much bigger than NP.

14.3.2 Hilbert’s Nullstellensatz

The language HNC is defined as the decision version of Hilbert’s Nullstel-
lensatz over C. The input consists of m polynomials pi of degree d over
x1, . . . , xn. The output is “yes” iff the polynomials have a common root
a1, . . . , an. Note that this problem is general enough to include SAT. We
illustrate that by the following example:

x ∨ y ∨ z ↔ (1− x)(1− y)(1− z) = 0.

Next we use this fact to prove that the language 0-1-HNC (where the poly-
nomials have 0-1 coefficients) is complete for 0-1-NPC.
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Figure 14.4: Tableau of Turing Machine configurations

Theorem 14.22 (BSS)
0-1-HNC is complete for 0-1-NPC.

Proof: (Sketch) It is straightforward to verify that 0-1-HNC is in 0-1-
NPC. To prove the hardness part we imitate the proof of the Cook-Levin
theorem; we create a computation tableau and show that the verification is
in 0-1-HNC.

To that end, consider the usual computation tableau of a Turing Machine
over C and as in the case of the standard Turing Machines express the fact
that the tableau is valid by verifying all the 2×3 windows, i.e., it is sufficient
to perform local checks (Figure 14.4). Reasoning as in the case of algebraic
computation trees, we can express these local checks with polynomial con-
straints of bounded degree. The computation states c ← q(a, b)/r(a, b)
are easily handled by setting p(c) ≡ q(a, b)− cr(a, b). For the branch states
p(a, b) 6= 0 we can use Rabinovitch’s trick to convert them to equality checks
q(a, b, z) = 0. Thus the degree of our constraints depends upon the de-
gree of the polynomials hardwired into the machine. Also, the polynomial
constraints use real coefficients (involving real numbers hardwired into the
machine). Converting these polynomial constraints to use only 0 and 1 as
coefficients requires work. The idea is to show that the real numbers hard-
wired into the machine have no effect since the input is a binary string. We
omit this mathematical argument here. �

14.3.3 Decidability Questions: Mandelbrot Set

Since the Blum-Shub-Smale model is more powerful than the ordinary Tur-
ing Machine, it makes sense to revisit decidability questions. In this section
we show that some problems do indeed remain undecidable. We study the
decidability of the Mandelbrot set with respect to Turing Machines over C.
Roger Penrose had raised this question in his meditation regarding artificial
intelligence.

Definition 14.23 (Mandelbrot set decision problem)
Let PC(Z) = Z2 + C. Then, the Mandelbrot set is defined as

M = {C | the sequence PC(0), PC(PC(0)), PC(PC(PC(0))) . . . is bounded }.
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Note that the complement of M is recognizable if we allow inequality
constraints. This is because the sequence is unbounded iff some number
P kC(0) has complex magnitude greater than 2 for some k (exercise!) and this
can be detected in finite time. However, detecting that P kC(0) is bounded
for every k seems harder. Indeed, we have:

Theorem 14.24
M is undecidable by a machine over C.

Proof: (Sketch) The proof uses the topology of the Mandelbrot set. LetM
be any TM over the complex numbers that supposedly decides this set. Con-
sider T steps of the computation of this TM. Reasoning as in Theorem 14.22
and in our theorems about algebraic computation trees, we conclude that the
sets of inputs accepted in T steps is a finite union of semialgebraic sets (i.e.,
sets defined using solutions to a system of polynomial equations). Hence the
language accepted by M is a countable union of semi-algebraic sets, which
implies that its Hausdorft dimension is 1. But it is known Mandelbrot set
has Hausdorff dimension 2, hence M cannot decide it. �

Exercises

§1 Show that if field F is finite then arithmetic circuits have exactly the
same power —up to constant factors—as boolean circuits.

Chapter notes and history

needs a lot
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Chapter 15

Average Case Complexity:
Levin’s Theory

1

needs more work

Our study of complexity —- NP-completeness, #P-completeness etc.—
thus far only concerned worst-case complexity. However, algorithms design-
ers have tried to design efficient algorithms for NP-hard problems that work
for “many” or “most” instances. This motivates a study of the difficulty of
the “average” instance. Let us first examine the issues at an intuitive level,
so we may be better prepared for the elements of the theory we will develop.

Many average case algorithms are targeted at graph problems in random
graphs. One can define random graphs in many ways: the simplest one
generates a graph on n vertices randomly by picking each potential edge with
probability 1/2. (This method ends up assigning equal probability to every
n-vertex graph.) On such rand om graphs, many NP-complete problems are
easy. 3-COLOR can be solved in linear time with high probability (exercise).
CLIQUE and INDEPENDENT SET can be solved in n2 logn time (exercise)
which is only a little more than polynomial and much less than 2εn, the
running time of the best algorithms on worst-case instances.

However, other NP-complete problems appear to require exponential
time even on average. One example is SUBSET SUM: we pick n integers
a1, a2, . . . , an randomly from [1, 2n], pick a random subset S of {1, . . . , n},
and produce b =

∑
i∈S ai. We do not know of any efficient average-case al-

gorithm that, given the ai’s and b, finds S. Surprisingly, efficient algorithms
do exist if the ai’s are picked randomly from the slightly larger interval

1This chapter written with Luca Trevisan
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Note 15.1 (Impagliazzo’s Possible Worlds)
At the moment we don’t know if the best algorithm for 3SAT runs in time
O(n) or 2Ω(n) but there are also many other qualitative open questions about
the hardness of problems in NP. Russell Impagliazzo characterized a central
goal of complexity theory as the question of finding out which of the following
possible worlds is the world we live in:

Algorithmica.

Heuristica.

Pessiland.

Minicrypt.

[1, 2n log2 n]. This illustrates an important point, namely, that average-case
complexity is sensitive to the choice of the input distribution.

The above discussion suggests that even though NP-complete problems
are essentially equivalent with respect to worst case complexity, they may
differ vastly in their average case complexity. Can we nevertheless identify
some problems that remain “complete” even for the average case; in other
words, are at least as hard as every other average-case NP problem?

This chapter covers Levin’s theory of average-case complexity. We will
formalize the notion of “distributional problems,” introduce a working def-
inition of “algorithms that are efficient on average,” and define a reduc-
tion that preserves efficient average-case solvability. We will also exhibit
an NP-complete problem that is complete with respect to such reductions.
However, we cannot yet prove the completeness of natural distributional
problems such as SUBSET SUM or one of the number theoretic problems
described in the chapter on cryptography.

15.1 Distributional Problems

In our intuitive discussion of average case problems, we first fixed an input
size n and then considered the average running time of the algorithm when
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inputs of size n are chosen from a distribution. At the back of our mind, we
knew that complexity has to be measured asymptotically as a function of
n. To formalize this intuitive discussion, we will define distributions on all
(infinitely many) inputs.

Definition 15.2 (Distributional Problem)
A distributional problem is a pair 〈L,D〉, where L is a decision problem and
D is a distribution over the set {0, 1}∗ of possible inputs.

Example 15.3
We can define the “uniform distribution” to be one that assigns an input
x ∈ {0, 1}∗ the probability

Pr [x] =
1

|x| (1 + |x|)
2−|x|. (1)

We call this “uniform” because it assigns equal probabilities to all strings
with the same length. It is a valid distribution because the probabilities sum
to 1: Is this correct??∑

x∈{0,1}∗

1
|x| (1 + |x|)

2−|x| =
∑
n≥0

2n
2−n

n(n+ 1)
= 1. (2)

Here is another distribution; the probabilities sum to 1 since
∑

n≥1
1
n2 =

π2/6.

Pr[x] =
6
π2

2−|x|

|x|2
if |x| ≥ 1 (3)

To pick a string from these distributions, we can first an input length
n with the appropriate probability (for the distribution in (2), we pick n
with probability 6/π2n2) and then pick x uniformly from inputs of length n.
This uniform distribution corresponds to the intuitive approach to average
case complexity discussed in the introduction. However, the full general-
ity of Definition 15.2 will be useful later when we study nonuniform input
distributions.
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15.1.1 Formalizations of “real-life distributions.”

Real-life problem instances arise out of the world around us (images that
have to be understood, a building that has to be navigated by a robot, etc.),
and the world does not spend a lot of time tailoring instances to be hard for
our algorithm —arguably, the world is indifferent to our algorithm. One may
formalize this indifference in terms of computational effort, by hypothesizing
that the instances are produced by an efficient algorithm. We can formalize
this in two ways.

Polynomial time computable distributions. Such distributions have an
associated deterministic polynomial time machine that, given input x,
can compute the cumulative probability µD(x), where

µD(x) =
∑
y≤x

Pr
D

[y] (4)

Here PrD[y] denotes the probability assigned to string y and y ≤ x
means y either precedes x in lexicographic order or is equal to x.
Denoting the lexicographic predecessor of x by x− 1, we have

Pr
D

[x] = µD(x)− µD(x− 1), (5)

which shows that if µD is computable in polynomial time, then so is
PrD[x]. The uniform distributions in (1) and (1) are polynomial time
computable, as are many other distributions that are defined using
explicit formulae.

Polynomial time samplable distributions. These distributions have an
associated probabilistic polynomial time machine that can produce
samples from the distribution. In other words, it outputs x with prob-
ability PrD[x]. The expected running time is polynomial in the length
of the output |x|.

Many such samplable distributions are now known, and the sampling
algorithm often uses Monte Carlo Markov Chain (MCMC) techniques.

If a distribution is polynomial time computable then we can efficiently
produce samples from it. (Exercise.) However, if P 6= P#P there are poly-
nomial time samplable distributions (including some very interesting ones)
that are not polynomial time computable. (See exercises.)
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In this lecture, we will restrict attention to distributional problems in-
volving a polynomial time computable distribution. This may appear to a
serious limitation, but with some work the results of this chapter can be
generalized to samplable distributions.

15.2 DistNP and its complete problems

The following complexity class is at the heart of our study of average case
complexity.

dist NP = {〈L,D〉 : L ∈ NP,D polynomial-time computable} . (6)

Since the same NP language may have different complexity behavior with
respect to two different input distributions (SUBSET SUM was cited earlier
as an example), the definition wisely treats the two as distinct computational
problems. Note that every problem mentioned in the introduction to the
chapter is in dist NP.

Now we need to define the average-case analogue of P.

15.2.1 Polynomial-Time on Average

Now we define what it means for a deterministic algorithm A to solve a
distributional problem 〈L,D〉 in polynomial time on average. The definition
should be robust to simple changes in model of computation or representa-
tion. If we migrate the algorithm to a slower machine that has a quadratic
slowdown (so t steps now take t2 time), then polynomial-time algorithms
should not suddenly turn into exponential-time algorithms. (This migration
to a slower machine is not merely hypothetical, but also one way to look at
a reduction.) As we will see, some intuitively appealing definitions do not
have this robustness property.

Denote by t(x) the running time of A on input x. First, note that D is a
distribution on all possible inputs. The most intuitive choice of saying that
A is efficient if

E[t(x)] is small

is problematic because the expectation could be infinite even if A runs in
worst-case polynomial time.
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Next, we could try to define A to be polynomial provided that for some
constant c and for every sufficiently large n,

E[t(x)| |x| = n] ≤ nc

This has two problems. First, it ignores the possibility that there could
be input lengths on which A takes a long time, but that are generated
with very low probability under D. In such cases A may still be regarded
as efficient, but the definition ignores this possibility. Second, and more
seriously, the definition is not robust to changes in computational model.
To give an example, suppose D is the uniform distribution and t(x0) = 2n

for just one input x0 of size n For every other input of size n, t(x) = n. Then
E[t(x) | |x| = n] ≤ n + 1. However, changing to a model with a quadratic
slowdown will square all running times, and E[(t(x))2 | |x| = n] > 2n.

We could try to define A to be polynomial if there is a c > 0 such that

E
[
t(x)
|x|c

]
= O(1),

but this is also not robust. (Verify this!)
We now come to a satisfying definition.

Definition 15.4 (Polynomial on average and dist P)
A problem 〈L,D〉 ∈ dist NP is said to be in dist P if there is an algorithm
A for L that satisfies for some constants c, c1

E[
t(x)1/c

|x|
] = c1, (7)

where t(x) is the running time of A on input x.

Notice that P ⊆ dist P: if a language can be decided deterministically
in time t(x) = O(|x|c), then t(x)1/c = O(|x|) and the expectation in (7)
converges regardless of the distribution. Second, the definition is robust to
changes in computational models: if the running times get squared, we just
multiply c by 2 and the expectation in (7) again converges.

We also point out an additional interesting property of the definition:
there is a high probability that the algorithm runs in polynomial time. For,
if

E[
t (x)1/c

|x|
] = c1, (8)

Web draft 2006-09-28 18:09



DRAFT

15.2. DISTNP AND ITS COMPLETE PROBLEMS 301

then we have

Pr[t(x) ≥ k · |x|c] = Pr[
t(x)1/c

|x|
≥ k1/c] ≤ c1

k1/c
(9)

where the last claim follows by Markov’s inequality. Thus by increasing k
we may reduce this probability as much as required.

15.2.2 Reductions

Now we define reductions. Realize that we think of instances as being gen-
erated according to a distribution. Defining a mapping on strings (e.g., a
reduction) gives rise to a new distribution on strings. The next definition
formalizes this observation.

Definition 15.5
If f is a function mapping strings to strings and D is a distribution then the
distribution f◦D is one that assigns to string y the probability

∑
x:f(x)=y PrD[x]

Definition 15.6 (Reduction)
A distributional problem 〈L1,D1〉 reduces to a distributional problem 〈L2,D2〉
(denoted 〈L1,D1〉 ≤ 〈L2,D2〉) if there is a polynomial-time computable func-
tion f and an ε > 0 such that:

1. x ∈ L1 iff f (x) ∈ L2.

2. For every x, |f(x)| = Ω(|x|ε).

3. There are constants c, c1 such that for every string y,

Pr
f◦D1

(y) ≤ c1 |y|c Pr
D2

(y). (Domination)

The first condition is standard for many-to-one reductions, ensuring that
a decision algorithm for L2 easily converts into a decision algorithm for
L1. The second condition is a technical one, needed later. All interesting
reductions we know of satisfy this condition. Next, we motivate the third
condition, which says that D2 “dominates” (up to a polynomial factor) the
distribution f ◦ D1 obtained by applying f on D1.
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Realize that the goal of the definition is to ensure that “if (L1,D1) is
hard, then so is (L2,D2)” (or equivalently, the contrapositive “if (L2,D2)
is easy, then so is (L1,D1).”) Thus if an algorithm A2 is efficient for prob-
lem (L2,D2), then the following algorithm ought to be efficient for problem
(L1,D1): on input x obtained from distribution D1, compute f(x) and then
run algorithm A2 on f(x). A priori, one cannot rule out the possibility
that that A2 is very slow on some inputs, which are unlikely to be sam-
pled according to distribution D2 but which show up with high probability
when we sample x according to D1 and then consider f(x). The domination
condition helps rule out this possibility.

In fact we have the following result, whose non-trivial proof we omit.Include this proof.

Theorem 15.7
If 〈L1,D1〉 ≤ 〈L2,D2〉 and 〈L2,D2〉 has an algorithm that is polynomial on
average, then 〈L1,D1〉 also has an algorithm that is polynomial on average.

Of course, Theorem 15.7 is useful only if we can find reductions between
interesting problems. Now we show that this is the case: we exhibit a prob-
lem (albeit an artificial one) that is complete for dist NP. Let the inputs
have the form

〈
M,x, 1t, 1l

〉
, where M is an encoding of a Turing machine

and 1t is a sequence of t ones. Then we define the following “universal”
problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y)
accepts in at most t steps.

Since part of the input is in unary, we need to modify our definition of
a “uniform” distribution to the following.

Pr
D

(〈
M,x, 1t, 1l

〉)
=

1
|M | (|M |+ 1) 2|M | ·

1
|x| (|x|+ 1) 2|x|

· 1
(t+ l) (t+ l + 1)

.

(10)
This distribution is polynomial-time computable (exercise).

Theorem 15.8 (Levin)
〈U,D〉 is complete for dist NP, where D is the uniform ditribution.

The proof requires the following lemma, which shows that for polynomial-
time computable distributions, we can apply a simple transformation on the
inputs such that the resulting distribution has no “peaks” (i.e., no input has
too high a probability).
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Lemma 15.9 (Peak Elimination)
Suppose D is a polynomial-time computable distribution over x. Then there
is a polynomial-time computable function g such that

1. g is injective: g (x) = g (z) iff x = z.

2. |g(x)| ≤ |x|+ 1.

3. For every string y, Prg◦D(y) ≤ 2−|y|+1.

Proof: For any string x such that PrD(x) > 2−|x|, define h(x) to be the
largest common prefix of binary representations of µD(x), µD(x−1). Then h
is polynomial-time computatable since µD(x)−µD(x−1) = PrD(x) > 2−|x|,
which implies that µD(x) and µD(x−1) must differ in the somewhere in the
first |x| bits. Thus |h(x)| ≤ log 1/PrD (x) ≤ |x|. Furthermore, h is injective
because only two binary strings s1 and s2 can have the longest common
prefix z; a third string s3 sharing z as a prefix must have a longer prefix
with either s1 or s2.

Now define

g(x) =

{
0x if PrD (x) ≤ 2−|x|

1h(x) otherwise
(11)

Clearly, g is injective and satisfies |g(x)| ≤ |x| + 1. We now show that
g ◦D does not give probability more than 2−|y|+1 to any string y. If y is not
g(x) for any x, this is trivially true since Prg◦D(y) = 0.

If y = 0x, where PrD (x) ≤ 2−|x|, then Prg◦D(y) ≤ 2−|y|+1 and we also
have nothing to prove.

Finally, if y = g(x) = 1h(x) where PrD (x) > 2−|x|, then as already
noted, |h(x)| ≤ log 1/PrD(x) and so Prg◦D(y) = PrD(x) ≤ 2−|y|+1.

Thus the Lemma has been proved. �

Now we are ready to prove Theorem 15.8.

Proof: (Theorem 15.8) At first sight the proof may seem trivial since U
is just the “universal” decision problem for nondeterministic machines, and
every NP language trivially reduces to it. However, we also need to worry
about the input distributions and enforce the domination condition as re-
quired by Definition 15.6.

Let 〈L,D1〉 ∈ dist NP. Let M be a proof-checker for language L that
runs in time nc; in other words, x ∈ L iff there is a witness y of length
|y| = |x|c such that M(x, y) = Accept. (For notational ease we drop the big-
O notation in this proof.) In order to define a reduction from L to U , the first
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idea would be to map input x for L to
〈
M,x, 1|x|

c

, 1|x|
c
〉
. However, this may

violate the domination condition because the uniform distribution assigns a
probability 2−|x|/poly(|x|) to 〈M,x, 1|x|

c

〉 whereas x may have much higher
probability under D1. Clearly, this difficulty arises only if the distribution
D1 has a “peak” at x, so we see an opportunity to use Lemma 15.9, which
gives us an injective mapping g such that g ◦ D1 has no “peaks” and g is
computable say in nd time for some fixed constant d.

The reduction is as follows: map x to 〈M ′, g(x), 1|x|
c+|x|, 1|x|

c+|x|d〉. Here
M ′ is a modification of M that expects as input a string z and a witness
(x, y) of length |x| + |x|c. Given (z, x, y) where y = |x|c, M ′ checks in |x|d
time if g(x) = z. If so, it simulates M on (x, y) and outputs its answer. If
g(x) 6= z then M ′ rejects.

To check the domination condition, note that y = 〈M ′, g(x), 1|x|
c+|x|, 1|x|

c+|x|d〉
has probability

Pr
D

(y) =
2−|M

′|

|M ′| (|M ′|+ 1)
· 2−|g(x)|

|g(x)| (|g(x)|+ 1)
· 1

(|x|+ 2 |x|c + |x|d)(|x|+ 2 |x|c + |x|d + 1)

≤ 2−|M
′|

|M ′| (|M ′|+ 1)
1

|x|2(c+d+1)
· 2−g(x) (12)

under the uniform distribution whereas

Pr
D1

(x) ≤ 2−g(x)+1 ≤ G |x|2(c+d+1) Pr
D

(y) ,

if we allow the constant G to absorb the term 2|M
′| |M ′| (|M ′| + 1). Thus

the domination condition is satisfied.
Notice, we rely crucially on the fact that 2|M

′| |M ′| (|M ′|+1) is a constant
once we fix the language L; of course, this constant will usually be quite large
for typical NP languages, and this would be a consideration in practice. �

15.2.3 Proofs using the simpler definitions

In the setting of one-way functions and in the study of the average-case
complexity of the permanent and of problems in EXP (with applications
to pseudorandomness), we normally interpret “average case hardness” in
the following way: that an algorithm of limited running time will fail to
solve the problem on a noticeable fraction of the input. Conversely, we
would interpret average-case tractability as the existence of an algorithm
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that solves the problem in polynomial time, except on a negligible fraction
of inputs. This leads to the following formal definition.

Definition 15.10 (Heuristic polynomial time)
We say that an algorithm A is a heuristic polynomial time algorithm for a
distributional problem 〈L, µ〉 if A always runs in polynomial time and for
every polynomial p ∑

x:A(x) 6=χL(x)

µ′(x)p(|x|) = O(1)

In other words, a polynomial time algorithm for a distributional problem
is a heuristic if the algorithm fails on a negligible fraction of inputs, that
is, a subset of inputs whose probability mass is bounded even if multiplied
by a polynomial in the input length. It might also make sense to consider
a definition in which A is always correct, although it does not necessarily
work in polynomial time, and that A is heuristic polynomial time if there is
a polynomial q such that for every polynomial p,

∑
x∈Sq µ

′(x)p(|x|) = O(1),
where Sq is the set of inputs x such that A(x) takes more than q(|x|) time.
Our definition is only more general, because from an algorithm A as before
one can obtain an algorithm A satisfying Definition 15.10 by adding a clock
that stops the computation after q(|x|) steps.

The definition of heuristic polynomial time is incomparable with the def-
inition of average polynomial time. For example, an algorithm could take
time 2n on a fraction 1/nlogn of the inputs of length n, and time n2 on the
remaining inputs, and thus be a heuristic polynomial time algorithm with
respect to the uniform distribution, while not beign average polynomial time
with respect to the uniform distribution. On the other hand, consider an
algorithm such that for every input length n, and for 1 ≤ k ≤ 2n/2, there is
a fraction about 1/k2 of the inputs of length n on which the algorithm takes
time Θ(kn). Then this algorithm satisfies the definition of average polyno-
mial time under the uniform distribution, but if we impose a polynomial
clock there will be an inverse polynomial fraction of inputs of each length
on which the algorithm fails, and so the definition of heuristic polynomial
time cannot be met.

It is easy to see that heuristic polynomial time is preserved under reduc-
tions.

Theorem 15.11
If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits a heuristic polynomial time algo-
rithm, then 〈L1, µ1〉 also admits a heuristic polynomial time algorithm.
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Proof: Let A2 be the algorithm for 〈L2, µ2〉, let f be the function realiz-
ing the reduction, and let p be the polynomial witnessing the domination
property of the reduction. Let c and ε be such that for every x we have
|x| ≤ c|f(x)|1/ε.

Then we define the algorithm A1 than on input x outputs A2(f(x)).
Clearly this is a polynomial time algorithm, and whenever A2 is correct on
f(x), then A1 is correct on x. We need to show that for every polynomial q∑

x:A2(f(x)) 6=χL2
(f(x))

µ′1(x)q(|x|) = O(1)

and the left-hand side can be rewritten as∑
y:A2(y) 6=χL2

(y)

∑
x:f(x)=y

µ′1(x)q(|x|)

≤
∑

y:A2(y) 6=χL2
(y)

∑
x:f(x)=y

µ′1(x)q(c · |y|1/ε))

≤
∑

y:A2(y) 6=χL2
(y)

µ′2(y)p(|y|)q′(|y|)

= O(1)

where the last step uses the fact that A2 is a polynomial heuristic for 〈L2, µ2〉
and in the second-to-last step we introduce the polynomial q′(n) defined as
q(c · n1/ε)

�

15.3 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete
for dist NP. Let the inputs have the form

〈
M,x, 1t, 1l

〉
, where M is an

encoding of a Turing machine and 1t is a sequence of t ones. Then we define
the following “universal” problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y)
accepts in at most t steps.

That U is NP-complete follows directly from the definition. Recall the
definition of NP: we say that L ∈ NP if there exists a machine M running
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in t = poly (|x|) steps such that x ∈ L iff there exists a y with y = poly (|x|)
such that M (x, y) accepts. Thus, to reduce L to U we need only map x
onto R (x) =

〈
M,x, 1t, 1l

〉
where t and l are sufficiently large bounds.

15.4 Polynomial-Time Samplability

Definition 15.12 (Samplable distributions)
We say that a distribution µ is polynomial-time samplable if there exists a
probabilistic algorithm A, taking no input, that outputs x with probability
µ′ (x) and runs in poly (|x|) time.

Any polynomial-time computable distribution is also polynomial-time
samplable, provided that for all x,

µ′ (x) ≥ 2− poly(|x|) or µ′ (x) = 0. (13)

For a polynomial-time computable µ satisfying the above property, we can
indeed construct a sampler A that first chooses a real number r uniformly
at random from [0, 1], to poly (|x|) bits of precision, and then uses binary
search to find the first x such that µ (x) ≥ r.

On the other hand, under reasonable assumptions, there are efficiently
samplable distributios µ that are not efficiently computable.

In addition to dist NP, we can look at the class

〈NP,P-samplable〉 = {〈L, µ〉 : L ∈ NP, µ polynomial-time samplable} .
(14)

A result due to Impagliazzo and Levin states that if 〈L, µ〉 is dist NP-
complete, then 〈L, µ〉 is also complete for the class 〈NP,P-samplable〉.

This means that the completeness result established in the previous sec-
tion extends to the class of NP problems with samplable distributions.

Exercises

§1 Describe an algorithm that decides 3-colorability on almost all graphs
in linear expected time.
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Hint:A3-colorablegraphbetternotcontainacompletegraph
on4vertices.

§2 Describe an algorithm that decides CLIQUE on almost all graphs in
n2 logn time.

Hint:Thechancethatarandomgraphhasacliqueofsizemore
thankisatmost(nk)2−k2/2

.

§3 Show that if a distribution is polynomial-time computable, then it is
polynomial-time sampleable.

Hint:Binarysearch.

§4 Show that if P#P 6= P then there is a polynomial time samplable
distribution that is not polynomial time computable.

§5 Show that the function g defined in Lemma 15.9 (Peak Elimination)
is efficiently invertible in the following sense: if y = g(x), then given y
we can reconstruct x in |x|O(1) time.

§6 Show that if one-way functions exist, then dist NP 6⊆ dist P.

Chapter notes and history

Suppose P 6= NP and yet dist NP ⊆ dist P. This would mean that generating hard
instances of NP problems requires superpolynomial computations. Cryptography
is thus impractical. Also, it seems to imply that everyday instances of NP-complete
problems would also be easily solvable. Such instances arise from the world around
us —we want to understand an image, or removing the obstacles in the path of
a robot— and it is hard to imagine how the inanimate world would do the huge
amounts of computation necessary to generate a hard instance.
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Chapter 16

Random and
Pseudo-Random Walks on
Graphs

Random walks on graphs have turned out to be a powerful tool in the de-
sign of algorithms and other applications. In particular, expander graphs,
which are graphs on which random walks have particularly good proper-
ties, are extremely useful in complexity and other areas of computer sci-
ence. In this chapter we study random walks on general regular graphs,
leading to a the randomized logspace algorithm for undirected connectivity
alluded to in Chapter 7. We then show the definition and constructions
of expander graphs, and their application for randomness-efficient error re-
duction of probabilistic algorithms. Finally we use the ideas behind that
construction to show a deterministic logspace algorithm for undirected con-
nectivity.

*
1/31/3

1/3

Figure 16.1: A random walk on a graph can be thought of as placing a token on some
vertex, and at each step move the token to random neighbor of its current location.
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The idea of a random walk is simple (see Figure 16.1): let G be a graph
(in this chapter we restrict ourselves to undirected graphs) and let v be a
vertex in G. A T -step random walk from v in G is the sequence of dependent
random variables X0, . . . , XT defined as follows: X0 = v with probability
one, and for i ∈ [T ], Xi is chosen at random from Γ(Xi−1), where for any
vertex u, Γ(u) denotes the set of neighbors of u in the graph G. That is,
a random walk involves starting at a vertex and then at each step going
to a random neighbor of this vertex. A probabilistic process of this form,
where there is a fixed distribution specifying the dependence of Xi on Xi−1,
is often called a Markov chain.

16.1 Undirected connectivity in randomized logspace

Recall the language PATH of the triplets 〈G, s, t〉 where G is a (directed)
graph and s and t are vertices in G with a path from s to t. In Chapter 3 we
showed that PATH is NL-complete. Consider the problem UPATH where G
is restricted to be undirected (or equivalently, we place the condition that
there is an edge from i to j in G iff there’s an edge from j to i: the adjacency
matrix is symmetric). It turns out that UPATH can be solved by a logspace
probabilistic TM.

Theorem 16.1 ([AKL+79])
UPATH ∈ RL.

Theorem 16.1 is proven by a simple algorithm. Given an input G, s, t to
UPATH, we first use an implicitly logspace computable reduction to trans-
form the graph into a degree 4-regular graph G′ such that s is connected
to t in G′ if and only if they are connected in G (see Claim 16.1.1).1 We
then take a random walk of length T = 100n3 log n from s on the graph G′

(where n is the number of vertices in G′). We accept if at the end of the
walk we reach the vertex t. Otherwise, reject. The algorithm can be im-
plemented in O(log n) space since it only requires space to store the current
and next vertex in the walk, and a counter. Clearly, it never accepts if t
is not connected to s. We show in the next section that if t is connected
to s, then the algorithm accepts with probability 1

Ω(n) , which can be easily
amplified using the standard error reduction techniques (see Section 7.4.1).

1It can be shown, via a slightly different analysis, that the algorithm will work even
without this step, see Exercise 9 of Chapter 9.
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Figure 16.2: To reduce a graph G to a degree 3 regular graph that has the same
connectivity properties, we replace each vertex with a cycle, making every vertex have
degree 2 or 3. We then add self loops on some vertices to make the graph 3 regular. To
ensure every vertex has a self loop, we add such a loop for every vertex, making the graph
4-regular.

Reducing to the regular constant-degree case. As mentioned above,
we start by reducing to the case that every vertex in G has degree 4 (i.e., G is
4-regular) and that every vertex has a self-loop (i.e., an edge to itself). This
claim not strictly necessary for this algorithm but will somewhat simplify the
analysis and be useful for us later on. We note that here and throughout
this chapter all graphs may have parallel edges (i.e., more than one edge
between the same pair of vertices i, j).

Claim 16.1.1
There exists an implicitly logspace computable function f that maps every
triple 〈G, s, t〉 to a triple 〈G′, s′, t′〉 such that:

1. G′ is a 4-regular graph with a self loop at each vertex.

2. s is connected to t in G iff s′ is connected to t′ in G′.

Proof sketch: We sketch the proof, leaving verifying the details as an
exercise. We transform G to G′ as shown in Figure 16.2: for every vertex
i in G, the graph G′ will have n vertices arranged in a cycle. For every
two neighbors i, j in G, we connect in an edge the jth vertex from the cycle
corresponding to i, and the ith vertex from the cycle corresponding to j.
Thus, every vertex in G′ has either degree two (if it’s only connected to its
neighbors on the cycle) or three (if it also has a neighbor in a different cycle).
We add to each vertex either one or two self loops to make the degree four.
It can be easily seen that determining the value of an entry in the adjacency
matrix of G′ can be computed in log space using read-only access to the
adjacency matrix of G. �
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16.2 Random walk on graphs

In this section we study random walks on (undirected regular) graphs. As
a corollary we obtain the proof of correctness for the above algorithm for
UPATH. We will see that we can use elementary linear algebra to relate
parameters of the graph’s adjacency matrix to the behavior of the random
walk on that graph. The following definitions and notations will be widely
used in this and later sections of this chapter:

16.2.1 Distributions as vectors and the parameter λ(G).

Let G be a d-regular n-vertex graph. Let p be some probability distribution
over the vertices of G. We can think of p as a (column) vector in Rn where
pi is the probability that vertex i is obtained by the distribution. Note that
the L1-norm of p (see Note 16.2), defined as |p|1 =

∑n
i=1 |pi|, is equal to 1.

(In this case the absolute value is redundant since pi is always between 0
and 1.)

Now let q represent the distribution of the following random variable:
choose a vertex i in G according to p, then take a random neighbor of i in
G. We can compute q as a function of p: the probability qj that j is chosen
is equal to the sum over all j’s neighbors i of the probability pi that i is
chosen times 1/d (where 1/d is the probability that, conditioned on i being
chosen, the walk moves to q). Thus q = Ap, where A = A(G) which is the
normalized adjacency matrix of G. That is, for every two vertices i, j, Ai,j
is equal to the number of edges between i and j divided by d. Note that A
is a symmetric matrix,2 where each entry is between 0 and 1, and the sum
of entries in each row and column is exactly one (such a matrix is called a
symmetric stochastic matrix).

Let {ei}ni=1 be the standard basis of Rn (i.e. ei has 1 in the ith coordinate
and zero everywhere else). Then, ATes represents the distribution XT of
taking a T -step random walk from the vertex s. This already suggests
that considering the adjacency matrix of a graph G could be very useful in
analyzing random walks on G.

2A matrix A is symmetric if A = A†, where A† denotes the transpose of A. That is,
(A†)i,j = Aj,i for every i, j.
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Note 16.2 (Lp Norms)
A norm is a function mapping a vector v into a real number ‖v‖ satisfying
(1) ‖v‖ ≥ 0 with ‖v‖ = 0 if and only v is the all zero vector, (2) ‖αv‖ =
|α| · ‖v‖ for every α ∈ R, and (3) ‖v + u‖ ≤ ‖v‖+ ‖u‖ for every vector u.
The third inequality implies that for every norm, if we define the distance
between two vectors u,v as ‖u−v‖ then this notion of distance satisfies the
triangle inequality.

For every v ∈ Rn and number p ≥ 1, the Lp norm of v, denoted ‖v‖p , is equal
to (

∑n
i=1 |vi|p)

1/p. One particularly interesting case is p = 2, the so-called

Euclidean norm, in which ‖v‖2 =
√∑n

i=1 v2
i =

√
〈v,v〉. Another interesting

case is p = 1, where we use the single bar notation and denote |v|1 =∑n
i=1 |vi|. Another case is p =∞, where we denote ‖v‖∞ = limp→∞ ‖v‖p =

maxi∈[n] |vi|.

The Hölder inequality says that for every p, q with 1
p + 1

q = 1, ‖u‖p‖v‖q ≥∑n
i=1 |uivi|. To prove it, note that by simple scaling, it suffices to con-

sider norm one vectors, and so it enough to show that if ‖u‖p = ‖v‖q = 1
then

∑n
i=1 |ui||vi| ≤ 1. But

∑n
i=1 |ui||vi| =

∑n
i=1 |ui|p(1/p)|vi|q(1/q) ≤∑n

i=1
1
p |ui|

p + 1
q |vi|

q = 1
p + 1

q = 1, where the last inequality uses the fact
that for every a, b > 0 and α ∈ [0, 1], aαb1−α ≤ αa + (1 − α)b. This fact is
due to the log function being concave— having negative second derivative,
implying that α log a+ (1− α) log b ≤ log(αa+ (1− α)b).
Setting p = 1 and q =∞, the Hölder inequality implies that

‖v‖2 ≤ |v|1‖v‖∞

Setting p = q = 2, the Hölder inequality becomes the Cauchy-
Schwartz Inequality stating that

∑n
i=1 |uivi| ≤ ‖u‖2‖v‖2 . Setting u =

(1/
√
n, 1/

√
n, . . . , 1/

√
n), we get that

|v|1/
√
n =

n∑
i=1

1√
n
|vi| ≤ ‖v‖2
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Definition 16.3 (The parameter λ(G).)
Denote by 1 the vector (1/n, 1/n, . . . , 1/n) corresponding to the uniform distri-
bution. Denote by 1⊥ the set of vectors perpendicular to 1 (i.e., v ∈ 1⊥ if
〈v,1〉 = (1/n)

∑
i vi = 0).

The parameter λ(A), denoted also as λ(G), is the maximum value of ‖Av‖2 over all
vectors v ∈ 1⊥ with ‖v‖2 = 1.

Remark 16.4
The value λ(G) is often called the second largest eigenvalue of G. The reason
is that since A is a symmetric matrix, we can find an orthogonal basis of
eigenvectors v1, . . . ,vn with corresponding eigenvalues λ1, . . . , λn which we
can sort to ensure |λ1| ≥ |λ2| . . . ≥ |λn|. Note that A1 = 1. Indeed, for
every i, (A1)i is equal to the inner product of the ith row of A and the
vector 1 which (since the sum of entries in the row is one) is equal to 1/n.
Thus, 1 is an eigenvector of A with the corresponding eigenvalue equal to 1.
One can show that a symmetric stochastic matrix has all eigenvalues with
absolute value at most 1 (see Exercise 1) and hence we can assume λ1 = 1
and v1 = 1. Also, because 1⊥ = Span{v2, . . . ,vn}, the value λ above will
be maximized by (the normalized version of) v2, and hence λ(G) = |λ2|.
The quantity 1− λ(G) is called the spectral gap of the graph. We note that
some texts use un-normalized adjacency matrices, in which case λ(G) is a
number between 0 and d and the spectral gap is defined to be d− λ(G).

One reason that λ(G) is an important parameter is the following lemma:

Lemma 16.5
For every regular n vertex graph G = (V,E) let p be any probability distri-
bution over V , then

‖ATp− 1‖2 ≤ λT

Proof: By the definition of λ(G), ‖Av‖2 ≤ λ‖v‖2 for every v ⊥ 1. Note
that if v ⊥ 1 then Av ⊥ 1 since 〈1, Av〉 = 〈A†1,v〉 = 〈1,v〉 = 0 (as A = A†

and A1 = 1). Thus A maps the space 1⊥ to itself and since it shrinks any
member of this space by at least λ, λ(AT ) ≤ λ(A)T . (In fact, using the
eigenvalue definition of λ, it can be shown that λ(AT ) = λ(A).)

Let p be some vector. We can break p into its components in the spaces
parallel and orthogonal to 1 and express it as p = α1 + p′ where p′ ⊥ 1
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and α is some number. If p is a probability distribution then α = 1 since
the sum of coordinates in p′ is zero. Therefore,

ATp = AT (1 + p′) = 1 +ATp′

Since 1 and p′ are orthogonal, ‖p‖2
2

= ‖1‖2
2

+ ‖p′‖2
2

and in particular
‖p′‖2 ≤ ‖p‖2 . Since p is a probability vector, ‖p‖2 ≤ |p|1 · 1 ≤ 1 (see
Note 16.2). Hence ‖p′‖2 ≤ 1 and

‖ATp− 1‖2 = ‖ATp′‖2 ≤ λT

�

It turns out that every connected graph has a noticeable spectral gap:
Lemma 16.6
For every d-regular connected G with self-loops at each vertex, λ(G) ≤
1− 1

8dn3 .

Proof: Let u ⊥ 1 be a unit vector and let v = Au. We’ll show that
1− ‖v‖2

2
≥ 1

d4n3 which implies ‖v‖2
2
≤ 1− 1

d4n3 and hence ‖v‖2 ≤ 1− 1
d8n3 .

Since ‖u‖2 = 1, 1− ‖v‖2
2

= ‖u‖2
2
− ‖v‖2

2
. We claim that this is equal to∑

i,j Ai,j(ui − vj)2 where i, j range from 1 to n. Indeed,∑
i,j

Ai,j(ui − vj)2 =
∑
i,j

Ai,ju2
i − 2

∑
i,j

Ai,juivj +
∑
i,j

Ai,jv2
j =

‖u‖2
2
− 2〈Au,v〉+ ‖v‖2

2
= ‖u‖2

2
− 2‖v‖2

2
+ ‖v‖2

2
,

where these equalities are due to the sum of each row and column in A
equalling one, and because ‖v‖2

2
= 〈v,v〉 = 〈Au,v〉 =

∑
i,j Ai,juivj .

Thus it suffices to show
∑

i,j Ai,j(ui−vj)2 ≥ 1
d4n3 . This is a sum of non-

negative terms so it suffices to show that for some i, j, Ai,j(ui−vj)2 ≥ 1
d4n3 .

First, because we have all the self-loops, Ai,i ≥ 1/d for all i, and so we can
assume |ui − vi| < 1

2n1.5 for every i ∈ [n], as otherwise we’d be done.
Now sort the coordinates of u from the largest to the smallest, ensuring

that u1 ≥ u2 ≥ · · ·un. Since
∑

i ui = 0 it must hold that u1 ≥ 0 ≥ un.
In fact, since u is a unit vector, either u1 ≥ 1/

√
n or un ≤ 1/

√
n and

so u1 − un ≥ 1/
√
n. One of the n − 1 differences between consecutive

coordinates ui − ui+1 must be at least 1/n1.5 and so there must be an i0
such that if we let S = {1, . . . , i0} and S = [n] \ Si, then for every i ∈ S
and j ∈ S, ui − uj ≥ 1/n1.5. Since G is connected there exists an edge
(i, j) between S and S. Since |vj − uj | ≤ 1

2n1.5 , for this choice of i, j,
|ui − vj | ≥ |ui − uj | − 1

2n1.5 ≥ 1
2n1.5 . Thus Ai,j(ui − vj)2 ≥ 1

d
1

4n3 . �
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Remark 16.7
The proof can be strengthened to show a similar result for every connected
non-bipartite graph (not just those with self-loops at every vertex). Note
that this condition is essential: if A is the adjacency matrix of a bipartite
graph then one can find a vector v such that Av = −v.

16.2.2 Analysis of the randomized algorithm for undirected
connectivity.

Together, Lemmas 16.5 and 16.6 imply that our algorithm for UPATH out-
puts “accept” with probability 1/Ω(n) if s is connected to t in the graph:

Corollary 16.8
Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let
s be a vertex in G. Let T > 10dn3 log n and let XT denote the distribution
of the vertex of the T th step in a random walk from s. Then, for every j
connected to s, Pr[XT = j] > 1

2n .

Proof: By these Lemmas, if we consider the restriction of an n-vertex
graph G to the connected component of s, then for every probability vector
p over this component and T ≥ 10dn3 log n, ‖ATp − 1‖2 < 1

2n1.5 (where 1
here is the uniform distribution over this component). Using the relations
between the L1 and L2 norms (see Note 16.2), |ATp − 1|1 < 1

2n and hence
every element in the connected component appears in ATp with at least
1/n− 1/(2n) ≥ 1/(2n) probability. �

16.3 Expander graphs and some applications.

Expander graphs have played a crucial role in numerous computer science
applications, including routing networks, error correcting codes, hardness
of approximation and the PCP theorem, derandomization, and more. In
this chapter we will see their definition, constructions, and two applica-
tions, including a deterministic logspace algorithm for the problem UPATH
of undirected connectivity.

Expanders can be defined in several roughly equivalent ways. One is
that these are graphs where every set of vertices has a very large boundary.
That is, for every subset S of vertices, the number of S’s neighbors outside
S is (up to a constant factor) roughly equal to the number of vertices inside
S. (Of course this condition cannot hold if S is too big and already contains
most of the vertices in the graph.) For example, the n by n grid (where a
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vertex is a pair (i, j) and is connected to the four neighbors (i ± 1, j ± 1))
is not an expander, as any k by k square (which is a set of size k2) in this
graph only has a boundary of size O(k) (see Figure 16.3). Another way to
define expanders is as graphs where the random walks rapidly converges to
the uniform distribution. That is, unlike in the general case that (in regular
graphs) the random walk may take a polynomial number of steps to converge
to the uniform distribution, in an n-vertex regular expander this will only
take O(log n) steps.

Expander: no. of S’s neighbors = Omega(|S|) Grid is not an expander:
no. of S’s neighbors = O(|S|1/2)

Figure 16.3: In a combinatorial expander, every subset S of the vertices that is not too
big has at least Ω(|S|) neighbors outside the set. The grid (and every other planar graph)
is not a combinatorial expander as a k × k square in the grid has only O(k) neighbors
outside it.

Given the previous section, it is not surprising that we can define ex-
panders also in an algebraic way, based on the parameter λ(G) of Defini-
tion 16.9. That is, we will say that G is an expander if λ(G) is bounded away
from 1. By Lemma 16.5, this does indeed imply that the random walk on
G converges to the uniform distribution (in the sense that regardless of the
starting distribution, every vertex will be obtained with probability between
1
2n and 3

2n) within O(log n) steps. We will also see later (Theorem 16.18)
the relation between the parameter λ(G) and the combinatorial definition
of set expansion mentioned above.

Definition 16.9 ((n, d, λ)-graphs.)
If G is an n-vertex d-regular G with λ(G) ≤ λ for some number λ < 1 then we say
that G is an (n, d, λ)-graph.
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Expander families. For every d and λ < 1 a (d, λ)-expander graph family
is a sequence {Gn}n∈I of graphs such that Gn is an (n, d, λ)-graph and I is
an infinite set. We sometimes drop the qualifiers d, λ and simply call such
a family an expander graph family, referring to a particular graph in the
sequence as an expander graph.

Explicit constructions. We say that an expander family {Gn}n∈I is ex-
plicit if (1) the set I is polynomially dense in the sense that there exists a
polynomial time algorithm A and a polynomial p such that for every m ∈ N,
A(m) outputs a number n ∈ I such that m ≤ n ≤ p(m) and (2) there is a
polynomial-time algorithm that on input 1n with n ∈ I outputs the adja-
cency matrix of Gn. We say that the family is strongly explicit if (1) I is
polynomially dense and (2) there is a polynomial-time algorithm that for
every n ∈ I on inputs 〈n, v, i〉 where 1 ≤ v ≤ n′ and 1 ≤ i ≤ d outputs the
ith neighbor of v. (Note that the algorithm runs in time polynomial in the
its input length which is polylogarithmic in n.)

As we will see below it is not hard to show that expander families exist
using the probabilistic method. But this does not yield explicit (or very
explicit) constructions of such graphs. In fact, there are also several explicit
and strongly explicit constructions of expander graphs known. The smallest
λ can be for a d-regular n-vertex graph is Ω( 1√

d)
and there are constructions

meeting this bound (specifically the bound is (1 − o(1))2
√
d−1
d where by

o(1) we mean a function that tends to 0 as the number of vertices grows;
graphs meeting this bound are called Ramanujan graphs). However, for most
applications in Computer Science, any family with constant d and λ < 1
will suffice (see also Remark 16.10 below). Some of these constructions are
very simple and efficient, but their analysis is highly non-trivial and uses
relatively deep mathematics.3 We show in Section 16.5 a strongly explicit
construction of expanders with elementary analysis. This construction also
introduces a tool that is useful to derandomize the algorithm for UPATH.

Remark 16.10
One reason that the particular constants of an expander family are not
extremely crucial is that we can improve the constant λ (make it arbitrarily
smaller) at the expense of increasing the degree: this follows from the fact,
observed above in the proof of Lemma 16.5, that λ(GT ) = λ(G)T , where
GT denotes the graph obtained by taking the adjacency matrix to the T th

3An example for such an expander is the following 3-regular graph: the vertices are
the numbers 1 to p− 1 for some prime p, and each number x is connected to x+ 1,x− 1
and x−1 (mod p).
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Note 16.11 (Explicit construction of pseudorandom objects)
Expanders are one instance of a recurring theme in complexity theory (and
other areas of math and computer science): it is often the case that a ran-
dom object can be easily proven to satisfy some nice property, but the ap-
plications require an explicit object satisfying this property. In our case,
a random d-regular graph is an expander, but to use it for, say, reducing
the error of probabilistic algorithms, we need an explicit construction of an
expander family, with an efficient deterministic algorithm to compute the
neighborhood relations. Such explicit constructions can be sometimes hard
to come by, but are often surprisingly useful. For example, in our case the
explicit construction of expander graphs turns out to yield a deterministic
logspace algorithm for undirected connectivity.
We will see another instance of this theme in Chapter 18, which discusses
error correcting codes.

power, or equivalently, having an edge for every length-T path in G. Thus,
we can transform an (n, d, λ) graph into an (n, dT , λT )-graph for every T ≥ 1.
Later we will see a different transformation called the replacement product
to decrease the degree at the expense of increasing λ somewhat (and also
increasing the number of vertices).

16.3.1 Using expanders to reduce error in probabilistic algo-
rithms

Before constructing expanders, let us see one application for them in the
area of probabilistic algorithms. Recall that in Section 7.4.1 we saw that
we can reduce the error of a probabilistic algorithm from, say, 1/3 to 2−Ω(k)

by executing it k times independently and taking the majority value. If
the algorithm utilized m random coins, this procedure will use m ·k random
coins, and intuitively it seems hard to think of a way to save on randomness.
Nonetheless, we will show that using expanders we can obtain such error
reduction using only m + O(k) random coins. The idea is simple: take an
expander graph G from a very explicit family that is an (N = 2m, d, 1/10)-
graph for some constant d.4 Choose a vertex v1 at random, and take a

4In our definition of an expander family, we did not require that there is an N -vertex
graph in the family for every N , however typical constructions can be tweaked to ensure
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length k− 1 long random walk on G to obtain vertices v2, . . . , vk (note that
choosing a random neighbor of a vertex requires O(log d) = O(1) random
bits). Invoke the algorithm k times using v1, . . . , vk as random coins (we
identify the set [N ] of vertices with the set {0, 1}m of possible random coins
for the algorithm) and output the majority answer.

The analysis is also not too difficult, but to make it even simpler, we
analyze here only the case of algorithms with one-sided error. For example,
consider an RP algorithm that will never output “accept” if the input is not
in the language, and for inputs in the language will output “accept” with
probability 2/3 (the case of a coRP algorithm is analogous). For such an
algorithm the procedure will output “accept” if the algorithm accepts even
on a single set of coins vi. If the input is not in the language, the procedure
will never accept. If the input is in the language, then let B ⊆ [N ] denote the
“bad” set of coins on which the algorithms rejects. We know that |B| ≤ N

3 .
To show the procedure outputs “reject” with at most 2−Ω(k) probability, we
prove the following theorem:

Theorem 16.12 (Expander walks)
Let G be an (N, d, λ) graph, and let B ⊆ [N ] be a set with |B| ≤ βN . Let X1, . . . , Xk

be random variables denoting a k−1-step random walk from X1, where X1 is chosen
uniformly in [N ]. Then,

Pr[∀1≤i≤kXi ∈ B]
(∗)

≤ ((1− λ)
√
β + λ)k−1

Note that if λ and β are both constants smaller than 1 then so is the
expression (1− λ)

√
β + λ.

Proof: For 1 ≤ i ≤ k, let Bi be the event that Xi ∈ B. Note that the prob-
ability (∗) we’re trying to bound is Pr[B1] Pr[B2|B1] · · ·Pr[Bk|B1, . . . , Bk−1].
Let pi ∈ RN be the vector representing the distribution of Xi, conditioned
on the events B1, . . . , Bi. Denote by B̂ the following linear transformation
from Rn to Rn: for every u ∈ RN , and j ∈ [N ], (B̂u)j = uj if j ∈ B and
(B̂u)j = 0 otherwise. It’s not hard to verify that p1 = 1

Pr[B1]B̂1 (recall that
1 = (1/N, . . . , 1/N) is the vector representing the uniform distribution over
[N ]). Similarly, p2 = 1

Pr[B2|B1]
1

Pr[B1]B̂AB̂1 where A = A(G) is the adjacency

this (see Theorem 16.24 below) and so we ignore this issue and assume we have such a
2m-vertex graph in the family. Note that we can use powering improve the parameter λ
of the family to be smaller than 1/10 (see Remark 16.10).
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matrix of G. Since every probability vector p satisfies |p|1 = 1,

(∗) = |(B̂A)k−1B̂1|1

We bound this norm by showing that

‖(B̂A)k−1B̂1‖2 ≤
((1−λ)

√
β+λ)k−1

√
N

(1)

which suffices since for every v ∈ RN , |v|1 ≤
√
N‖v‖2 (see Note 16.2).

To prove (1), we use the following definition and lemma:

Definition 16.13 (Matrix Norm)
If A is an m by n matrix, then ‖A‖ is the maximum number α such that
‖Av‖2 ≤ α‖v‖2 for every v ∈ Rn.

Note that if A is a normalized adjacency matrix then ‖A‖ = 1 (as A1 = 1
and ‖Av‖2 ≤ ‖v‖2 for every v). Also note that the matrix norm satisfies
that for every two n by n matrices A,B, ‖A+B‖ ≤ ‖A‖+‖B‖ and ‖AB‖ ≤
‖A‖‖B‖.

Lemma 16.14
Let A be a normalized adjacency matrix of an (n, d, λ)-graph G. Let J be
the adjacency matrix of the n-clique with self loops (i.e., Ji,j = 1/n for every
i, j). Then

A = (1− λ)J + λC (2)

where ‖C‖ ≤ 1.

Note that for every probability vector p, Jp is the uniform distribution,
and so this lemma tells us that in some sense, we can think of a step on a
(n, d, λ)-graph as going to the uniform distribution with probability 1 − λ,
and to a different distribution with probability λ. This is of course not
completely accurate, as a step on a d-regular graph will only go the one of
the d neighbors of the current vertex, but we’ll see that for the purposes of
our analysis, the condition (2) will be just as good.5

Proof of Lemma 16.14: Indeed, simply define C = 1
λ(A− (1−λ)J). We

need to prove ‖Cv‖2 ≤ ‖v‖2 for very v. Decompose v as v = u + w where
u is α1 for some α and w ⊥ 1, and ‖v‖2

2
= ‖u‖2

2
+ ‖w‖2

2
. Since A1 = 1

and J1 = 1 we get that Cu = 1
λ(u − (1 − λ)u) = u. Now, let w′ = Aw.

5Algebraically, the reason (2) is not equivalent to going to the uniform distribution in
each step with probability 1− λ is that C is not necessarily a stochastic matrix, and may
have negative entries.
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Then ‖w′‖2 ≤ λ‖w‖2 and, as we saw in the proof of Lemma 16.5, w′ ⊥ 1.
Furthermore, since the sum of the coordinates of w is zero, Jw = 0. We get
that Cw = 1

λw
′. Since w′ ⊥ u, ‖Cw‖2

2
= ‖u + 1

λw
′‖2

2
= ‖u‖2

2
+ ‖ 1

λw
′‖2

2
≤

‖u‖2
2
+ ‖w‖2

2
= ‖w‖2

2
. �

Returning to the proof of Theorem 16.12, we can write B̂A = B̂
(
(1 −

λ)J + λC
)
, and hence ‖B̂A‖ ≤ (1 − λ)‖B̂J‖ + λ‖B̂C‖. Since J ’s output

is always a vector of the form α1, ‖B̂J‖ ≤
√
β. Also, because B̂ is an

operation that merely zeros out some parts of its input, ‖B̂‖ ≤ 1 implying
‖B̂C‖ ≤ 1. Thus, ‖B̂A‖ ≤ (1−λ)

√
β+λ. Since B1 has the value 1/N in |B|

places, ‖B1‖2 =
√
β√
N

, and hence ‖(B̂A)k−1B̂1‖2 ≤ ((1 − λ)
√
β + λ)k−1

√
β√
N

,
establishing (1). �

The analysis of the error reduction procedure for algorithms with two-
sided errors uses the following theorem, whose proof we omit:

Theorem 16.15 (Expander Chernoff Bound [?])
Let G be an (N, d, λ)-graph and B ⊆ [N ] with |B| = βN . Let X1, . . . , Xk be random
variables denoting a k − 1-step random walk in G (where X1 is chosen uniformly).
For every i ∈ [k], define Bi to be 1 if Xi ∈ B and 0 otherwise. Then, for every δ > 0,

Pr
[
|
∑k
i=1Bi
k − β| > δ

]
< 2e(1−λ)δ2k/60

16.3.2 Combinatorial expansion and existence of expanders.

We describe now a combinatorial criteria that is roughly equivalent to Def-
inition 16.9. One advantage of this criteria is that it makes it easy to prove
that a non-explicit expander family exists using the probabilistic method.
It is also quite useful in several applications.6

Definition 16.16 (Combinatorial (edge) expansion)
An n-vertex d-regular graph G = (V,E) is called an (n, d, ρ)-combinatorial
expander if for every subset S ⊆ V with |S| ≤ n/2, |E(S, S)| ≥ ρd|S|, where

6In our informal discussion above we defined combinatorial expansion by counting the
number of neighboring vertices of a set S of vertices that are outside the set (this is known
as vertex expansion). In contrast, Definition 16.16 below counts the number of edges that
lie between S and its complement (this is known as edge expansion). However, these two
numbers are clearly related by a factor of up to the degree d, which is not significant for
our purposes.
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for subsets S, T of V , E(S, T ) denotes the set of edges (s, t) with s ∈ S and
t ∈ T .

Note that in this case the bigger ρ is the better the expander. We’ll
loosely use the term expander for any (n, d, ρ)-combinatorial expander with
c a positive constant. Using the probabilistic method, one can prove the
following theorem: (Exercise 3 asks you to prove a slightly weaker version)

Theorem 16.17 (Existence of expanders)
Let ε > 0 be some constant. Then there exists d = d(ε) and N ∈ N such
that for every n > N there exists an (n, d, 1− ε)-combinatorial expander.

The following theorem related combinatorial expansion with our previous
Definition 16.9

Theorem 16.18 (Combinatorial and algebraic expansion)
1. If G is an (n, d, λ)-graph then it is an (n, d, (1−λ)/2)-combinatorial expander.

2. If G is an (n, d, ρ)-combinatorial expander then it is an (n, d, 1− ρ2

2 )-graph.

The first part of Theorem 16.18 follows by plugging T = S into the
following lemma:

Lemma 16.19 (Expander Mixing Lemma)
Let G = (V,E) be an (n, d, λ)-graph. Let S, T ⊆ V , then∣∣∣∣|E(S, T )| − d

n
|S||T |

∣∣∣∣ ≤ λd√|S||T |
Proof: Let s denote the vector such that si is equal to 1 if i ∈ S and
equal to 0 otherwise, and let t denote the corresponding vector for the set
S. Thinking of s as a row vector and of t as a column vector, the Lemma’s
statement is equivalent to∣∣∣sAt− |S||T |

n

∣∣∣ ≤ λ√|S||T | , (3)

where A is G’s normalized adjacency matrix. Yet by Lemma 16.14, we can
write A as (1 − λ)J + λC, where J is the matrix with all entries equal to
1/n and C has norm at most one. Hence,

sAt = (1− λ)sJt + λsCt ≤ |S||T |
n + λ

√
|S||T | ,
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where the last inequality follows from sJt = |S||T |/n and sCt = 〈s, Ct〉 ≤
‖s‖2‖t‖2 =

√
|S||T |. �

Proof of second part of Theorem 16.18.: We prove a slightly relaxed
version, replacing the constant 2 with 8. Let G = (V,E) be an n-vertex d-
regular graph such that for every subset S ⊆ V with |S| ≤ n/2, there are
ρ|S| edges between S and S = V \S, and let A be G’s normalized adjacency
matrix.

Let λ = λ(G). We need to prove that λ ≤ 1 − ρ2/8. Using the fact
that λ is the second eigenvalue of A, there exists a vector u ⊥ 1 such that
Au = λu. Write u = v + w where v is equal to u on the coordinates on
which u is positive and equal to 0 otherwise, and w is equal to u on the
coordinates on which u is negative, and equal to 0 otherwise. Note that,
since u ⊥ 1, both v and w are nonzero. We can assume that u is nonzero
on at most n/2 of its coordinates (as otherwise we can take −u instead of
u).

Since Au = λu and 〈v,w〉 = 0,

〈Av,v〉+ 〈Aw,v〉 = 〈A(v + w),v〉 = 〈Au,v〉 = 〈λ(v + w),v〉 = λ‖v‖2
2
.

Since 〈Aw,v〉 is negative, we get that 〈Av,v〉/‖v‖2
2
≥ λ or

1− λ ≥ 1− 〈Av,v〉
‖v‖2

2

=
‖v‖2

2
− 〈Av,v〉
‖v‖2

2

=

∑
i,j Ai,j(vi − vj)2

2‖v‖2
2

,

where the last equality is due to
∑

i,j Ai,j(vi−vj)2 =
∑

i,j Ai,jv
2
i−2

∑
i,j Ai,jvivj+∑

i,j Ai,jv
2
j = 2‖v‖2

2
− 2〈Av,v〉. (We use here the fact that each row and

column of A sums to one.) Multiply both numerator and denominator by∑
i,j Ai,j(v

2
i + v2

j ). By the Cauchy-Schwartz inequality,7 we can bound the
new numerator as follows:∑

i,j

Ai,j(vi − vj)2

∑
i,j

Ai,j(vi + vj)2

 ≤
∑

i,j

Ai,j(vi − vj)(vi + vj)

2

.

7The Cauchy-Schwartz inequality is typically stated as saying that for x,y ∈ Rn,∑
i xiyi ≤

√
(
∑
i x

2
i )(
∑
i y

2
i ). However, it is easily generalized to show that for every

non-negative µ1, . . . , µn,
∑
i µixiyi ≤

√
(
∑
i µix

2
i )(
∑
i µiy

2
i ) (this can be proven from the

standard Cauchy-Schwartz by multiplying each coordinate of x and y by
√
µi. It is this

variant that we use here with the Ai,j ’s playing the role of µ1, . . . , µn.
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Hence, using (a− b)(a+ b) = a2 − b2,

1−λ ≥

(∑
i,j Ai,j(v

2
i − v2

j )
)2

2‖v‖2
2

∑
i,j Ai,j(vi + vj)2

=

(∑
i,j Ai,j(v

2
i − v2

j )
)2

2‖v‖2
2

(∑
i,j Ai,jv

2
i + 2

∑
i,j Ai,jvivj +

∑
i,j Ai,jv

2
j

) =

(∑
i,j Ai,j(v

2
i − v2

j )
)2

2‖v‖2
2

(
2‖v‖2

2
+ 2〈Av,v〉

) ≥
(∑

i,j Ai,j(v
2
i − v2

j )
)2

8‖v‖4
2

,

where the last inequality is due to A having matrix norm at most 1, implying
〈Av,v〉 ≤ ‖v‖2

2
. We conclude the proof by showing that∑

i,j

Ai,j(v2
i − v2

j ) ≥ ρ‖v‖22 , (4)

which indeed implies that 1− λ ≥ ρ2‖v‖4
2

8‖v‖4
2

= ρ2

8 .

To prove (4) sort the coordinates of v so that v1 ≥ v2 ≥ · · · ≥ vn (with
vi = 0 for i > n/2). Then

∑
i,j

Ai,j(v2
i − v2

j ) ≥
n/2∑
i=1

n∑
j=i+1

Ai,j(v2
i − v2

i+1) =
n/2∑
i=1

ci(v2
i − v2

i+1) ,

where ci denotes
∑

j>iAi,j . But ci is equal to the number of edges in G from
the set {k : k ≤ i} to its complement, divided by d. Hence, by the expansion
of G, ci ≥ ρi, implying (using the fact that vi = 0 for i ≥ n/2):

∑
i,j

Ai,j(v2
i − v2

j ) ≥
n/2∑
i=1

ρi(v2
i − v2

i+1) =
n/2∑
i=1

(ρiv2
i − ρ · (i− 1)v2

i ) = ρ‖v‖2
2
,

establishing (4). �

16.4 Graph products and expansion

A graph product is an operation that takes two graphs G,G′ and outputs a
graph H. Typically we’re interested in the relation between properties of
the graphs G,G′ to the properties of the resulting graph H. In this section
we will mainly be interested in three parameters: the number of vertices
(denoted n), the degree (denoted d), and the 2nd largest eigenvalue of the
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normalized adjacency matrix (denoted λ), and study how different products
affect these parameters. In the next sections we will use these products
for two applications: (1) A construction of a strongly explicit expander
graph family and (2) A deterministic logspace algorithm for undirected
connectivity.

16.4.1 Rotation maps.

In addition to the adjacency matrix representation, we can also represent
an n-vertex degree-d graph G as a function Ĝ from [n]× [d] to [n] that given
a pair 〈v, i〉 outputs u where the ith neighbor of v in G. In fact, it will be
convenient for us to have Ĝ output an additional value j ∈ [d] where j is
the index of v as a neighbor of u. Given this definition of Ĝ it is clear that
we can invert it by applying it again, and so it is a permutation on [n]× [d].
We call Ĝ the rotation map of G. For starters, one may think of the case
that Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is the ith neighbor of
v). In this case we can think of Ĝ as operating only on the vertex. However,
we will need the more general notion of a rotation map later on.

We can describe a graph product in the language of graphs, adjacency
matrices, or rotation maps. Whenever you see the description of a product
in one of this forms (e.g., as a way to map two graphs into one), it is a useful
exercise to work out the equivalent descriptions in the other forms (e.g., in
terms of adjacency matrices and rotation maps).

16.4.2 The matrix/path product

G: (n,d,λ)-graph G’: (n,d’,λ’)-graph G’G: (n,dd’,λλ’)-graph

For every two n vertex graphs G,G′ with degrees d, d′ and adjacency
matricesA,A′, the graphG′G is the graph described by the adjacency matrix
A′A. That is, G′G has an edge (u, v) for every length 2-path from u to v
where the first step in the path is taken on en edge of G and the second is
on an edge of G′. Note that G has n vertices and degree dd′. Typically, we
are interested in the case G = G′, where it is called graph squaring. More
generally, we denote by Gk the graph G · G · · ·G (k times). We already
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encountered this case before in Lemma 16.5, and similar analysis yields the
following lemma (whose proof we leave as exercise):

Lemma 16.20 (Matrix product improves expansion)
λ(G′G) ≤ λ(G′)λ(G′)

It is also not hard to compute the rotation map of G′G from the rotation
maps of G and G′. Again, we leave verifying this to the reader.

16.4.3 The tensor product

G: (n,d,λ)-graph G’: (n’,d’,λ’)-graph GOG’: (nn’,dd’,max{λ,λ’})-graphx

Let G and G′ be two graphs with n (resp n′) vertices and d (resp. d′)
degree, and let Ĝ : [n]× [d]→ [n]× [d] and Ĝ′ : [n′]× [d′]→ [n′]× [d′] denote
their respective rotation maps. The tensor product of G and G′, denoted
G ⊗ G′, is the graph over nn′ vertices and degree dd′ whose rotation map

ˆG⊗G′ is the permutation over ([n]× [n′])× ([d]× [d′]) defined as follows

ˆG⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 ,

where (u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of
G ⊗ G′ is pairs of vertices, one from G and the other from G′, and taking
a the step 〈i, j〉 on G ⊗ G′ from the vertex 〈u, v〉 is akin to taking two
independent steps: move to the pair 〈u′, v′〉 where u′ is the ith neighbor of
u in G and v′ is the ith neighbor of v in G′.

In terms of adjacency matrices, the tensor product is also quite easy to
describe. If A = (ai,j) is the n × n adjacency matrix of G and A′ = (a′i′,j′)
is the n′ × n′ adjacency matrix of G′, then the adjacency matrix of G⊗G′,
denoted as A⊗A′, will be an nn′ × nn′ matrix that in the 〈i, i′〉th row and
the 〈j, j′〉 column has the value ai,j · a′i′,j′ . That is, A ⊗ A′ consists of n2
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copies of A′, with the (i, j)th copy scaled by ai,j :

A⊗A′ =


a1,1A

′ a1,2A
′ . . . a1,nA

′

a2,1A
′ a2,2A

′ . . . a2,nA
′

...
...

an,1A
′ an,2A

′ . . . an,nA
′


The tensor product can also be described in the language of graphs as

having a cluster of n′ vertices in G ⊗ G′ for every vertex of G. Now if, u
and v are two neighboring vertices in G, we will put a bipartite version of
G′ between the cluster corresponding to u and the cluster corresponding to
v in G. That is, if (i, j) is an edge in G′ then there is an edge between the
ith vertex in the cluster corresponding to u and the jth vertex in the cluster
corresponding to v.
Lemma 16.21 (Tensor product preserves expansion)
Let λ = λ(G) and λ′ = λ(G′) then λ(G⊗G′) ≤ max{λ, λ′}.

One intuition for this bound is the following: taking a T step random
walk on the graph G⊗G′ is akin to taking two independent random walks
on the graphs G and G′. Hence, if both walks converge to the uniform
distribution within T steps, then so will the walk on G⊗G′.
Proof: Given some basic facts about tensor products and eigenvalues this
is immediate since if λ1, . . . , λn are the eigenvalues of A (where A is the
adjacency matrix of G) and λ′1, . . . , λ

′
n′ are the eigenvalues of A (where A′ is

the adjacency matrix of G′), then the eigenvalues of A⊗A′ are all numbers
of the form λi · λ′j , and hence the largest ones apart from 1 are of the form
1 · λ(G′) or λ(G) · 1 (see also Exercise 4). �

We note that one can show that λ(G⊗G′) ≤ λ(G)+λ(G′) without relying
on any knowledge of eigenvalues (see Exercise 5). This weaker bound suffices
for our applications.

16.4.4 The replacement product

G: (n,D,1-ε)-graph G’: (D,d,1-ε’)-graph GOG’: (nD,2d,1-εε’/4)-graphR
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In both the matric and tensor products, the degree of the resulting graph
is larger than the degree of the input graphs. The following product will
enable us to reduce the degree of one of the graphs. Let G,G′ be two graphs
such that G has n vertices and degree D, and G′ has D vertices and degree d.
The balanced replacement product (below we use simply replacement product
for short) of G and G′ is denoted by G©R G′ is the nn′-vertex 2d-degree graph
obtained as follows:

1. For every vertex u of G, the graph G©R G′ has a copy of G′ (including
both edges and vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges
between the ith vertex in the copy of G′ corresponding to u and the
jth vertex in the copy of G′ corresponding to v, where i is the index
of v as a neighbor of u and j is the index of u as a neighbor of v in
G. (That is, taking the ith edge out of u leads to v and taking the jth

edge out of v leads to u.)

Note that we essentially already encountered this product in the proof
of Claim 16.1.1 (see also Figure 16.2), where we reduced the degree of an
arbitrary graph by taking its replacement product with a cycle (although
there we did not use parallel edges).8 The replacement product also has a
simple description in terms of rotation maps: since G©R G′ has nD vertices
and 2d degree, its rotation map ˆG©R G′ is a permutation over ([n]× [D])×
([d]× {0, 1}) and so can be thought of as taking four inputs u, v, i, b where
u ∈ [n], v ∈ [D], i ∈ [d] and b ∈ {0, 1}. If b = 0 then it outputs u, Ĝ′(v, i), b
and if b = 1 then it outputs Ĝ(u, v), i, b. That is, depending on whether b is
equal to 0 or 1, the rotation map either treats v as a vertex of G′ or as an
edge label of G.

In the language of adjacency matrices the replacement product can be
easily seen to be described as follows: A©R A′ = 1/2(A⊗ ID) + 1/2(In ⊗ A′),
where A,A′ are the adjacency matrices of the graphs G and G′ respectively,
and Ik is the k × k identity matrix.

If D � d then the replacement product’s degree will be significantly
smaller than G’s degree. The following Lemma shows that this dramatic
degree reduction does not cause too much of a deterioration in the graph’s
expansion:

8The addition of parallel edges ensures that a random step from a vertex v in G©R G′

will move to a neighbor within the same cluster and a neighbor outside the cluster with the
same probability. For this reason, we call this product the balanced replacement product.
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Lemma 16.22 (Expansion of replacement product)
If λ(G) ≤ 1− ε and λ(G′) ≤ 1− ε′ then λ(G©R G′) ≤ 1− εε′/4.

The intuition behind Lemma 16.22 is the following: Think of the input
graph G as a good expander whose only drawback is that it has a too high
degree D. This means that a k step random walk on G′ requires O(k logD)
random bits. However, as we saw in Section 16.3.1, sometimes we can use
fewer random bits if we use an expander. So a natural idea is to generate the
edge labels for the walk by taking a walk using a smaller expander G′ that
has D vertices and degree d� D. The definition of G©R G′ is motivated by
this intuition: a random walk on G©R G′ is roughly equivalent to using an
expander walk on G′ to generate labels for a walk on G. In particular, each
step a walk over G©R G′ can be thought of as tossing a coin and then, based
on its outcome, either taking a a random step on G′, or using the current
vertex of G′ as an edge label to take a step on G. Another way to gain
intuition on the replacement product is to solve Exercise 6, that analyzes
the combinatorial (edge) expansion of the resulting graph as a function of
the edge expansion of the input graphs.

Proof of Lemma 16.22: Let A (resp. A′) denote the n×n (resp. D×D)
adjacency matrix of G (resp. G′) and let λ(A) = 1 − ε and λ(A′) = 1 − ε′.
Then by Lemma 16.14, A = (1− ε)C + Jn and A′ = (1− ε′)C ′ + JD, where
Jk is the k × k matrix with all entries equal to 1/k.

The adjacency matrix of G©R G′ is equal to

1
2(A⊗ ID) + 1

2(In⊗A′) = 1−ε
2 C ⊗ ID + ε

2Jn⊗ ID + 1−ε′
2 In⊗C ′ + ε′

2 In⊗ JD ,

where Ik is the k × k identity matrix.
Thus, the adjacency matrix of (G©R G′)2 is equal to(
1−ε
2 C ⊗ ID + ε

2Jn ⊗ ID + 1−ε′
2 In ⊗ C ′ + ε′

2 In ⊗ JD
)2

=

εε′

4 (Jn ⊗ ID)(In ⊗ JD) + ε′ε
4 (In ⊗ JD)(Jn ⊗ ID) + (1− εε′

2 )F ,

where F is some nD×nD matrix of norm at most 1 (obtained by collecting
together all the other terms in the expression). But

(Jn ⊗ ID)(In ⊗ JD) = (In ⊗ JD)(Jn ⊗ ID) = Jn ⊗ JD = JnD .

(This can be verified by either direct calculation or by going through the
graphical representation or the rotation map representation of the tensor
and matrix products.)
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Since every vector v ∈ RnD that is orthogonal to 1 satisfies JnDv = 0,
we get that(

λ(G©R G′)
)2 = λ

(
(G©R G′)2

)
= λ

(
(1− εε′

2 )F + εε′

2 JnD

)
≤ 1− εε′

2 ,

and hence
λ(G©R G′) ≤ 1− εε′

4 .

�

16.5 Explicit construction of expander graphs.

We now use the three graph products of Section 16.4 to show a strongly
explicit construction of an expander graph family. Recall This is an infinite
family {Gk} of graphs (with efficient way to compute neighbors) that has
a constant degree and an expansion parameter λ. The construction is re-
cursive: we start by a finite size graph G1 (which we can find using brute
force search), and construct the graph Gk from the graph Gk−1. On a high
level the construction is as follows: each of the three product will serve a
different purpose in the construction. The Tensor product allows us to take
Gk−1 and increase its number of vertices, at the expense of increasing the
degree and possibly some deterioration in the expansion. The replacement
product allows us to dramatically reduce the degree at the expense of ad-
ditional deterioration in the expansion. Finally, we use the Matrix/Path
product to regain the loss in the expansion at the expense of a mild increase
in the degree.

Theorem 16.23 (Explicit construction of expanders)
There exists a strongly-explicit λ, d-expander family for some constants d and λ < 1.

Proof: Our expander family will be the following family {Gk}k∈N of graphs:

• Let H be a (D = d40, d, 0.01)-graph, which we can find using brute
force search. (We choose d to be a large enough constant that such a
graph exists)

• Let G1 be a (D, d20, 1/2)-graph, which we can find using brute force
search.
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• For k > 1, let Gk = ((Gk−1 ⊗Gk−1)©z H)20.

The proof follows by noting the following points:

1. For every k, Gk has at least 22k vertices.

Indeed, if nk denotes the number of vertices ofGk, then nk = (nk−1)2D.

If nk−1 ≥ 22k−1
then nk ≥

(
22k−1

)2
= 22k .

2. For every k, the degree of Gk is d20.

Indeed, taking a replacement produce with H reduces the degree to d,
which is then increased to d20 by taking the 20th power of the graph
(using the matrix/path product).

3. There is a 2O(k)-time algorithm that given a label of a vertex u in Gk
and an index i ∈ [d20], outputs the ith neighbor of u in Gk. (Note that
this is polylogarithmic in the number of vertices.)

Indeed, such a recursive algorithm can be directly obtained from the
definition of Gk. To compute Gk’s neighborhood function, the algo-
rithm will make 40 recursive calls to Gk−1’s neighborhood function,
resulting in 2O(k) running time.

4. For every k, λ(Gk) ≤ 1/3.

Indeed, by Lemmas 16.20, 16.21, and 16.22 If λ(Gk−1) ≤ 1/3 then
λ(Gk−1 ⊗Gk−1) ≤ 2/3 and hence λ((Gk−1 ⊗Gk−1)©R H) ≤ 1− 0.99

12 ≤
1− 1/13. Thus, λ(Gk) ≤ (1− 1/13)20 ∼ e−20/13 ≤ 1/3.

�

Using graph powering we can obtain such a construction for every con-
stant λ ∈ (0, 1), at the expense of a larger degree. There is a variant of
the above construction supplying a denser family of graphs that contains
an n-vertex graph for every n that is a power of c, for some constant c.
Since one can transform an (n, d, λ)-graph to an (n′, cd′, λ)-graph for any
n/c ≤ n′ ≤ n by making a single “mega-vertex” out of a set of at most c
vertices, the following theorem is also known:

Theorem 16.24
There exist constants d ∈ N , λ < 1 and a strongly-explicit graph family
{Gn}n∈N such that Gn is an (n, d, λ)-graph for every n ∈ N.
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Remark 16.25
As mentioned above, there are known constructions of expanders (typically
based on number theory) that are more efficient in terms of computation
time and relation between degree and the parameter λ than the product-
based construction above. However, the proofs for these constructions are
more complicated and require deeper mathematical tools. Also, the replace-
ment product (and its close cousin, the zig-zag product) have found applica-
tions beyond the constructions of expander graphs. One such application is
the deterministic logspace algorithm for undirected connectivity described
in the next section. Another application is a construction of combinatorial
expanders with greater expansion that what is implied by the parameter
λ. (Note that even for for the impossible to achieve value of λ = 0, Theo-
rem 16.1.1 implies combinatorial expansion only 1/2 while it can be shown
that a random graph has combinatorial expansion close to 1.)

16.6 Deterministic logspace algorithm for undirected
connectivity.

The replacement product has a surprising consequence: a deterministic al-
gorithm to determine whether two vertices are connected in a graph using
only logarithmic space.

Theorem 16.26 (Reingold’s theorem [?])
UPATH ∈ L.

The underlying intuition behind the logspace algorithm for UPATH is
that checking connectivity in expander graphs is easy. More accurately, if
every connected component in G is an expander, then there is a number
` = O(log n) such that if s and t are connected then they are connected
within a path of length at most `. (Indeed, in this case an `-step random
walk from s will reach t with reasonable probability.) We can enumerate over
all `-step random walks of a d-degree graph in O(d`) space by enumerating
over all sequences of indices i1, . . . , i` ∈ [d]. Thus, in a constant-degree graph
where all connected components are expanders we can check connectivity in
logarithmic space. The idea behind the algorithm will be to transform the
graph G (in an implicitly computable in logspace way) to a graph G′ such
that every connected component in G becomes an expander in G′, but two
vertices that were not connected will stay unconnected. This transformation
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is reminiscent of the expander construction of the previous section.
Proof of Theorem 16.26: Let G be the input graph and s, t two vertices
in G. Using the transformation of Claim 16.1.1, we may assume that G is
a regular degree-4 graphs with self loops on all vertices. By adding more
self-loops we may assume that the graph is of degree d20 for some constant
d that is sufficiently large so that there exists a (d20, d, 0.01)-graph H.

• Let H be a (d20, d, 0.01)-graph, which we can find using brute force
search.

• Let G0 = G.

• For k ≥ 1, we define Gk = (Gk−1©R H)20.

Note that these operations do not connect vertices that were discon-
nected in G. Thus, we can analyze their effect separately on each connected
component of G. By Lemmas 16.20 and 16.22, for every ε < 1/20 and
D-degree graph F , if λ(F ) ≤ 1 − ε then λ(F ©R H) ≤ 1 − ε/5 and hence
λ
(
(F©R H)20

)
≤ 1− 2ε.

By Lemma 16.6, every connected component of G has expansion param-
eter at most 1−1/(8Dn3), where n denotes the number of G’s vertices which
is at least as large as the number of vertices in the connect component. It fol-
lows that for k = 10 logD logN , in the graph Gk every connected component
has expansion parameter at most max{1− 1/20, 2k/(8Dn3)} = 1− 1/20.

The space required to enumerate over ` length walks from some vertex
s in Gk is O(`) bits to store ` indices and the space to compute the rotation
map of Gk. To finish the proof, we will show that we can compute this
map in O(k + log n) space. This map’s input length is O(k + log n) and
hence we can assume it is placed on a read/write tape, and will compute
the rotation map “in-place” changing the input to the output. Let sk be the
additional space (beyond the input) required to compute the rotation map
of Gk. Note that s0 = O(log n). We show a recursive algorithm to compute
Gk satisfying the equation sk = sk−1 +O(1). In fact, the algorithm will be a
pretty straightforward implementation of the definitions of the replacement
and matrix products.

The input to Ĝk is a vertex in (Gk−1©R H) and 20 labels of edges in this
graph. If we can compute the rotation map of Gk−1©R H in sk−1+O(1) space
then we can do so for Ĝk, since we can simply make 20 consecutive calls to
this procedure, each time reusing the space.9 Now, to compute the rotation

9One has to be slightly careful while making recursive calls, since we don’t want to
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map of (Gk−1©R H) we simply follow the definition of the replacement prod-
uct. Given an input of the form u, v, i, b (which we think of as read/write
variables), if b = 0 then we apply the rotation map of H to (v, i) (can be
done in constant space), while if b = 1 then we apply the rotation map of
Gk−1 to (u, v) using a recursive call at the cost of sk−1 space (note that u, v
are conveniently located consecutively at the beginning of the input tape).
�

Chapter notes and history

still a lot missing
Expanders were well-studied for a variety of reasons in the 1970s but

their application to pseudorandomness was first described by Ajtai, Komlos,
and Szemeredi [AKS87]. Then Cohen-Wigderson [CW89] and Impagliazzo-
Zuckerman (1989) showed how to use them to “recycle” random bits as de-
scribed in Section 16.3.1. The upcoming book by Hoory, Linial and Wigder-
son (draft available from their web pages) provides an excellent introduction
to expander graphs and their applications.

The explicit construction of expanders is due to Reingold, Vadhan and
Wigderson [RVW00], although we chose to present it using the replacement
product as opposed to the closely related zig-zag product used there. The
deterministic logspace algorithm for undirected connectivity is due to Rein-
gold [?].

Exercises

§1 Let A be a symmetric stochastic matrix: A = A† and every row and
column of A has non-negative entries summing up to one. Prove that
‖A‖ ≤ 1.

Hint:firstshowthat‖A‖isatmostsayn
2
.Then,provethatfor

everyk≥1,A
k

isalsostochasticand‖A
2k

v‖2≥‖A
k
v‖

2
2usingthe

equality〈w,Bz〉=〈B†w,z〉andtheinequality〈w,z〉≤‖w‖2‖z‖2.

§2 Let A,B be two symmetric stochastic matrices. Prove that λ(A+B) ≤
λ(A) + λ(B).

lose even the O(log logn) bits of writing down k and keeping an index to the location in
the input we’re working on. However, this can be done by keeping k in global read/write
storage and since storing the identity of the current step among the 50 calls we’re making
only requires O(1) space.
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§3 Let a n, d random graph be an n-vertex graph chosen as follows: choose
d random permutations π1, ldots, πd from [n] to [n]. Let the the graph
G contains an edge (u, v) for every pair u, v such that v = πi(u) for
some 1 ≤ i ≤ d. Prove that a random n, d graph is an (n, 2d, 2

3d)
combinatorial expander with probability 1− o(1) (i.e., tending to one
with n).

Hint:foreverysetS⊆nwith|S|≤n/2andsetT⊆[n]with
|T|≤(1+

2
3d)|S|,trytoboundtheprobabilitythatπi(S)⊆Tfor

everyi.

§4 Let A be an n×n matrix with eigenvectors u1, . . . ,un and correspond-
ing values λ1, . . . , λn. Let B be an m × m matrix with eigenvectors
v1, . . . ,vm and corresponding values α1, . . . , αm. Prove that the ma-
trix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

§5 Prove that for every two graphs G,G′, λ(G ⊗ G′) ≤ λ(G) + λ(G′)
without using the fact that every symmetric matrix is diagonalizable.

Hint:UseLemma16.14.
§6 Let G be an n-vertex D-degree graph with ρ combinatorial edge ex-

pansion for some ρ > 0. (That is, for every a subset S of G’s vertices
of size at most n/2, the number of edges between S and its comple-
ment is at least ρd|S|.) Let G′ be a D-vertex d-degree graph with ρ′

combinatorial edge expansion for some ρ′ > 0. Prove that G©R G′ has
at least ρ2ρ′/1000 edge expansion.

Hint:EverysubsetofG©RG′canbethoughtofasnsubsetsof
theindividualclusters.Treatdifferentlythesubsetsthattakeup
morethan1−ρ/10portionoftheirclustersandthosethattake
uplessthanthat.FortheformerusetheexpansionofG,whilefor
thelatterusetheexpansionofG′.
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Chapter 17

Derandomization and
Extractors

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

“How hard could it be to find hay in a haystack?”
Howard Karloff

The concept of a randomized algorithm, though widespread, has both a
philosophical and a practical difficulty associated with it.

The philosophical difficulty is best represented by Einstein’s famous
quote above. Do random events (such as the unbiased coin flip assumed
in our definition of a randomized turing machine) truly exist in the world,
or is the world deterministic? The practical difficulty has to do with actu-
ally generating random bits, assuming they exist. A randomized algorithm
running on a modern computer could need billions of random bits each sec-
ond. Even if the world contains some randomness —say, the ups and downs
of the stock market — it may not have enough randomness to provide bil-
lions of uncorrelated random bits every second in the tiny space inside a
microprocessor. Current computing environments rely on shortcuts such as
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taking a small “fairly random looking” bit sequence—e.g., interval between
the programmer’s keystrokes measured in microseconds—and applying a de-
terministic generator to turn them into a longer sequence of “sort of random
looking” bits. Some recent devices try to use quantum phenomena. But for
all of them it is unclear how random and uncorrelated those bits really are.

Such philosophical and practical difficulties look deterring; the philo-
sophical aspect alone has been on the philosophers’ table for centuries. The
results in the current chapter may be viewed as complexity theory’s contri-
bution to these questions.

The first contribution concerns the place of randomness in our world.
We indicated in Chapter 7 that randomization seems to help us design more
efficient algorithms. A surprising conclusion in this chapter is this could be a
mirage to some extent. If certain plausible complexity-theoretic conjectures
are true (e.g., that certain problems can not be solved by subexponential-
sized circuits) then every probabilistic algorithm can be simulated determin-
istically with only a polynomial slowdown. In other words, randomized algo-
rithms can be derandomized and BPP = P. Nisan and Wigderson [NW94]
named this research area Hardness versus Randomness since the existence
of hard problems is shown to imply derandomization. Section 17.3 shows
that the converse is also true to a certain extent: ability to derandomize
implies circuit lowerbounds (thus, hardness) for concrete problems. Thus
the Hardness ↔ Randomness connection is very real.

Is such a connection of any use at present, given that we have no idea how
to prove circuit lowerbounds? Actually, yes. Just as in cryptography, we can
use conjectured hard problems in the derandomization instead of provable
hard problems, and end up with a win-win situation: if the conjectured hard
problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured
hard problem.

The second contribution of complexity theory concerns another practical
question: how can we run randomized algorithms given only an imperfect
source of randomness? We show the existence of randomness extractors:
efficient algorithms to extract (uncorrelated, unbiased) random bits from any
weakly random device.Their analysis is unconditional and uses no unproven
assumptions. Below, we will give a precise definition of the properties that
such a weakly random device needs to have. We do not resolve the question
of whether such weakly random devices exist; this is presumably a subject
for physics (or philosophy).

A central result in both areas is Nisan and Wigderson’s beautiful con-
struction of a certain pseudorandom generator. This generator is tailor-made
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for derandomization and has somewhat different properties than the secure
pseudorandom generators we encountered in Chapter 10.

Another result in the chapter is a (unconditional) derandomization of
randomized logspace computations, albeit at the cost of some increase in
the space requirement.

Example 17.1 (Polynomial identity testing)
One example for an algorithm that we would like to derandomize is the
algorithm described in Section 7.2.2 for testing if a given polynomial (repre-
sented in the form of an arithmetic zero) is the identically zero polynomial.
If p is an n-variable nonzero polynomial of total degree d over a large enough
finite field F (|F| > 10d will do) then most of the vectors u ∈ Fn will satisfy
p(u) 6= 0 (see Lemma A.23. Therefore, checking whether p ≡ 0 can be done
by simply choosing a random u ∈R Fn and applying p on u. In fact, it is easy
to show that there exists a set of m2-vectors u1, . . . ,um

2
such that for every

such nonzero polynomial p that can be computed by a size m arithmetic
circuit, there exists an i ∈ [m2] for which p(ui) 6= 0.

This suggests a natural approach for a deterministic algorithm: show a
deterministic algorithm that for every m ∈ N, runs in poly(m) time and
outputs a set u1, . . . ,um

2
of vectors satisfying the above property. This

shouldn’t be too difficult— after all the vast majority of the sets of vectors
have this property, so hard can it be to find a single one? (Howard Karloff
calls this task “finding a hay in a haystack”). Surprisingly this turns out to
be quite hard: without using complexity assumptions, we do not know how
to obtain such a set, and in Section 17.3 we will see that in fact such an
algorithm will imply some nontrivial circuit lowerbounds.1

17.1 Pseudorandom Generators and Derandom-
ization

The main tool in derandomization is a pseudorandom generator. This is a
twist on the definition of a secure pseudorandom generator we gave in Chap-
ter 10, with the difference that here we consider nonuniform distinguishers

1Perhaps it should not be so surprising that “finding a hay in a haystack” is so hard.
After all, the hardest open problems of complexity— finding explicit functions with high
circuit complexity— are of this form, since the vast majority of the functions from {0, 1}n
to {0, 1} have exponential circuit complexity.
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–in other words, circuits— and allow the generator to run in exponential
time.

Definition 17.2 (Pseudorandom generators)
Let R be a distribution over {0, 1}m, S ∈ N and ε > 0. We say that R is an
(S, ε)-pseudorandom distribution if for every circuit C of size at most S,

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um denotes the uniform distribution over {0, 1}m.

If S : N→ N is a polynomial-time computable monotone function (i.e., S(m) ≥ S(n)
for m ≥ n)2 then a function G : {0, 1}∗ → {0, 1}∗ is called an (S(`)-pseudorandom
generator (see Figure 17.1) if:

• For every z ∈ {0, 1}`, |G(z)| = S(`) and G(z) can be computed in time 2c` for
some constant c. We call the input z the seed of the pseudorandom generator.

• For every ` ∈ N, G(U`) is an (S(`)3, 1/10)-pseudorandom distribution.

Remark 17.3
The choices of the constant 3 and 1/10 in the definition of an S(`)-pseudorandom
generator are arbitrary and made for convenience.

The relation between pseudorandom generators and simulating proba-
bilistic algorithm is straightforward:

Lemma 17.4
Suppose that there exists an S(`)-pseudorandom generator for some polynomial-
time computable monotone S : N → N. Then for every polynomial-time
computable function ` : N→ N, BPTIME(S(`(n))) ⊆ DTIME(2c`(n)) for
some constant c.

Proof: A language L is in BPTIME(S(`(n))) if there is an algorithm A
that on input x ∈ {0, 1}n runs in time cS(`(n)) for some constant c, and
satisfies

Pr
r∈R{0,1}m

[A(x, r) = L(x)] ≥ 2
3

2We place these easily satisfiable requirements on the function S to avoid weird cases
such as generators whose output length is not computable or generators whose output
shrinks as the input grows.
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Figure 17.1: A pseudorandom generator G maps a short uniformly chosen seed z ∈R
{0, 1}` into a longer output G(z) ∈ {0, 1}m that is indistinguishable from the uniform
distribution Um by any small circuit C.

where m ≤ S(`(n)) and we define L(x) = 1 if x ∈ L and L(x) = 0 otherwise.
The main idea is that if we replace the truly random string r with the

string G(z) produced by picking a random z ∈ {0, 1}`(n), then an algorithm
like A that runs in only S(`) time cannot detect this switch most of the
time, and so the probability 2/3 in the previous expression does not drop
below 2/3− 0.1. Thus to derandomize A, we do not need to enumerate over
all r; it suffices to enumerates over all z ∈ {0, 1}`(n) and check how many of
them make A accept. This derandomized algorithm runs in exp(`(n)) time
instead of the trivial 2m time.

Now we make this formal. Our deterministic algorithm B will on input
x ∈ {0, 1}n, go over all z ∈ {0, 1}`(n), compute A(x,G(z)) and output the
majority answer. Note this takes 2O(`(n)) time. We claim that for n suf-
ficiently large, the fraction of z’s such that A(x,G(z)) = L(x) is at least
2
3 − 0.1. (This suffices to prove that L ∈ DTIME(2c`(n)) as we can “hard-
wire” into the algorithm the correct answer for finitely many inputs.)

Suppose this is false and there exists an infinite sequence of x’s for which
Pr[A(x,G(z)) = L(x) < 2/3 − 0.1. Then we would get a distinguisher for
the pseudorandom generator —just use the Cook-Levin transformation to
construct a circuit that computes the function z 7→ A(x,G(z)), where x is
hardwired into the circuit. This circuit has size O(S(`(n)))2 which is smaller
than S(`(n))3 for sufficiently large n. �

Remark 17.5
The proof shows why it is OK to allow the pseudorandom generator in Defi-
nition 17.2 to run in time exponential in its seed length. The derandomized
algorithm enumerates over all possible seeds of length `, and thus would
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take exponential time (in `) even if the generator itself were to run in less
than exponential time.

Notice, these generators have to fool distinguishers that run for less
time than they do. By contrast, the definition of secure pseudorandom gen-
erators (Definition 10.11 in Chapter 10) required the generator to run in
polynomial time, and yet have the ability to fool distinguishers that have
super-polynomial running time. This difference in these definitions stems
from the intended usage. In the cryptographic setting the generator is used
by honest users and the distinguisher is the adversary attacking the system
— and it is reasonable to assume the attacker can invest more computa-
tional resources than those needed for normal/honest use of the system.
In derandomization, generator is used by the derandomized algorithm, the
”distinguisher” is the probabilistic algorithm that is being derandomized,
and it is reasonable to allow the derandomized algorithm higher running
time than the original probabilistic algorithm.

Of course, allowing the generator to run in exponential time as in this
chapter potentially makes it easier to prove their existence compared with
secure pseudorandom generators, and this indeed appears to be the case.
(Note that if we place no upperbounds on the generator’s efficiency, we could
prove the existence of generators unconditionally as shown in Exercise 2, but
these do not suffice for derandomization.)

We will construct pseudorandom generators based on complexity as-
sumptions, using quantitatively stronger assumptions to obtain quantita-
tively stronger pseudorandom generators (i.e., S(`)-pseudorandom gener-
ators for larger functions S). The strongest (though still reasonable) as-
sumption will yield a 2Ω(`)-pseudorandom generator, thus implying that
BPP = P. These are described in the following easy corollaries of the
Lemma that are left as Exercise 1.

Corollary 17.6
1. If there exists a 2ε`-pseudorandom generator for some constant ε > 0

then BPP = P.

2. If there exists a 2`
ε
-pseudorandom generator for some constant ε > 0

then BPP ⊆ QuasiP = DTIME(2polylog(n)).

3. If there exists an S(`)-pseudorandom generator for some super-polynomial
function S (i.e., S(`) = `ω(1)) then BPP ⊆ SUBEXP = ∩ε>0DTIME(2n

ε
).
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17.1.1 Hardness and Derandomization

We construct pseudorandom generators under the assumptions that cer-
tain explicit functions are hard. In this chapter we use assumptions about
average-case hardness, while in the next chapter we will be able to construct
pseudorandom generators assuming only worst-case hardness. Both worst-
case and average-case hardness refers to the size of the minimum Boolean
circuit computing the function:

Definition 17.7 (Hardness)
Let f : {0, 1}∗ → {0, 1} be a Boolean function. The worst-case hardness of f ,
denoted Hwrs(f), is a function from N to N that maps every n ∈ N to the largest
number S such that every Boolean circuit of size at most S fails to compute f on
some input in {0, 1}n.
The average-case hardness of f , denoted Havg(f), is a function from N to N that maps
every n ∈ N, to the largest number S such that Prx∈R{0,1}n [C(x) = f(x)] < 1

2 + 1
S

for every Boolean circuit C on n inputs with size at most S.

Note that for every function f : {0, 1}∗ → {0, 1} and n ∈ N, Havg(f)(n) ≤
Hwrs(f)(n) ≤ n2n.

Remark 17.8
This definition of average-case hardness is tailored to the application of
derandomization, and in particular only deals with the uniform distribution
over the inputs. See Chapter 15 for a more general treatment of average-
case complexity. We will also sometimes apply the notions of worst-case
and average-case to finite functions from {0, 1}n to {0, 1}, where Hwrs(f) and
Havg(f) are defined in the natural way. (E.g., if f : {0, 1}n → {0, 1} then
Hwrs(f) is the largest number S for which every Boolean circuit of size at
most S fails to compute f on some input in {0, 1}n.)

Example 17.9
Here are some examples of functions and their conjectured or proven hard-
ness:

1. If f is a random function (i.e., for every x ∈ {0, 1}∗ we choose f(x)
using an independent unbiased coin) then with high probability, both
the worst-case and average-case hardness of f are exponential (see
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Exercise 3). In particular, with probability tending to 1 with n, both
Hwrs(f)(n) and Havg(f)(n) exceed 20.99n. We will often use the shorthand
Hwrs(f),Havg(f) ≥ 20.99n for such expressions.

2. If f ∈ BPP then, since BPP ⊆ P/poly, both Hwrs(f) and Havg(f) are
bounded by some polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case
hardness; that is, Hwrs(3SAT) ≥ 2Ω(n). It is even more believable that
NP * P/poly, which implies that Hwrs(3SAT) is superpolynomial. The
average case complexity of 3SAT is unclear, and in any case dependent
upon the way we choose to represent formulas as strings.

4. If we trust the security of current cryptosystems, then we do believe
that NP contains functions that are hard on the average. If g is a one-
way permutation that cannot be inverted with polynomial probability
by polynomial-sized circuits, then by Theorem 10.14, the function f
that maps the pair x, r ∈ {0, 1}n to g−1(x) � r has super-polynomial
average-case hardness: Havg(f) ≥ nω(1). (Where x � r =

∑n
i=1 xiri

(mod 2).) More generally there is a polynomial relationship between
the size of the minimal circuit that inverts g (on the average) and the
average-case hardness of f .

The main theorem of this section uses hard-on-the average functions to
construct pseudorandom generators:
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Theorem 17.10 (Consequences of NW Generator)
For every polynomial-time computable monotone S : N → N, if there exists a
constant c and function f ∈ DTIME(2cn) such that Havg(f) ≥ S(n) then there
exists a constant ε > 0 such that an S(ε`)ε-pseudorandom generator exists. In
particular, the following corollaries hold:

1. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2εn then
BPP = P.

2. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2n
ε

then
BPP ⊆ QuasiP.

3. If there exists f ∈ E = DTIME(2O(n)) such that Havg(f) ≥ nω(1) then BPP ⊆
SUBEXP.

Remark 17.11
We can replace E with EXP = DTIME(2poly(n)) in Corollaries 2 and 3
above. Indeed, for every f ∈ DTIME(2n

c
), the function g that on input

x ∈ {0, 1}∗ outputs the f applies to the first |x|1/c bits of x is in DTIME(2n)
and satisfies Havg(g)(n) ≥ Havg(f)(n1/c). Therefore, if there exists f ∈ EXP
with Havg(f) ≥ 2n

ε
then there there exists a constant ε′ > 0 and a function

g ∈ E with Havg(g) ≥ 2n
ε′
, and so we can replace E with EXP in Corollary 2.

A similar observation holds for Corollary 3. Note that EXP contains many
classes we believe to have hard problems, such as NP,PSPACE,⊕P and
more, which is why we believe it does contain hard-on-the-average functions.
In the next chapter we will give even stronger evidence to this conjecture,
by showing it is implied by the assumption that EXP contains hard-in-the-
worst-case functions.

Remark 17.12
The original paper of Nisan and Wigderson [NW94] did not prove Theo-
rem 17.10 as stated above. It was proven in a sequence of works [?]. Nisan
and Wigderson only proved that under the same assumptions there exists
an S′(`)-pseudorandom generator, where S′(`) = S

(
ε
√
` log(S(ε

√
`)
)ε

for
some ε > 0. Note that this is still sufficient to derive all three corollaries
above. It is this weaker version we prove in this book.
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CONSTRUCTION

17.2 Proof of Theorem 17.10: Nisan-Wigderson
Construction

How can we use a hard function to construct a pseudorandom generator?

17.2.1 Warmup: two toy examples

For starters, we demonstrate this by considering the “toy example” of a
pseudorandom generator whose output is only one bit longer than its input.
Then we show how to extend by two bits. Of course, neither suffices to prove
Theorem 17.10 but they do give insight to the connection between hardness
and randomness.

Extending the input by one bit using Yao’s Theorem.

The following Lemma uses a hard function to construct such a “toy” gener-
ator:

Lemma 17.13 (One-bit generator)
Suppose that there exist f ∈ E with Havg(f) ≥ n4. Then, there exists an
S(`)-pseudorandom generator G for S(`) = `+ 1.

Proof: The generator G will be very simple: for every z ∈ {0, 1}`, we set

G(z) = z ◦ f(z)

(where ◦ denotes concatenation). G clearly satisfies the output length and
efficiency requirements of an (`+1)-pseudorandom generator. To prove that
its output is 1/10-pseudorandom we use Yao’s Theorem from Chapter 10
showing that pseudorandomness is implied by unpredictiability:3

Theorem 17.14 (Theorem 10.12, restated)
Let Y be a distribution over {0, 1}m. Suppose that there exist S > 10n,ε > 0
such that for every circuit C of size at most 2S and i ∈ [m],

Pr
r∈RY

[C(r1, . . . , ri−1) = ri] ≤
1
2

+
ε

m

Then Y is (S, ε)-pseudorandom.

3Although this theorem was stated and proved in Chapter 10 for the case of uniform
Turing machines, the proof easily extends to the case of circuits.
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Using Theorem 17.14 it is enough to show that there does not exist a
circuit C of size 2(`+ 1)3 < `4 and a number i ∈ [`+ 1] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] > 1
2 + 1

20(`+1) . (1)

However, for every i ≤ `, the ith bit of G(z) is completely uniform and
independent from the first i − 1 bits, and hence cannot be predicted with
probability larger than 1/2 by a circuit of any size. For i = `+1, Equation (1)
becomes,

Pr
z∈R{0,1}`

[C(z) = f(z)] >
1
2

+
1

20(`+ 1)
>

1
2

+
1
`4
,

which cannot hold under the assumption that Havg(f) ≥ n4. �

Extending the input by two bits using the averaging principle.

We now continue to progress in “baby steps” and consider the next natural
toy problem: constructing a pseudorandom generator that extends its input
by two bits. This is obtained in the following Lemma:

Lemma 17.15 (Two-bit generator)
Suppose that there exists f ∈ E with Havg(f) ≥ n4. Then, there exists an
(`+2)-pseudorandom generator G.

Proof: The construction is again very natural: for every z ∈ {0, 1}`, we set

G(z) = z1 · · · z`/2 ◦ f(z1, . . . , z`/2) ◦ z`/2+1 · · · z` ◦ f(z`/2+1, . . . , z`).

Again, the efficiency and output length requirements are clearly satisfied.
To show G(U`) is 1/10-pseudorandom, we again use Theorem 17.14, and

so need to prove that there does not exists a circuit C of size 2(`+ 1)3 and
i ∈ [`+ 2] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] >
1
2

+
1

20(`+ 2)
. (2)

Once again, (2) cannot occur for those indices i in which the ith output
of G(z) is truly random, and so the only two cases we need to consider are
i = `/2 + 1 and i = `+ 2. Equation (2) cannot hold for i = `/2 + 1 for the
same reason as in Lemma 17.13. For i = `+ 2, Equation (2) becomes:

Pr
r,r′∈R{0,1}`/2

[C(r ◦ f(r) ◦ r′) = f(r′)] >
1
2

+
1

20(`+ 2)
(3)
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This may seem somewhat problematic to analyze since the input to C
contains the bit f(r), which C could not compute on its own (as f is a hard
function). Couldn’t it be that the input f(r) helps C in predicting the bit
f(r′)? The answer is NO, and the reason is that r′ and r are independent.
Formally, we use the following principle (see Section A.2.2 in the appendix):

The Averaging Principle: If A is some event depending on
two independent random variables X,Y , then there exists some
x in the range of X such that

Pr
Y

[A(x, Y ) ≥ Pr
X,Y

[A(X,Y )]

Applying this principle here, if (3) holds then there exists a string r ∈
{0, 1}`/2 such that

Pr
r′∈R{0,1}`/2

[C(r, f(r), r′) = f(r′)] >
1
2

+
1

20(`+ 2)
.

(Note that this probability is now only over the choice of r′.) If this is the
case, we can “hardwire” the `/2+1 bits r ◦ f(r) to the circuit C and obtain
a circuit D of size at most (`+ 2)3 + 2` < (`/2)4 such that

Pr
r′∈R{0,1}`/2

[D(r′) = f(r′)] >
1
2

+
1

20(`+ 2)
,

contradicting the hardness of f . �

Beyond two bits:

A generator that extends the output by two bits is still useless for our goals.
We can generalize the proof Lemma 17.15 to obtain a generator G that
extends the output by k bits setting

G(z1, . . . , z`) = z1 ◦ f(z1) ◦ z2 ◦ f(z2) · · · zk ◦ f(zk) , (4)

where zi is the ith block of `/k bits in z. However, no matter how big we set
k and no matter how hard the function f is, we cannot get a generator that
expands its input by a multiplicative factor larger than two. Note that to
prove Theorem 17.10 we need a generator that, depending on the hardness
we assume, has output that can be exponentially larger than the input!
Clearly, we need a new idea.
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17.2.2 The NW Construction

The new idea is still inspired by the construction of (4), but instead of taking
z1, . . . , zk to be independently chosen strings (or equivalently, disjoint pieces
of the input z), we take them to be partly dependent by using combinatorial
designs. Doing this will allow us to take k so large that we can drop the
actual inputs from the generator’s output and use only f(z1) ◦ f(z2) · · · ◦
f(zk). The proof of correctness is similar to the above toy examples and
uses Yao’s technique, except the fixing of the input bits has to be done more
carefully because of dependence among the strings.

First, some notation. For a string z ∈ {0, 1}` and subset I ⊆ [`], we define
z�I to be |I|-length string that is the projection of z to the coordinates in I.
For example, z�[1..i] is the first i bits of z.

Definition 17.16 (NW Generator)
If I = {I1, . . . , Im} is a family of subsets of [`] with each |Ij | = l and f : {0, 1}n →
{0, 1} is any function then the (I, f)-NW generator (see Figure 17.2) is the function
NWf

I : {0, 1}` → {0, 1}m that maps any z ∈ {0, 1}` to

NWf
I(z) = f(z�I1) ◦ f(z�I2) · · · ◦ f(z�Im) (5)

Ij Ij+1

f f

Figure 17.2: The NW generator, given a set system I = {I1, . . . , Im} of size n sub-
sets of [`] and a function f : {0, 1}n → {0, 1} maps a string z ∈ {0, 1}` to the output
f(z�I1), . . . , f(z�Im). Note that these sets are not necessarily disjoint (although we will
see their intersections need to be small).

Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs,
function f must display some hardness, and the family of subsets must come
from an efficiently constructible combinatorial design.
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Definition 17.17 (Combinatorial designs)
If d, n, ` ∈ N are numbers with ` > n > d then a family I = {I1, . . . , Im} of
subsets of [`] is an (`, n, d)-design if |Ij | = n for every j and |Ij ∩ Ik| ≤ d for
every j 6= k.

The next lemma yields efficient constructions of these designs and is
proved later.

Lemma 17.18 (Construction of designs)
There is an algorithm A such that on input `, d, n ∈ N where n > d and

` > 10n2/d, runs for 2O(`) steps and outputs an (`, n, d)-design I containing
2d/10 subsets of [`].

The next lemma shows that if f is a hard function and I is a design
with sufficiently good parameters, than NWf

I(U`) is indeed a pseudorandom
distribution:
Lemma 17.19 (Pseudorandomness using the NW generator)
If I is an (`, n, d)-design with |I| = 2d/10 and f : {0, 1}n → {0, 1} a

function satisfying 2d <
√

Havg(f)(n), then the distribution NWf
I(U`) is a

(Havg(f)(n)/10, 1/10)-pseudorandom distribution.

Proof: Let S denote Havg(f)(n). By Yao’s Theorem, we need to prove that
for every i ∈ [2d/10] there does not exist an S/2-sized circuit C such that

Pr
Z∼U`

R=NWf
I(Z)

[C(R1, . . . , Ri−1) = Ri] ≥
1
2

+
1

10 · 2d/10
. (6)

For contradiction’s sake, assume that (6) holds for some circuit C and some
i. Plugging in the definition of NWf

I , Equation (6) becomes:

Pr
Z∼U`

[C(f(Z�I1), · · · , f(Z�Ii−1)) = f(Z�Ii)] ≥
1
2

+
1

10 · 2d/10
. (7)

Letting Z1 and Z2 denote the two independent variables corresponding
to the coordinates of Z in Ii and [`] \ Ii respectively, Equation (7) becomes:

Pr
Z1∼Un
Z2∼U`−n

[C(f1(Z1, Z2), . . . , fi−1(Z1, Z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
, (8)

where for every j ∈ [2d/10], fj applies f to the coordinates of Z1 correspond-
ing to Ij ∩ Ii and the coordinates of Z2 corresponding to Ij \ Ii. By the
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averaging principle, if (8) holds then there exists a string z2 ∈ {0, 1}`−n
such that

Pr
Z1∼Un

[C(f1(Z1, z2), . . . , fi−1(Z1, z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
. (9)

We may now appear to be in some trouble, since all of fj(Z1, z2) for j ≤ i−1
do depend upon Z1, and the fear is that if they together contain enough
information about Z1 then a circuit could potentially predict fi(Z1) after
looking at all of them. To prove that this fear is baseless we use the fact
that the circuit C is small and f is a very hard function.

Since |Ij ∩ Ii| ≤ d for j 6= i, the function Z1 7→ fj(Z1, z2) depends at
most d coordinates of z1 and hence can be computed by a d2d-sized circuit.
(Recall that z2 is fixed.) Thus if if (8) holds then there exists a circuit B of
size 2d/10 · d2d + S/2 < S such that

Pr
Z1∼Un

[B(Z1) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
>

1
2

+
1
S
. (10)

But this contradicts the fact that Havg(f)(n) = S. �

Remark 17.20 (Black-box proof)
Lemma 17.19 shows that if NWf

I(U`) is distinguishable from the uniform
distribution U2d/10 by some circuit D, then there exists a circuit B (of size
polynomial in the size of D and in 2d) that computes the function f with
probability noticeably larger than 1/2. The construction of this circuit B ac-
tually uses the circuit D as a black-box, invoking it on some chosen inputs.
This property of the NW generator (and other constructions of pseudoran-
dom generators) turned out to be useful in several settings. In particular,
Exercise 5 uses it to show that under plausible complexity assumptions,
the complexity class AM (containing all languages with a constant round
interactive proof, see Chapter 9) is equal to NP. We will also use this prop-
erty in the construction of randomness extractors based on pseudorandom
generators.

Putting it all together: Proof of Theorem 17.10 from Lemmas 17.18
and 17.19

As noted in Remark 17.12, we do not prove here Theorem 17.10 as stated
but only the weaker statement, that given f ∈ E and S : N → N with
Havg(f) ≥ S, we can construct an S′(`)-pseudorandom generator, where
S′(`) = S

(
ε
√
` log(S(ε

√
`)
)ε

for some ε > 0.
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For such a function f , we denote our pseudorandom generator by NW f .
Given input z ∈ {0, 1}`, the generator NWf operates as follows:

• Set n to be the largest number such that ` > 100n2/ logS(n). Set d =
logS(n)/10. Since S(n) < 2n, we can assume that ` ≤ 300n2/ logS(n).

• Run the algorithm of Lemma 17.18 to obtain an (`, n, d)-design I =
{I1, . . . , I2d/5}.

• Output the first S(n)1/40 bits of NWf
I(z).

Clearly, NWf (z) runs in 2O(`) time. Moreover, since 2d ≤ S(n)1/10,
Lemma 17.19 implies that the distribution NWf (U`) is (S(n)/10, 1/10)-pseudorandom.
Since n ≥

√
` logS(n)/300 ≥

√
` logS(

√
`

300)/300 (with the last inequality
following from the fact that S is monotone), this concludes the proof of
Theorem 17.10. �

Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combi-
natorial designs with the required parameters:
Proof of Lemma 17.18 (construction of combinatorial designs): On
inputs `, d, n with ` > 10n2/d, our Algorithm A will construct an (`, n, d)-
design I with 2d/10 sets using the simple greedy strategy:

Start with I = ∅ and after constructing I = {I1, . . . , Im} for
m < 2d/10, search all subsets of [`] and add to I the first n-sized
set I satisfying |I ∩ Ij | ≤ d for every j ∈ [m]. We denote this
latter condition by (*).

Clearly, A runs in poly(m)2` = 2O(`) time and so we only need to prove
it never gets stuck. In other words, it suffices to show that if ` = 10n2/d
and {I1, . . . , Im} is a collection of n-sized subsets of [`] for m < 2d/10, then
there exists an n-sized subset I ⊆ [`] satisfying (*). We do so by showing
that if we pick I at random by choosing independently every element x ∈ [`]
to be in I with probability 2n/` then:

Pr[|I| ≥ n] ≥ 0.9 (11)

Pr[|I ∩ Ij | ≥ d] ≤ 0.5 · 2−d/10 (∀j ∈ [m]) (12)

Because the expected size of I is 2n, while the expected size of the
intersection I∩Ij is 2n2/` < d/5, both (12) and (11) follow from the Chernoff
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bound. Yet together these two conditions imply that with probability at
least 0.4, the set I will simultaneously satisfy (*) and have size at least n.
Since we can always remove elements from I without damaging (*), this
completes the proof. �

17.3 Derandomization requires circuit lowerbounds

We saw in Section 17.2 that if we can prove certain strong circuit lower-
bounds, then we can partially (or fully) derandomize BPP. Now we prove a
result in the reverse direction: derandomizing BPP requires proving circuit
lowerbounds. Depending upon whether you are an optimist or a pessimist,
you can view this either as evidence that derandomizing BPP is difficult,
or, as a reason to double our efforts to derandomize BPP.

We say that a function is in AlgP/poly if it can be computed by a poly-
nomial size arithmetic circuit whose gates are labeled by +, −, × and ÷,
which are operations over some underlying field or ring. We let perm de-
note the problem of computing the permanent of matrices over the integers.
(The proof can be extended to permanent computations over finite fields of
characteristic > 2.) We prove the following result.

Theorem 17.21 ([?])
P = BPP⇒ NEXP * P/poly or perm /∈ AlgP/poly.

Remark 17.22
It is possible to replace the “poly” in the conclusion perm /∈ AlgP/poly with
a subexponential function by appropriately modifying Lemma 17.25. It is
open whether the conclusion NEXP * P/poly can be similarly strength-
ened.

In fact, we will prove the following stronger theorem. Recall the Poly-
nomial Identity Testing (ZEROP) problem in which the input consists of
a polynomial represented by an arithmetic circuit computing it (see Sec-
tion 7.2.2 and Example 17.1), and we have to decide if it is the identically
zero polynomial. This problem is in coRP ⊆ BPP and we will show that
if it is in P then the conclusions of Theorem 17.21 hold:

Theorem 17.23 (Derandomization implies lower bounds)
If ZEROP ∈ P then either NEXP * P/poly or perm /∈ AlgP/poly.
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The proof relies upon many results described earlier in the book.4 Recall
that MA is the class of languages that can be proven by a one round interac-
tive proof between two players Arthur and Merlin (see Definition 9.7). Merlin
is an all-powerful prover and Arthur is a polynomial-time verifier that can flip
random coins. That is, given an input x, Merlin first sends Arthur a “proof”
y. Then Arthur with y in hand flips some coins and decides whether or not
to accept x. For this to be an MA protocol, Merlin must convince Arthur
to accept strings in L with probability one while at the same time Arthur
must not be fooled into accepting strings not in L except with probability
smaller than 1/2. We will use the following result regarding MA:

Lemma 17.24 ([BFL91],[BFNW93])
EXP ⊆ P/poly ⇒ EXP = MA.

Proof: Suppose EXP ⊆ P/poly. By the Karp-Lipton theorem (Theo-
rem 6.14), in this case EXP collapses to the second level Σp

2 of the poly-
nomial hierarchy. Hence Σp

2 = PH = PSPACE = IP = EXP ⊆ P/poly.
Thus every L ∈ EXP has an interactive proof, and furtheremore, since
EXP = PSPACE, we can just the use the interactive proof for TQBF, for
which the prover is a PSPACE machine. Hence the prover can be replaced
by a polynomial size circuit family Cn. Now we see that the interactive proof
can actually be carried out in 2 rounds, with Merlin going first. Given an
input x of length n, Merlin gives Arthur a polynomial size circuit C, which
is supposed to be the Cn for L. Then Arthur runs the interactive proof for
L, using C as the prover. Note that if the input is not in the language, then
no prover has a decent chance of convincing the verifier, so this is true also
for prover described by C. Thus we have described an MA protocol for L
implying that EXP ⊆MA and hence that EXP = MA. �

Our next ingredient for the proof of Theorem 17.23 is the following
lemma:

Lemma 17.25
If ZEROP ∈ P, and perm ∈ AlgP/poly. Then Pperm ⊆ NP.

Proof: Suppose perm has algebraic circuits of size nc, and that ZEROP
has a polynomial-time algorithm. Let L be a language that is decided by
an nd-time TM M using queries to a perm-oracle. We construct an NP
machine N for L.

4This is a good example of “third generation” complexity results that use a clever
combination of both “classical” results from the 60’s and 70’s and newer results from the
1990’s.
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Suppose x is an input of size n. Clearly, M ’s computation on x makes
queries to perm of size at most m = nd. So N will use nondeterminism as
follows: it guesses a sequence of m algebraic circuits C1, C2, . . . , Cm where
Ci has size ic. The hope is that Ci solves perm on i× i matrices, and N will
verify this in poly(m) time. The verification starts by verifying C1, which is
trivial. Inductively, having verified the correctness of C1, . . . , Ct−1, one can
verify that Ct is correct using downward self-reducibility, namely, that for a
t× t matrix A,

perm(A) =
t∑
i=1

a1iperm(A1,i),

where A1,i is the (t−1)×(t−1) sub-matrix of A obtained by removing the 1st
row and ith column of A. Thus if circuit Ct−1 is known to be correct, then
the correctness of Ct can be checked by substituting Ct(A) for perm(A) and
Ct−1(A1,i) for perm(A1,i): this yields an identity involving algebraic circuits
with t2 inputs which can be verified deterministically in poly(t) time using
the algorithm for ZEROP. Proceeding this way N verifies the correctness of
C1, . . . , Cm and then simulates Mperm on input x using these circuits. �

The heart of the proof is the following lemma, which is interesting in its
own right:

Lemma 17.26 ([?])
NEXP ⊆ P/poly ⇒ NEXP = EXP.

Proof: We prove the contrapositive. Suppose that NEXP 6= EXP and let
L ∈ NEXP \ EXP. Since L ∈ NEXP there exists a constant c > 0 and a
relation R such that

x ∈ L⇔ ∃y ∈ {0, 1}2
|x|c

s.t. R(x, y) holds ,

where we can test whether R(x, y) holds in time 2|x|
c′

for some constant c′.
For every constant d > 0, let Md be the following machine: on input

x ∈ {0, 1}n enumerate over all possible Boolean circuits C of size n100d that
take nc inputs and have a single output. For every such circuit let tt(C)
be the 2n

c
-long string that corresponds to the truth table of the function

computed by C. If R(x, tt(C)) holds then halt and output 1. If this does
not hold for any of the circuits then output 0.

Since Md runs in time 2n
101d+nc , under our assumption that L 6∈ EXP,

for every d there exists an infinite sequence of inputs Xd = {xi}i∈N on which
Md(xi) outputs 0 even though xi ∈ L (note that if Md(x) = 1 then x ∈ L).
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This means that for every string x in the sequence Xd and every y such that
R(x, y) holds, the string y represents the truth table of a function on nc bits
that cannot be computed by circuits of size n100d, where n = |x|. Using the
pseudorandom generator based on worst-case assumptions (Theorem ??),
we can use such a string y to obtain an `d-pseudorandom generator.

Now, if NEXP ⊆ P/poly then as noted above NEXP ⊆MA and hence
every language in NEXP has a proof system where Merlin proves that an
n-bit string is in the language by sending a proof which Arthur then verifies
using a probabilistic algorithm of at most nd steps. Yet, if n is the input
length of some string in the sequence Xd and we are given x ∈ Xd with
|x| = n, then we can replace Arthur by non-deterministic poly(nd)2n

c
time

algorithm that does not toss any coins: Arthur will guess a string y such that
R(x, y) holds and then use y as a function for a pseudorandom generator to
verify Merlin’s proof.

This means that there is a constant c > 0 such that every language in
NEXP can be decided on infinitely many inputs by a non-deterministic
algorithm that runs in poly(2n

c
)-time and uses n bits of advice (consisting

of the string x ∈ Xd). Under the assumption that NEXP ⊆ P/poly we
can replace the poly(2n

c
) running time with a circuit of size nc

′
where c′ is

a constant depending only on c, and so get that there is a constant c′ such
that every language in NEXP can be decided on infinitely many inputs by
a circuit family of size n + nc

′
. Yet this can be ruled out using elementary

diagonalization. �

Remark 17.27
It might seem that Lemma 17.26 should have an easier proof that goes along
the proof that EXP ⊆ P/poly ⇒ EXP = MA, but instead of using the
interactive proof for TQBF uses the multi-prover interactive proof system for
NEXP. However, we do not know how to implement the provers’ strategies
for this latter system in NEXP. (Intuitively, the problem arises from the
fact that a NEXP statement may have several certificates, and it is not
clear how we can ensure all provers use the same one.)

We now have all the ingredients for the proof of Theorem 17.23.

Proof of Theorem 17.23: For contradiction’s sake, assume that the
following are all true:

ZEROP ∈ P (13)
NEXP ⊆ P/poly, (14)

perm ∈ AlgP/poly. (15)
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Statement (14) together with Lemmas 17.24 and 17.26 imply that NEXP =
EXP = MA. Now recall that MA ⊆ PH, and that by Toda’s Theorem
(Theorem 8.11) PH ⊆ P#P. Recall also that by Valiant’s Theorem (Theo-
rem 8.8) perm is #P-complete. Thus, under our assumptions

NEXP ⊆ Pperm. (16)

Since we assume that ZEROP ∈ P, Lemma 17.25 together with statements
(15) and (16) implies that NEXP ⊆ NP, contradicting the Nondeterminis-
tic Time Hierarchy Theorem (Theorem 4.3). Thus the three statements at
the beginning of the proof cannot be simultaneously true. �

17.4 Weak Random Sources and Extractors

Suppose, that despite the philosophical difficulties, we are happy with prob-
abilistic algorithms, and see no need to “derandomize” them, especially at
the expense of some unproven assumptions. We still need to tackle the fact
that real world sources of randomness and unpredictability rarely, if ever,
behave as a sequence of perfectly uncorrelated and unbiased coin tosses. Can
we still execute probabilistic algorithms using real-world “weakly random”
sources?

17.4.1 Min Entropy

For starters, we need to define what we mean by a weakly random source.
Definition 17.28
Let X be a random variable. The min entropy of X, denoted by H∞(X),
is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the
range of X.

If X is a distribution over {0, 1}n with H∞(X) ≥ k then it is called an
(n, k)-source.

It is not hard to see that if X is a random variable over {0, 1}n then
H∞(X) ≤ n with H∞(X) = n if and only if X is distributed according to
the uniform distribution Un. Our goal in this section is to be able to execute
probabilistic algorithms given access to a distribution X with H∞(X) as
small as possible. It can be shown that min entropy is a minimal requirement
in the sense that in general, to execute a probabilistic algorithm that uses
k random bits we need access to a distribution X with H∞(X) ≥ k (see
Exercise ??).
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Example 17.29
Here are some examples for distributions X over {0, 1}n and their min-
entropy:

• (Bit fixing and generalized bit fixing sources) If there is subset S ⊆ [n]
with |S| = k such thatX’s projection to the coordinates in S is uniform
over {0, 1}k, and X’s projection to [n] \S is a fixed string (say the all-
zeros string) then H∞(X) = k. The same holds if X’s projection to
[n] \ S is a fixed deterministic function of its projection to S. For
example, if the bits in the odd positions of X are independent and
uniform and for every even position 2i, X2i = X2i−1 then H∞(X) =
d n2 e. This may model a scenario where we measure some real world
data at too high a rate (think of measuring every second a physical
event that changes only every minute).

• (Linear subspaces) If X is the uniform distribution over a linear sub-
space of GF(2)n of dimension k, then H∞(X) = k. (In this case X is
actually a generalized bit-fixing source— can you see why?)

• (Biased coins) If X is composed of n independent coins, each out-
putting 1 with probability δ < 1/2 and 0 with probability 1 − δ, then
as n grows, H∞(X) tends to H(δ)n where H is the Shannon entropy
function. That is, H(δ) = δ log 1

δ + (1− δ) log 1
1−δ .

• (Santha-Vazirani sources) If X has the property that for every i ∈ [n],
and every string x ∈ {0, 1}i−1, conditioned on X1 = x1, . . . , Xi−1 =
xi−1 it holds that both Pr[Xi = 0] and Pr[Xi = 1] are between δ
and 1 − δ then H∞(X) ≥ H(δ)n. This can model sources such as
stock market fluctuations, where current measurements do have some
limited dependence on the previous history.

• (Uniform over subset) If X is the uniform distribution over a set S ⊆
{0, 1}n with |S| = 2k then H∞(X) = k. As we will see, this is a
very general case that “essentially captures” all distributions X with
H∞(X) = k.

We see that min entropy is a pretty general notion, and distributions with
significant min entropy can model many real-world sources of randomness.
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17.4.2 Statistical distance and Extractors

Now we try to formalize what it means to extract random —more precisely,
almost random— bits from an (n, k) source. To do so we will need the
following way of quantifying when two distributions are close.
Definition 17.30 (statistical distance)
For two random variables X and Y with range {0, 1}m, their statistical dis-
tance (also known as variation distance) is defined as δ(X,Y ) = maxS⊆{0,1}m{|Pr[X ∈
S] − Pr[Y ∈ S]|}. We say that X,Y are ε-close, denoted X ≈ε Y , if
δ(X,Y ) ≤ ε.

Statistical distance lies in [0, 1] and satisfies triangle inequality, as sug-
gested by its name. The next lemma gives some other useful properties; the
proof is left as an exercise.
Lemma 17.31
Let X,Y be any two distributions taking values in {0, 1}n.

1. δ(X,Y ) = 1
2

∑
x∈{0,1}n |Pr[X = x]−Pr[Y = x]| .

2. (Restatement of Definition 17.30) δ(X,Y ) ≥ ε iff there is a boolean
functionD :{0, 1}m → {0, 1} such that |Prx∈X [D(x) = 1]− Pry∈Y [D(y) = 1]| ≥
ε.

3. If f :{0, 1}n → {0, 1}s is any function, then δ(f(X), f(Y )) ≤ δ(X,Y ).
(Here f(X) is a distribution on {0, 1}s obtained by taking a sample of
X and applying f .)

Now we define an extractor. This is a (deterministic) function that
transforms an (n, k) source into an almost uniform distribution. It uses a
small number of additional truly random bits, denoted by t in the definition
below.
Definition 17.32
A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor if for any
(n, k)-source X, the distribution Ext(X,Ut) is ε-close to Um. (For every `,
U` denotes the uniform distribution over {0, 1}`.)

Equivalently, if Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor,
then for every distribution X ranging over {0, 1}n of min-entropy k, and for
every S ⊆ {0, 1}m, we have

|Pra∈X,z∈{0,1}t [Ext(a, z) ∈ S]−Prr∈{0,1}m [r ∈ S]| ≤ ε

We use this fact to show in Section 17.5.2 how to use extractors and (n, k)-
sources to to simulate any probabilistic computation.
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Why an additional input? Our stated motivation for extractors is to
execute probabilistic algorithms without access to perfect unbiased coins.
Yet, it seems that an extractor is not sufficient for this task, as we only
guarantee that its output is close to uniform if it is given an additional in-
put that is uniformly distributed. First, we note that the requirement of
an additional input is necessary: for every function Ext : {0, 1}n → {0, 1}m
and every k ≤ n − 1 there exists an (n, k)-source X such that the first bit
of Ext(X) is constant (i.e, is equal to some value b ∈ {0, 1} with probability
1), and so is at least of statistical distance 1/2 from the uniform distribu-
tion (Exercise 7). Second, if the length t of the second input is sufficiently
short (e.g., t = O(log n)) then, for the purposes of simulating probabilistic
algorithms, we can do without any access to true random coins, by enumer-
ating over all the 2t possible inputs (see Section 17.5.2). Clearly, t has to be
somewhat short for the extractor to be non-trivial: for t ≥ m, we can have
a trivial extractor that ignores its first input and outputs the second input.
This second input is called the seed of the extractor.

17.4.3 Extractors based upon hash functions

One can use pairwise independent (and even weaker notions of) hash func-
tions to obtain extractors. In this section, H denotes a family of hash
functions h : {0, 1}n → {0, 1}k. We say it has collision error δ if for any
x1 6= x2 ∈ {0, 1}n, Prh∈H[h(x1) = h(x2)] ≤ (1 + δ)/2k. We assume that one
can choose a random function h ∈ H by picking a string at random from
{0, 1}t. We define the extractor Ext :×{0, 1}t → {0, 1}k+t as follows:

Ext(x, h) = h(x) ◦ h, (17)

where ◦ denotes concatenation of strings.
To prove that this is an extractor, we relate the min-entropy to the

collision probability of a distribution, which is defined as
∑

a p
2
a, where pa

is the probability assigned to string a.

Lemma 17.33
If a distribution X has min-entropy at least k then its collision probability

is at most 1/2k.

Proof: For every a in X’s range, let pa be the probability that X = a.
Then,

∑
a p

2
a ≤ maxa {pa} (

∑
a pa) ≤

1
2k
· 1 = 1

2k
. �
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Lemma 17.34 (Leftover hash lemma)
If x is chosen from a distribution on {0, 1}n with min-entropy at least k/δ

and H has collision error δ, then h(X) ◦ h has distance at most
√

2δ to the
uniform distribution.

Proof: Left as exercise. (Hint: use the relation between the L2 and L1

norms �

17.4.4 Extractors based upon random walks on expanders

This section assumes knowledge of random walks on expanders, as described
in Chapter 16.

Lemma 17.35
Let ε > 0. For every n and k ≤ n there exists a (k, ε)-extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}n where t = O(n− k + log 1/ε).

Proof: Suppose X is an (n, k)-source and we are given a sample a from
it. Let G be a (2n, d, 1/2)-graph for some constant d (see Definition 16.9 and
Theorem 16.24).

Let z be a truly random seed of length t = 10 log d(n − k + log 1/ε) =
O(n− k + log 1/ε). We interpret z as a random walk in G of length 10(n−
k+ log 1/ε) starting from the node whose label is a. (That is, we think of z
as 10(n − k + log 1/ε) labels in [d] specifying the steps taken in the walk.)
The output Ext(a, z) of the extractor is the label of the final node on the
walk.

We have ‖X − 1‖22 ≤ ‖X‖22 =
∑

a Pr[X = a]2, which is at most 2−k by
Lemma 17.33 since X is an (n, k)-source. Therefore, after a random walk of
length t the distance to the uniform distribution is (by the upperbound in
(??)):

‖M tX − 1
2N

1‖1 ≤ λt2‖X −
1

2N
1‖2
√

2N ≤ λt22(N−k)/2.

When t is a sufficiently large multiple of N − k + log 1/ε, this distance is
smaller than ε. �

17.4.5 An extractor based upon Nisan-Wigderson

this section is still quite rough
Now we describe an elegant construction of extractors due to Trevisan.
Suppose we are given a string x obtained from an (N, k)-source. How can

we extract k random bits from it, given O(logN) truly random bits? Let us
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check that the trivial idea fails. Using 2 logN random bits we can compute
a set of k (where k < N − 1) indices that are uniformly distributed and
pairwise independent. Maybe we should just output the corresponding bits
of x? Unfortunately, this does not work: the source is allowed to set N − k
bits (deterministically) to 0 so long as the remaining k bits are completely
random. In that case the expected number of random bits in our sample is
at most k2/N , which is less than even 1 if k <

√
N .

This suggests an important idea: we should first apply some transfor-
mation on x to “smear out” the randomness, so it is not localized in a few
bit positions. For this, we will use error-correcting codes. Recall that such
codes are used to introduce error-tolerance when transmitting messages over
noisy channels. Thus intuitively, the code must have the property that it
“smears” every bit of the message all over the transmitted message.

Having applied such an encoding to the weakly random string, the con-
struction selects bits from it using a better sampling method than pairwise
independent sampling, namely, the Nisan-Wigderson combinatorial design.

Nisan-Wigderson as a sampling method:

In (??) we defined a function NWf,S(z) using any function f : {0, 1}l →
{0, 1} and a combinatorial design S. Note that the definition works for
every function, not just hard-to-compute functions. Now we observe that
NWf,S(z) is actually a way to sample entries from the truth table of f .

Think of f as a bitstring of length 2l, namely, its truth table. (Like-
wise, we can think of any circuit with l-bit inputs and with 0/1 outputs
as computing a string of length 2l.) Given any z (“the seed”), NWf,S(z)
is just a method to use z to sample a sequence of m bits from f . This is
completely analogous to pairwise independent sampling considered above;
see Figure ??.

Figure unavailable in pdf file.

Figure 17.3: Nisan-Wigderson as a sampling method: An (l, α)-design (S1, S2, . . . , Sm)
where each Si ⊆ [t], |Si| = l can be viewed as a way to use z ∈ {0, 1}t to samplem bits from
any string of length 2l, which is viewed as the truth table of a function f :{0, 1}l → {0, 1}.

List-decodable codes

The construction will use the following kind of codes.
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Definition 17.36
If δ > 0, a mapping σ :{0, 1}N → {0, 1}N̄ is called an error-correcting code

that is list-decodable up to error 1/2−δ if for every w ∈ {0, 1}N̄ , the number
of y ∈ BN such that w, σ(y) disagree in at most 1/2 − δ fraction of bits is
at most 1/δ2.

The set
{
σ(x) : x ∈ {0, 1}N

}
is called the set of codewords.

The name “list-decodable” owes to the fact that if we transmit x over a noisy
channel after first encoding with σ then even if the channel flips 1/2 − δ
fraction of bits, there is a small “list” of y that the received message could
be decoded to. (Unique decoding may not be possible, but this will be of no
consequence in the construction below.) The exercises ask you to prove that
list-decodable codes exist with N̄ = poly(N, 1/δ), where σ is computable in
polynomial time.

Trevisan’s extractor:

Suppose we are given an (N, k)-source. We fix σ : {0, 1}N → {0, 1}N̄ , a
polynomial-time computable code that is list-decodable upto to error 1/2−
ε/m. We assume that N̄ is a power of 2 and let l = log2 N̄ . Now every string
x ∈ {0, 1}N̄ may be viewed as a boolean function < x >: {0, 1}log N̄ → {0, 1}
whose truth table is x. Let S = (S1, . . . , Sm) be a (l, logm) design over [t].

The extractor ExtNW : {0, 1}N × {0, 1}t → {0, 1}m is defined as

ExtNWσ,S(x, z) = NW<σ(x)>,S(z) .

That is, ExtNW encodes its first (“weakly random”) input x using an error-
correcting code, then uses Nisan-Wigderson sampling on the resulting string
using the second (“truly random”) input z as a seed.

Lemma 17.37
For sufficiently large m and for ε > 2−m

2
, ExtNWσ,S is a (m3, 2ε)-extractor.

Proof: Let X be an (N, k) source where the min-entropy k is m3. To
prove that the distribution ExtNW (a, z) where a ∈ X, z ∈ {0, 1}t is close
to uniform, it suffices (see our remarks after Definition 17.30) to show for
each function D : {0, 1}m → {0, 1} that∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣ ≤ 2ε. (18)

For the rest of this proof, we fix an arbitrary D and prove that (18) holds
for it.
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The role played by this test D is somewhat reminiscent of that played
by the distinguisher algorithm in the definition of a pseudorandom genera-
tor, except, of course, D is allowed to be arbitrarily inefficient. This is why
we will use the black-box version of the Nisan-Wigderson analysis (Corol-
lary ??), which does not care about the complexity of the distinguisher.

Let B be the set of bad a’s for this D, where string a ∈ X is bad for D
if ∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣ > ε.

We show that B is small using a counting argument: we exhibit a 1-1
mapping from the set of bad a’s to another set G, and prove G is small.
Actually, here is G:

G =
{
circuits of size O(m2)

}
× {0, 1}2 log(m/ε) × {0, 1}2 .

The number of circuits of size O(m2) is 2O(m2 logm), so |G| ≤ 2O(m2 logm) ×
2(m/ε)2 = 2O(m2 logm).

Let us exhibit a 1-1 mapping from B to G. When a is bad, Corollary ??
implies that there is a circuit C of size O(m2) such that either the circuit
D(C()) or its negation –XORed with some fixed bit b—agrees with σ(a)
on a fraction 1/2 + ε/m of its entries. (The reason we have to allow either
D(C()) or its complement is the |·| sign in the statement of Corollary ??.)
Let w ∈ {0, 1}N̄ be the string computed by this circuit. Then σ(a) disagrees
with w in at most 1/2 − ε/m fraction of bits. By the assumed property of
the code σ, at most (m/ε)2 other codewords have this property. Hence a
is completely specified by the following information: (a) circuit C; this is
specified by O(m2 logm) bits (b) whether to use D(C()) or its complement
to compute w, and also the value of the unknown bit b; this is specified by
2 bits (c) which of the (m/ε)2 codewords around w to pick as σ(a); this is
specified by d2 log(m/ε)e bits assuming the codewords around w are ordered
in some canonical way. Thus we have described the mapping from B to G.

We conclude that for any fixed D, there are at most 2O(m2 logm) bad
strings. The probability that an element a taken from X is bad for D is (by
Lemma ??) at most 2−m

3 · 2O(m2 logm) < ε for sufficiently large m. We then
have ∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣
≤

∑
a

Pr[X = a]
∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣
≤ Pr[X ∈ B] + ε ≤ 2ε,
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where the last line used the fact that if a 6∈ B, then by definition of B,∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]
∣∣∣ ≤ ε. �

The following theorem is an immediate consequence of the above lemma.

Theorem 17.38
Fix a constant ε; for every N and k = NΩ(1) there is a polynomial-time

computable (k, ε)-extractor Ext : {0, 1}N×{0, 1}t → {0, 1}m where m = k1/3

and t = O(logN).

17.5 Applications of Extractors

Extractors are deterministic objects with strong pseudorandom properties.
We describe a few important uses for them; many more will undoubtedly be
found in future.

17.5.1 Graph constructions

An extractor is essentially a graph-theoretic object; see Figure ??. (In fact,
extractors have been used to construct expander graphs.) Think of a (k, ε)
extractor Ext : {0, 1}N × {0, 1}t → {0, 1}m as a bipartite graph whose left
side contains one node for each string in {0, 1}N and the right side contains
a node for each string in {0, 1}m. Each node a on the left is incident to 2t

edges, labelled with strings in {0, 1}t, with the right endpoint of the edge
labeled with z being Ext(a, z).

An (N, k)-source corresponds to any distribution on the left side with
min-entropy at least k. The extractor’s definition implies that picking a node
according to this distribution and a random outgoing edge gives a node on
the right that is essentially uniformly distributed.

Figure unavailable in pdf file.

Figure 17.4: An extractor Ext : {0, 1}N × {0, 1}T → {0, 1}m defines a bipartite graph
where every node on the left has degree 2T .

This implies in particular that for every set X on the left side of size
exactly 2k —notice, this is a special case of an (N, k)-source— its neighbor
set Γ(X) on the right satisfies |Γ(X)| ≥ (1− ε)2m.

One can in fact show a converse, that high expansion implies that the
graph is an extractor; see Chapter notes.
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17.5.2 Running randomized algorithms using weak random
sources

We now describe how to use extractors to simulate probabilistic algorithms
using weak random sources. Suppose that A(·, ·) is a probabilistic algorithm
that on an input of length n uses m = m(n) random bits, and suppose that
for every x we have Prr[A(x, r) = right answer ] ≥ 3/4. If A’s answers are
0/1, then such algorithms can be viewed as defining a BPP language, but
here we allow a more general scenario. Suppose Ext : {0, 1}N × {0, 1}t →
{0, 1}m is a (k, 1/4)-extractor.

Consider the following algorithm A′: on input x ∈ {0, 1}n and given a
string a ∈ {0, 1}N from the weakly random source, the algorithm enumerates
all choices for the seed z and computes A(x,Ext(a, z). Let

A′(x, a) = majority value of
{
A(x,Ext(a, z)) : z ∈ {0, 1}t

}
(19)

The running time of A′ is approximately 2t times that of A. We show that if
a comes from an (n, k + 2) source, then A′ outputs the correct answer with
probability at least 3/4.

Fix the input x. Let R = {r ∈ {0, 1}m : A(x, r) = right answer }, and
thus |R| ≥ 3

42m. Let B be the set of strings a ∈ {0, 1}N for which the
majority answer computed by algorithm A′ is incorrect, namely,

B =
{
a : Prz∈{0,1}t [A(x,Ext(a, z)) = right answer] < 1/2

}
=
{
a : Prz∈{0,1}t [Ext(a, z) ∈ R] < 1/2

}
claim: |B| ≤ 2k.
Let random variable Y correspond to picking an element uniformly at ran-
dom from B. Thus Y has min-entropy logB, and may be viewed as a
(N, logB)-source. By definition of B,

Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R] < 1/2.

But |R| = 3
42m, so we have∣∣∣Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R]−Prr∈{0,1}m [r ∈ R]

∣∣∣ > 1/4,

which implies that the statistical distance between the uniform distribution
and Ext(Y, z) is at least 1/4. Since Ext is a (k, 1/4)-extractor, Y must have
min-entropy less than k. Hence |B| ≤ 2k and the Claim is proved.
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The correctness of the simulation now follows since

Pra∈X [A′(x, a) = right answer ] = 1−Pra∈X [a ∈ B]

≥ 1− 2−(k+2) · |B| ≥ 3/4, (by Lemma ??).

Thus we have shown the following.

Theorem 17.39
Suppose A is a probabilistic algorithm running in time TA(n) and using m(n)
random bits on inputs of length n. Suppose we have for every m(n) a con-

struction of a (k(n), 1/4)-extractor Extn : {0, 1}N × {0, 1}t(n) → {0, 1}m(n)

running in TE(n) time. Then A can be simulated in time 2t(TA +TE) using
one sample from a (N, k + 2) source.

17.5.3 Recycling random bits

We addressed the issue of recycling random bits in Section ??. An extractor
can also be used to recycle random bits. (Thus it should not be surprising
that random walks on expanders, which were used to recycle random bits in
Section ??, were also used to construct extractors above.)

Suppose A be a randomized algorithm that uses m random bits. Let
Ext : {0, 1}N × {0, 1}t) → {0, 1}m be any (k, ε)-extractor. Consider the
following algorithm. Randomly pick a string a ∈ {0, 1}N , and obtain 2t

strings in {0, 1}m obtained by computing Ext(a, z) for all z ∈ {0, 1}t. Run A
for all these random strings. Note that this manages to run A as many as 2t

times while using only N random bits. (For known extractor constructions,
N � 2tm, so this is a big saving.)

Now we analyse how well the error goes down. Suppose D ⊆ {0, 1}m be
the subset of strings for which A gives the correct answer. Let p = |D| /2m;
for a BPP algorithm p ≥ 2/3. Call an a ∈ {0, 1}N bad if the above algorithm
sees the correct answer for less than p − ε fraction of z’s. If the set of all
bad a’s were to have size more than 2k, the (N, k)-source X corresponding
to drawing uniformly at random from the bad a’s would satisfy

Pr[Ext(X,Ut) ∈ D]− Pr[Um ∈ D] > ε,

which would contradict the assumption that Ext is a (k, ε)-extractor. We
conclude that the probability that the above algorithm gets an incorrect
answer from A in p− ε fraction of the repeated runs is at most 2k/2N .
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17.5.4 Pseudorandom generators for spacebounded compu-
tation

Now we describe Nisan’s pseudo-random generators for space-bounded ran-
domized computation, which allows randomized logspace computations to
be run with O(log2 n) random bits.

Throughout this section we represent logspace machines by their config-
uration graph, which has size poly(n).
Theorem 17.40 (Nisan)
For every d there is a c > 0 and a polynomial-time computable function

g : {0, 1}c log2 n → {0, 1}n
d

such that for every space-bounded machine M
that has a configuration graph of size ≤ nd on inputs of size n:∣∣∣∣∣ Pr

r∈{0,1}nd
[M(x, r) = 1]− Pr

z∈{0,1}c log2 n
[M(x, g(z)) = 1]

∣∣∣∣∣ < 1
10
. (20)

We give a proof due to Impagliazzo, Nisan, and Wigderson [INW94]
(with further improvements by Raz and Reingold [RR99]) that uses extrac-
tors. Nisan’s original paper did not explicitly use extractors —the definition
of extractors came later and was influenced by results such as Nisan’s.

In fact, Nisan’s construction proves a result stronger than Theorem 17.40:
there is a polynomial-time simulation of every algorithm in BPL using
O(log2 n) space. (See Exercises.) Note that Savitch’s theorem (Theorem ??)
also implies that BPL ⊆ SPACE(log2 n), but the algorithm in Savitch’s
proof takes nlogn time. Saks and Zhou [SZ99a] improved Nisan’s ideas to
show that BPL ⊆ SPACE(log1.5 n), which leads many experts to conjec-
ture that BPL = L (i.e., randomness does not help logspace computations
at all). (For partial progress, see Section ?? later.)

The main intuition behind Nisan’s construction —and also the conjecture
BPL = L— is that the logspace machine has one-way access to the random
string and only O(log n) bits of memory. So it can only “remember” O(log n)
of the random bits it has seen. To exploit this we will use the following simple
lemma, which shows how to recycle a random string about which only a little
information is known. (Throughout this section, ◦ denotes concatenation of
strings.)
Lemma 17.41 (Recycling lemma)
Let f :{0, 1}n → {0, 1}s be any function and Ext :{0, 1}n×{0, 1}t → {0, 1}m
be a (k, ε/2)-extractor, where k = n− (s+ 1)− log 1

ε . When X ∈R {0, 1}n,

W ∈R {0, 1}m, z ∈R {0, 1}t, then

f(X) ◦W ≈ε f(X) ◦ Ext(X, z).
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Remark 17.42
When the lemma is used, s� n and n = m. Thus f(X), which has length
s, contains only a small amount of information about X. The Lemma says
that using an appropriate extractor (whose random seed can have length as
small as t = O(s+log(1/ε)) if we use Lemma 17.35) we can get a new string
Ext(X, z) that looks essentially random, even to somebody who knows f(X).

Proof: For v ∈ {0, 1}s we denote by Xv the random variable that is uni-
formly distributed over the set f−1(v). Then we can express ‖ (f(X) ◦W −
f(X) ◦ Ext(X, z) ‖ as

=
1
2

∑
v,w

∣∣∣Pr[f(X) = v ∧W = w]− Pr
z

[f(X) = v ∧ Ext(X, z) = w]
∣∣∣

=
∑
v

Pr[f(X) = v]· ‖W − Ext(Xv, z) ‖ (21)

Let V =
{
v : Pr[f(X) = v] ≥ ε/2s+1

}
. If v ∈ V , then we can view Xv

as a (n, k)-source, where k ≥ n − (s + 1) − log 1
ε . Thus by definition of

an extractor, Ext(Xv, r) ≈ε/2 W and hence the contributions from v ∈ V
sum to at most ε/2. The contributions from v 6∈ V are upperbounded by∑

v 6∈V Pr[f(X) = v] ≤ 2s × ε
2s+1 = ε/2. The lemma follows. �

Now we describe how the Recycling Lemma is useful in Nisan’s construc-
tion. Let M be a logspace machine. Fix an input of size n and view the
graph of all configurations of M on this input as a leveled branching pro-
gram. For some d ≥ 1, M has ≤ nd configurations and runs in time L ≤ nd.
Assume without loss of generality —since unneeded random bits can always
be ignored— that it uses 1 random bit at each step. Without loss of gen-
erality (by giving M a separate worktape that maintains a time counter),
we can assume that the configuration graph is leveled: it has L levels, with
level i containing configurations obtainable at time i. The first level con-
tains only the start node and the last level contains two nodes, “accept” and
“reject;” every other level has W = nd nodes. Each level i node has two
outgoing edges to level i + 1 nodes and the machine’s computation at this
node involves using the next bit in the random string to pick one of these
two outgoing edges. We sometimes call L the length of the configuration
graph and W the width.

For simplicity we first describe how to reduce the number of random
bits by a factor 2. Think of the L steps of the computation as divided in
two halves, each consuming L/2 random bits. Suppose we use some random
string X of length L/2 to run the first half, and the machine is now at node
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Figure unavailable in pdf file.

Figure 17.5: Configuration graph for machine M

v in the middle level. The only information known about X at this point
is the index of v, which is a string of length d log n. We may thus view
the first half of the branching program as a (deterministic) function that
maps {0, 1}L/2 bits to {0, 1}d logn bits. The Recycling Lemma allows us to
use a random seed of length O(log n) to recycle X to get an almost-random
string Ext(X, z) of length L/2, which can be used in the second half of the
computation. Thus we can run L steps of computation using L/2+O(log n)
bits, a saving of almost a factor 2. Using a similar idea recursively, Nisan’s
generator runs L steps using O(log n logL) random bits.

Now we formally define Nisan’s generator.

Definition 17.43 (Nisan’s generator)
For some r > 0 let Extk :{0, 1}kr×{0, 1}r → {0, 1}kr be an extractor function
for each k ≥ 0. For every integer k ≥ 0 the associated Nisan generator Gk :
{0, 1}kr → {0, 1}2k is defined recursively as (where |a| = (k − 1)r, |z| = r)

Gk(a ◦ z) =


z1 (i.e., first bit of z) k = 1

Gk−1(a) ◦Gk−1(Extk−1(a, z)) k > 1

Now we use this generator to prove Theorem 17.40. We only need to
show that the probability that the machine goes from the start node to the
“accept” node is similar for truly random strings and pseudorandom strings.
However, we will prove a stronger statement involving intermediate steps as
well.

If nodes u is a node in the configuration graph, and s is a string of
length 2k, then we denote by fu,2k(s) the node that the machine reaches
when started in u and its random string is s. Thus if s comes from some
distribution D, we can define a distribution fu,2k(D) on nodes that are 2k

levels further from u.
Theorem 17.44
Let r = O(log n) be such that for each k ≤ d log n, Extk :{0, 1}kr×{0, 1}r →
{0, 1}kr is a (kr − 2d log n, ε)-extractor. For every machine of the type de-
scribed in the previous paragraphs, and every node u in its configuration
graph:

‖ fu,2k(U2k)− fu,2k(Gk(Ukr)) ‖≤ 3kε, (22)
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where Ul denotes the uniform distribution on {0, 1}l.
Remark 17.45
To prove Theorem 17.40 let u = u0, the start configuration, and 2k = L, the
length of the entire computation. Choose 3kε < 1/10 (say), which means
log 1/ε = O(logL) = O(log n). Using the extractor of Section 17.4.4 as Extk,
we can let r = O(log n) and so the seed length kr = O(r logL) = O(log2 n).

Proof: (Theorem 17.44) Let εk denote the maximum value of the left hand
side of (22) over all machines. The lemma is proved if we can show induc-
tively that εk ≤ 2εk−1 + 2ε. The case k = 1 is trivial. At the inductive step,
we need to upperbound the distance between two distributions fu,2k(D1),
fu,2k(D4), for which we introduce two distributions D2,D3 and use triangle
inequality:

‖ fu,2k(D1)− fu,2k(D4) ‖≤
3∑
i=1

‖ fu,2k(Di)− fu,2k(Di+1) ‖ . (23)

The distributions will be:

D1 = U2k

D4 = Gk(Ukr)
D2 = U2k−1 ◦Gk−1(U(k−1)r)

D3 = Gk−1(U(k−1)r) ◦Gk−1(U ′(k−1)r) (U,U ′ are identical but independent).

We bound the summands in (23) one by one.

Claim 1: ‖ fu,2k(D1)− fu,2k(D2) ‖≤ εk−1.
Denote Pr[fu,2k−1(U2k−1) = w] by pu,w and Pr[fu,2k−1(Gk−1(U(k−1)r)) = w]
by qu,w. According to the inductive assumption,

1
2

∑
w

|pu,w − qu,w| =‖ fu,2k−1(U2k−1)− fu,2k−1(Gk−1(U(k−1)r)) ‖≤ εk−1.

Since D1 = U2k may be viewed as two independent copies of U2k−1 we have

‖ fu,2k(D1)− fu,2k(D2) ‖ =
∑
v

1
2

∣∣∣∣∣∑
w

puwpwv −
∑
w

puwqwv

∣∣∣∣∣
where w, v denote nodes 2k−1 and 2k levels respectively from u

=
∑
w

puw
1
2

∑
v

|pwv − qwv|

≤ εk−1 (using inductive hypothesis and
∑
w

puw = 1)
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Claim 2: ‖ fu,2k(D2)− fu,2k(D3) ‖≤ εk−1.

The proof is similar to the previous case.

Claim 3: ‖ fu,2k(D3)− fu,2k(D4) ‖≤ 2ε.
We use the Recycling Lemma. Let gu : {0, 1}(k−1)r → [1,W ] be defined as
gu(a) = fu,2k−1(Gk−1(a)). (To put it in words, apply the Nisan generator
to the seed a and use the result as a random string for the machine, using
u as the start node. Output the node you reach after 2k−1 steps.) Let
X,Y ∈ U(k−1)r and z ∈ Ur. According to the Recycling Lemma,

gu(X) ◦ Y ≈ε gu(X) ◦ Extk−1(X, z),

and then part 3 of Lemma 17.31 implies that the equivalence continues to
hold if we apply a (deterministic) function to the second string on both
sides. Thus

gu(X) ◦ gw(Y ) ≈ε gu(X) ◦ gw(Extk−1(X, z))

for all nodes w that are 2k−1 levels after u. The left distribution corresponds
to fu,2k(D3) (by which we mean that Pr[fu,2k(D3) = v] =

∑
w Pr[gu(X) =

w ∧ gw(Y ) = v]) and the right one to fu,2k(D4) and the proof is completed.
�

Chapter notes and history

The results of this section have not been presented in chronological order
and some important intermediate results have been omitted. Yao [Yao82]
first pointed out that cryptographic pseudorandom generators can be used
to derandomize BPP. A short paper of Sipser [Sip88] initiated the study
of “hardness versus randomness,” and pointed out the usefulness of a cer-
tain family of highly expanding graphs that are now called dispersers (they
are reminiscent of extractors). This research area received its name as well
as a thorough and brilliant development in a paper of Nisan and Wigder-
son [NW94]. missing discussion of followup works to NW94

Weak random sources were first considered in the 1950s by von Neu-
mann [von61]. The second volume of Knuth’s seminal work studies real-life
pseudorandom generators and their limitations. The study of weak random
sources as defined here started with Blum [Blu84]. Progressively weaker
models were then defined, culminating in the “correct” definition of an (N, k)
source in Zuckerman [Zuc90]. Zuckerman also observed that this definition
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generalizes all models that had been studied to date. (See [SZ99b] for an
account of various models considered by previous researchers.) He also gave
the first simulation of probabilistic algorithms with such sources assuming
k = Ω(N). A succession of papers has improved this result; for some ref-
erences, see the paper of Lu, Reingold, Vadhan, and Wigderson [LRVW03],
the current champion in this area (though very likely dethroned by the time
this book appears).

The earliest work on extractors —in the guise of leftover hash lemma of
Impagliazzo, Levin, and Luby [ILL89] mentioned in Section 17.4.3— took
place in context of cryptography, specifically, cryptographically secure pseu-
dorandom generators. Nisan [Nis92] then showed that hashing could be used
to define provably good pseudorandom generators for logspace.

The notion of an extractor was first formalized by Nisan and Zucker-
man [NZ96]. Trevisan [Tre01] pointed out that any “black-box” construc-
tion of a pseudorandom generator gives an extractor, and in particular
used the Nisan-Wigderson generator to construct extractors as described
in the chapter. His methodology has been sharpened in many other papers
(e.g.,see [LRVW03]).

Our discussion of derandomization has omitted many important papers
that successively improved Nisan-Wigderson and culminated in the result
of Impagliazzo and Wigderson [IW01]that either NEXP = BPP (random-
ness is truly powerful!) or BPP has an a subexponential “simulation.” 5

Such results raised hopes that we were getting close to at least a partial
derandomization of BPP, but these hopes were dashed by the Impagliazzo-
Kabanets [KI03] result of Section 17.3.

Trevisan’s insight about using pseudorandom generators to construct
extractors has been greatly extended. It is now understood that three com-
binatorial objects studied in three different fields are very similar: pseudo-
random generators (cryptography and derandomization), extractors (weak
random sources) and list-decodable error-correcting codes (coding theory
and information theory). Constructions of any one of these objects often
gives constructions of the other two. For a survey, see Vadhan’s lecture
notes [?].

5The “simulation” is in quotes because it could fail on some instances, but finding such
instances itself requires exponential computational power, which nature presumably does
not have.
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Exercises

§1 Verify Corollary 17.6.

§2 Show that there exists a number ε > 0 and a function G : {0, 1}∗ →
{0, 1}∗ that satisfies all of the conditions of a 2εn-pseudorandom gener-
ator per Definition ??, save for the computational efficiency condition.

Hint:showthatifforeveryn,arandomfunctionmappingnbits
to2

n/10
bitswillhavedesiredpropertieswithhighprobabilities.

§3 Show by a counting argument (i.e., probabilistic method) that for every
large enough n there is a function f : {0, 1}n → {0, 1}, such that
Havg(f) ≥ 2n/10.

§4 Prove that if there exists f ∈ E and ε > 0 such that Havg(f)(n) ≥ 2εn

for every n ∈ N, then MA = NP.

§5 We define an oracle Boolean circuit to be a Boolean circuit that have
special gates with unbounded fanin that are marked ORACLE. For a
Boolean circuit C and language O ⊆ {0, 1}∗, we define by CO(x) the
output of C on x, where the operation of the oracle gates when fed
input q is to output 1 iff q ∈ O.

(a) Prove that if every f ∈ E can be computed by a polynomial-
size circuits with oracle to SAT, then the polynomial hierarchy
collapses.

(b) For a function f : {0, 1}∗ → {0, 1} and O ⊆ {0, 1}∗, define
Havg

O(f) to be the function that maps every n ∈ N to the largest
S such that Prx∈R{0,1}n [C

O(x) = f(x)] ≤ 1/2 + 1/S.

§6 Prove Lemma 17.31.

§7 Prove that for every function Ext : {0, 1}n → {0, 1}m and there exists
an (n, n − 1)-source X and a bit b ∈ {0, 1} such that Pr[Ext(X)1 =
b] = 1 (where Ext(X)1 denotes the first bit of Ext(X)). Prove that this
implies that δ(Ext(X), Um) ≥ 1/2.

§8 Show that there is a constant c > 0 such that if an algorithm runs in
time T and requires m random bits, and m > k + c log T , then it is
not possible in general to simulate it in a blackbox fashion using an
(N, k) source and O(log n) truly random bits.
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Hint:Foreachsourceshowthatthereisarandomizedalgorithm
—itneednotbeefficient,sinceitisbeingusedasa“blackbox”—
forwhichthesimulationfails.

§9 A flat (N, k) source is a (N, k) source where for every x ∈ {0, 1}N px
is either 0 or exactly 2−k.

Show that a source X is an (N, k)-source iff it is a distribution on flat
sources. In other words, there is a set of flat (N, k)-sources X1, X2, . . .
and a distribution D on them such that drawing a sample of X corre-
sponds to picking one of the Xi’s according to D, and then drawing a
sample from Xi.

Hint:Youneedtoviewadistributionasapointina2
N

-
dimensionalspace,andshowthatXisintheconvexhullofthe
pointsthatrepresentallpossibleflatsources.

§10 Use Nisan’s generator to give an algorithm that produces universal
traversal sequences for n-node graphs (see Definition ??) in nO(logn)-
time and O(log2 n) space.

§11 Suppose boolean function f is (S, ε)-hard and let D be the distribution
on m-bit strings defined by picking inputs x1, x2, . . . , xm uniformly at
random and outputting f(x1)f(x2) · · · f(xm). Show that the statistical
distance between D and the uniform distribution is at most εm.

§12 Prove Lemma 17.34.

§13 (Klivans and van Melkebeek 1999) Suppose the conclusion of Lemma ??
is true. Then show that MA ⊆ i.o.−[NTIME(2n)/n].

(Slightly harder) Show that if NEXP 6= EXP then AM ⊆ i.o.−[NTIME(2n)/n].

§14 Prove Lemma ??.

Hint:WhataretheeigenvectorsofG
l
?Youonlyneedtoidentify

nofthem.

§15 Show that if S is any subset of at most half the vertices in a multigraph
G = (V,E) then the number of edges

∣∣E(S, S)
∣∣ going from S to S is

at least (1− λ(G)) |S| /2.

Hint:UsetheCourant-Fishercharacterization.Youwillneedto
pickaparticularvectorthatisorthogonaltothefirsteigenvector,
whichis(1,1,...,1).
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Chapter 18

Hardness Amplification and
Error Correcting Codes

We pointed out in earlier chapters (e.g., Chapter ?? the distinction between
worst-case hardness and average-case hardness. For example, the problem
of finding the smallest factor of every given integer seems difficult on worst-
case instances, and yet is trivial for at least half the integers –namely, the
even ones. We also saw that functions that are average-case hard have many
uses, notably in cryptography and derandomization.

In this chapter we study techniques for amplifying hardness. First, we see
Yao’s XOR Lemma, which transforms a “mildly hard” function (i.e., one that
is hard to compute on a small fraction of the instances) to a function that is
extremely hard, for which the best algorithm is as bad as the algorithm that
just randomly guesses the answer. We mentioned Yao’s result in the chapter
on cryptography as a means to transform weak one-way functions into strong
one-way functions. The second result in this chapter is a technique to use
error-correcting codes to transform worst-case hard functions into average-
case hard functions. This transformation unfortunately makes the running
time exponential, and is thus useful only in derandomization, and not in
cryptography.

In addition to their applications in complexity theory, the ideas covered
here have had other uses, including new constructions of error-correcting
codes and new algorithms in machine learning.
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18.1 Hardness and Hardness Amplification.

We now define a slightly more refined notion of hardness, that generalizes
both the notions of worst-case and average-case hardness given in Defini-
tion 17.7:

Definition 18.1 (Hardness)
Let f : {0, 1}∗ → {0, 1} and ρ : N → [0, 1]. We define Hρavg(f) to be the func-
tion from N to N that maps every number n to the largest number S such that
Prx∈R{0,1}n [C(x) = f(x)] < ρ(n) for every Boolean circuit C on n inputs with size
at most S.

Note that, in the notations of Definition 17.7, Hwrs(f) = H1
avg(f) and

Havg(f)(n) = max
{
S : H1/2+1/S

avg (f)(n) ≥ S
}
. In this chapter we show the

following results for every two functions S, S′ : N→ N:

Worst-case to mild hardness. If there is a function f ∈ E = DTIME(2O(n))
such that Hwrs(f)(n) = H1

avg(f)(n) ≥ S(n) then there is a function f ′ ∈ E
such that H0.99

avg (f)(n) ≥ S(εn)ε for some constant ε > 0 and every suf-
ficiently large n.

Mild to strong hardness. If f ′ ∈ E satisfies H0.99
avg (f ′)(n) ≥ S′(n) then

there is f ′′ ∈ E and ε > 0 such that Havg(f ′′)(n) ≥ S′(nε)ε.

Combining these two results with Theorem 17.10, this implies that if
there exists a function f ∈ E with Hwrs(f)(n) ≥ S(n) then there exists an
S(`ε)ε-pseudorandom generator for some ε > 0, and hence:

Corollary 1 If there exists f ∈ E and ε > 0 such that Hwrs(f) ≥ 2n
ε

then
BPP ⊆ QuasiP = ∪cDTIME(2lognc).

Corollary 2 If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆
SUBEXP = ∩εDTIME(2n

ε
).

To get to BPP = P, we need a stronger transformation. We do this
by showing how to transform in one fell swoop, a function f ∈ E with
Hwrs(f) ≥ S(n) into a function f ′ ∈ E with Havg(f) ≥ S(εn)ε for some ε > 0.
Combined with Theorem 17.10, this implies that BPP = P if there exists
f ∈ E with Hwrs(f) ≥ 2Ω(n).

Web draft 2006-09-28 18:09



DRAFT

18.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA. 379

18.2 Mild to strong hardness: Yao’s XOR Lemma.

We start with the second result described above: transforming a function
that has “mild” average-case hardness to a function that has strong average-
case hardness. The transformation is actually quite simple and natural, but
its analysis is somewhat involved (yet, in our opinion, beautiful).

Theorem 18.2 (Yao’s XOR Lemma)
For every f : {0, 1}n → {0, 1} and k ∈ N, define f⊕k : {0, 1}nk → {0, 1} as follows:

f⊕k(x1, . . . , xk) =
∑k

i=1 f(xi) (mod 2).
For every δ > 0, S and ε > 2(1− δ/2)k, if H1−δ

avg (f) ≥ S then

H1/2+ε
avg (f⊕k) ≥ ε2

100 log(1/δε)S

The intuition behind Theorem 18.2 derives from the following fact. Sup-
pose we have a biased coin that, whenever it is tossed, comes up heads with
probability 1− δ and tails with probability δ. If δ is small, each coin toss is
fairly predictable. But suppose we now toss it k times and define a compos-
ite coin toss that is “heads” iff the coin came up heads an odd number of
times. Then the probability of “heads” in this composite coin toss is at most
1/2+(1−2δ)k (see Exercise 1), which tends to 1/2 as k increases. Thus the
parity of coin tosses becomes quite unpredictable. The analogy to our case
is that intuitively, for each i, a circuit of size S has chance at most 1− δ of
“knowing” f(xi) if xi is random. Thus from its perspective, whether or not
it will be able to know f(xi) is like a biased coin toss. Hence its chance of
guessing the parity of the k bits should be roughly like 1/2 + (1− 2δ)k.

We transform this intuition into a proof via an elegant result of Impagli-
azzo, that provides some fascinating insight on mildly hard functions.

Definition 18.3 (δ-density distribution)
For δ < 1 a δ-density distribution H over {0, 1}n is one such that for every
x ∈ {0, 1}n, Pr[H = x] ≤ 2−n

δ .

Remark 18.4
Note that in Chapter 17 we would have called it a distribution with min
entropy n− log 1/δ.

The motivating example for this definition is the distribution that is
uniform over some subset of size δ2n and has 0 probability outside this set.
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A priori, one can think that a function f that is hard to compute by
small circuits with probability 1− δ could have two possible forms: (a) the
hardness is sort of “spread” all over the inputs, and it is roughly 1− δ-hard
on every significant set of inputs or (b) there is a subset H of roughly a δ
fraction of the inputs such that on H the function is extremely hard (cannot
be computed better than 1

2 + ε for some tiny ε) and on the rest of the inputs
the function may be even very easy. Such a set may be thought of as lying
at the core of the hardness of f and is sometimes called the hardcore set.
Impagliazzo’s Lemma shows that actually every hard function has the form
(b). (While the Lemma talks about distributions and not sets, one can
easily transform it into a result on sets.)

Lemma 18.5 (Impagliazzo’s Hardcore Lemma)
For every δ > 0, f : {0, 1}n → {0, 1}n, and ε > 0, if H1−δ

avg (f) ≥ S then there
exists a distribution H over {0, 1}n of density at least δ/2 such that for every

circuit C of size at most ε2S
100 log(1/δε) ,

Pr
x∈RH

[C(x) = f(x)] ≤ 1/2 + ε ,

Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now use Lemma 18.5 to transform the biased-coins intuition discussed
above into a proof of the XOR Lemma. Let f : {0, 1}n → {0, 1} be a function
such that H1−δ

avg (f) ≥ S, let k ∈ N and suppose, for the sake of contradiction,
that there is a circuit C of size ε2

100 log(1/δε)S such that

Pr
(x1,...,xk)∈RUkn

[
C(x1, . . . , xk) =

k∑
i=1

f(xi) (mod 2)

]
≥ 1/2 + ε , (1)

where ε > 2(1− δ/2)k.
Let H be the hardcore distribution of dens ity at least δ′ = δ/2 that

is obtained from Lemma 18.5, on which every circuit C ′ fails to compute f
with probability better than 1/2+ε/2. Define a distribution G over {0, 1}n as
follows: for every x ∈ {0, 1}n, Pr[G = x] = (1− δ′ Pr[H = x])/(1− δ′). Note
that G is indeed a well-defined distribution, as H has density at least δ′.
Also note that if H was the uniform distribution over some subset of {0, 1}n
of size δ′2n, then G will be the uniform distribution over the complement of
this subset.

We can think of the process of picking a uniform element in {0, 1}n as
follows: first toss a δ′-biased coin that comes up “heads” with probability δ.
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Then, if it came up “heads” choose a random element out of H, and with
probability 1 − δ′, and otherwise choose a random element out of G. We
shorthand this and write

Un = (1− δ′)G+ δ′H . (2)

If we consider the distribution (Un)2 of picking two random strings, then
by (2) it can be written as (1−δ′)2G2 +(1−δ′)δ′GH+δ′(1−δ′)HG+δ′2H2.
Similarly, for every k

(Un)k = (1− δ′)kGk + (1− δ′)k−1δ′Gk−1H + · · ·+ δ′kHk . (3)

For every distribution D over {0, 1}nk let PD be the probability of the event
of the left-hand side of (1) that C(x1, . . . , xk) =

∑k
i=1 f(xi) (mod 2) where

x1, . . . , xk are chosen from D. Then, combining (1) and (3),

1/2 + ε ≤ P(Un)k = (1− δ′)kPGk + (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

But since δ′ = δ/2 and ε > 2(1− δ/2)k and PGk ≤ 1 we get

1/2 + ε/2 ≤ 1/2 + ε− (1− δ′)k ≤ (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

Notice, the coefficients of all distributions on the right hand side sum up to
less than one, so there must exist a distribution D that has at least one H
component such that PD ≥ 1/2 + ε/2. Suppose that D = Gk−1H (all other
cases are handled in a similar way). Then, we get that

Pr
X1,...,Xk−1∈RG,Xk∈RH

[C(X1, . . . , Xk−1, Xk) =
k∑
i=1

f(Xi) (mod 2)] ≥ 1/2+ε/2 .

(4)
By the averaging principle, (4) implies that there exist k−1 strings x1, . . . , xk−1

such that if b =
∑k−1

i=1 f(xi) (mod 2) then,

Pr
Xk∈RH

[C(x1, . . . , xk−1, Xk) = b+ f(Xk) (mod 2)] ≥ 1/2 + ε/2 . (5)

But by “hardwiring” the values x1, . . . , xk and b into the circuit C, (5) shows
a direct contradiction to the fact that H is a hardcore distribution for the
function f . �
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18.3 Proof of Impagliazzo’s Lemma

Let f be a function with H1−δ
avg (f) ≥ S. To Prove Lemma 18.5 we need to show

a distribution H over {0, 1}n (with no element of weight more than 2·2−n/δ)
on which every circuit C of size S′ cannot compute f with probability better
than 1/2 + ε (where S′,ε are as in the Lemma’s statement).

Let’s think of this task as a game between two players named Russell
and Noam. Russell first sends to Noam some distribution H over {0, 1}n
with density at least δ. Then Noam sends to Russell some circuit C of size
at most S′. Russell then pays to Noam Ex∈RH [RightC(x)] dollars, where
RightC(x) is equal to 1 if C(x) = f(x) and equal to 0 otherwise. What we
need to prove is that there is distribution that Russell can choose, such that
no matter what circuit Noam sends, Russell will not have to pay him more
than 1/2 + ε dollars.

An initial observation is that Russell could have easily ensured this if he
was allowed to play second instead of first. Indeed, under our assumptions,
for every circuit C of size S (and so, in particular also for circuits of size S′

which is smaller than S), there exists a set SC of at least δ2n ≥ (δ/2)2n in-
puts such that C(x) 6= f(x) for every x ∈ SC . Thus, if Noam had to send his
circuit C, then Russell could have chosen H to be the uniform distribution
over SC . Thus H would have density at least δ/2 and Ex∈RH [RightC(x)] = 0,
meaning that Russell wouldn’t have to pay Noam a single cent.

Now this game is a zero sum game, since whatever Noam gains Russell
loses and vice versa, tempting us to invoke von-Neumann’s famous Min-
Max Theorem (see Note 18.7) that says that in a zero-sum game it does not
matter who plays first as long as we allow randomized strategies.1 What
does it mean to allow randomized strategies in our context? It means that
Noam can send a distribution C over circuits instead of a single circuit, and
the amount Russell will pay is EC∈RCEx∈RH [RightC(x)]. (It also means that
Russell is allowed to send a distribution over δ/2-density distributions, but
this is equivalent to sending a single δ/2-density distribution.)

Thus, we only need to show that, when playing second, Russell can
still ensure a payment of at most 1/2 + ε dollars even when Noam sends a

1The careful reader might note that another requirement is that the set of possible
moves by each player is finite, which does not seem to hold in our case as Russell can send
any one of the infinitely many δ/2-density distributions. However, by either requiring
that the probabilities of the distribution are multiples of ε

100·2n (which won’t make any
significant difference in the game’s outcome), or using the fact that each such distribution
is a convex sum of uniform distributions over sets of size at least (δ/2)2n (see Exercise 9
of Chapter 17), we can make this game finite.
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distribution C of S′-sized circuits. For every distribution C, we say that an
input x ∈ {0, 1}n is good for Noam (good for short) with respect to C if
EC∈RC [RightC(x)] ≥ 1/2 + ε. It suffices to show that for every distribution
C over circuits of size at most S′, the number of good x’s with respect to
C is at most 1 − δ/2. (Indeed, this means that for every C, Russell could
choose as its distribution H the uniform distribution over the bad inputs
with respect to C.)

Suppose otherwise, that there is at least a 1−δ/2 fraction of inputs that
are good for C. We will use this to come up with an S-sized circuit C that
computes f on at least a 1−δ fraction of the inputs in {0, 1}n, contradicting
the assumption that H1−δ

avg (f) ≥ S. Let t = 10 log(1/δε)/ε2, choose C1, . . . , Ct
at random from C and let C = maj{C1, . . . , Ct} be the circuit of size tS′ < S
circuit that on input x outputs the majority value of {C1(x), . . . , Ct(x)}. If
x is good for C, then by the Chernoff bound we have that C(x) = f(x) with
probability at least 1 − δ/2 over the choice of C1, . . . , Ct. Since we assume
at least 1− δ/2 of the inputs are good for C, we get that

Ex∈R{0,1}nEC1∈RC,...,Ct∈RC [Rightmaj{C1,...,Ct}(x)] ≥ (1− δ
2)(1− δ

2) ≥ 1− δ . (6)

But by linearity of expectation, we can switch the order of expectations in
(6) obtaining that

EC1∈RC,...,Ct∈RCEx∈R{0,1}n [Rightmaj{C1,...,Ct}(x)] ≥ 1− δ ,

which in particular implies that there exists a circuit C of size at most S
such that Ex∈RUn [RightC(x)] ≥ 1 − δ, or in other words, C computes f on
at least a 1− δ fraction of the inputs. �

Remark 18.6
Taken in the contrapositive, Lemma 18.5 implies that if for every significant
chunk of the inputs there is some circuit that computes f with on this chunk
with some advantage over 1/2, then there is a single circuit that computes
f with good probability over all inputs. In machine learning such a result
(transforming a way to weakly predict some function into a way to strongly
predict it) is called Boosting of learning methods. Although the proof we
presented here is non-constructive, Impagliazzo’s original proof was con-
structive, and was used to obtain a boosting algorithm yielding some new
results in machine learning, see [?].
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Note 18.7 (The Min-Max Theorem)
A zero sum game is, as the name implies, a game between two parties in
which whatever one party loses is won by the other party. It is modeled
by an m × n matrix A = (ai,j) of real numbers. The game consists of only
a single move. One party, called the minimizer or column player, chooses
an index j ∈ [n] while the other party, called the maximizer or row player,
chooses an index i ∈ [m]. The outcome is that the column player has to pay
ai,j units of money to the row player (if ai,j is negative then actually the row
player has to pay). Clearly, the order in which players make their moves is
important. Surprisingly, if we allow the players randomized strategies, then
the order of play becomes unimportant.

The game with randomized (also known as mixed) strategies is as follows.
The column player chooses a distribution over the columns; that is, a vector
p ∈ [0, 1]n with

∑n
i=1 pi = 1. Similarly, the row player chooses a distribution

q over the rows. The amount paid is the expectation of ai,j for j chosen from
p and i chosen from q. If we think of p as a column vector and q as a row
vector then this is equal to qAp. The min-max theorem says:

min
p∈[0,1]n

Σipi=1

max
q∈[0,1]m

Σiqi=1

qAp = max
q∈[0,1]m

Σiqi=1

min
p∈[0,1]n

Σipi=1

qAp (7)

The min-max theorem can be proven using the following result, known as
Farkas’ Lemma:2 if C and D are disjoint convex subsets of Rm, then there
is an m − 1 dimensional hyperplane that separates them. That is, there is
a vector z and a number a such that for every x ∈ C, 〈x, z〉 =

∑
i xizi ≤ a

and for every y ∈ D, 〈y, z〉 ≥ a. (A subset C ⊆ Rm is convex if
whenever it contains a pair of points x,y, it contains the line segment
{αx + (1− α)y : 0 ≤ α ≤ 1} that lies between them.) We ask you to prove
Farkas’ Lemma in Exercise 2 but here is a “proof by picture” for the two
dimensional case:

C
D

hyperplane

Farkas’ Lemma implies the min-max theorem by noting that
maxq minp qAp ≥ c if and only if the convex set D =
{Ap : p ∈ [0, 1]n

∑
i pi = 1} does not intersect with the convex set

C =
{
x ∈ Rm : ∀i∈[m]xi < c

}
and using the Lemma to show that this

implies the existence of a probability vector q such that 〈q,y〉 ≥ c for every
y ∈ D (see Exercise 3). The Min-Max Theorem is equivalent to another
well-known result called linear programming duality, that can also be proved
using Farkas’ Lemma (see Exercise 4). Web draft 2006-09-28 18:09
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18.4 Error correcting codes: the intuitive connec-
tion to hardness amplification

Now we construct average-case hard functions using functions that are only
worst-case hard. To do so, we desire a way to transform any function f
to another function g such that if there is a small circuit that computes g
approximately (i.e., correctly outputs g(x) for many x) then there is a small
circuit that computes f at all points. Taking the contrapositive, we can
conclude that if there is no small circuit that computes f then there is no
small circuit that computes g approximately.

Let us reason abstractly about how to go about the above task.

View a function f : {0, 1}n → {0, 1} as its truth table, namely, as a
string of length 2n, and view any circuit C for computing this function as a
device that, given any index x ∈ [2n], gives the x’th bit in this string. If the
circuit only computes g on ”average” then this device may be thought of as
only partially correct; it gives the right bit only for many indices x’s, but
not all. Thus we need to show how to turn a partially correct string for g
into a completely correct string for f . This is of course reminiscent of error
correcting codes (ECC), but with a distinct twist involving computational
efficiency of decoding, which we will call local decoding.

The classical theory of ECC’s (invented by Shannon in 1949) concerns the
following problem. We want to record some data x ∈ {0, 1}n on a compact
disk to retrieve at a later date, but that compact disk might scratched and
say 10% of its contents might be corrupted. The idea behind error correcting
codes is to encode x using some redundancy so that such corruptions do not
prevent us from recovering x.

The naive idea of redundancy is to introduce repetitions but that does
not work. For example suppose we repeat each bit three times, in other
words encode x as the string y = x1x1x1x2x2x2 . . . xnxnxn. But now if the
first three coordinates of y are corrupted then we cannot recover x1, even if
all other coordinates of y are intact. (Note that the first three coordinates
take only a 1/n � 10% fraction of the entire string y.) Clearly, we need a
smarter way.

2Many texts use the name Farkas’ Lemma only to denote a special case of the result
stated in Note 18.7. Namely the result that there is a separating hyperplane between any
disjoint sets C,D such that C is a single point and D is a set of the form {Ax : ∀ixi > 0}
for some matrix A.
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Definition 18.8 (Error Correcting Codes)
For x, y ∈ {0, 1}m, the fractional Hamming distance of x and y, denoted ∆(x, y), is
equal to 1

m |{i : xi 6= yi}|.
For every δ ∈ [0, 1], a function E : {0, 1}n → {0, 1}m is an error correcting code
(ECC) with distance δ, if for every x 6= y ∈ {0, 1}n, ∆(E(x), E(y)) ≥ δ. We call the
set Im(E) = {E(x) : x ∈ {0, 1}n} the set of codewords of E.

δ/2 δ/2
E(x) E(x’)

E(x’’)

y

Figure 18.1: In a δ-distance error correcting code, ∆(E(x), E(x′)) ≥ δ for every x 6= x′.
We can recover x from every string y satisfying ∆(y,E(x)) < δ/2 since the δ/2-radius ball
around every codeword z = E(x) does not contain any other codeword.

Suppose E : {0, 1}n → {0, 1}m is an ECC of distance δ > 0.2. Then
the encoding x → E(x) suffices for the CD storage problem (momentarily
ignoring issues of computational efficiency). Indeed, if y is obtained by
corrupting 0.1m coordinates of E(x), then ∆(y,E(x)) < δ/2 and by the
triangle inequality ∆(y,E(x′)) > δ/2 for every x′ 6= x. Thus, x is the
unique string that satisfies ∆(y,E(x)) < δ/2. (See Figure 18.1.)

Of course, we still need to show that error correcting codes with minimum
distance 0.2 actually exist. The following lemma shows this. It introduces
H(δ), the so-called entropy function, which lies strictly between 0 and 1
when δ ∈ (0, 1).

Lemma 18.9
For every δ < 1/2 and sufficiently large n, there exists a function E :
{0, 1}n → {0, 1}2n/(1−H(δ)) that is an error correcting code with distance
δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).

Proof: We simply choose the function E : {0, 1}n → {0, 1}m at random for
m = 2n/(1 − H(δ)n. That is, we choose 2n random strings y1, y2, . . . , y2n
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and E will map the input x ∈ {0, 1}n (which we can identify with a number
in [2n]) to the string yx.

It suffices to show that the probability that for some i < j with i, j ∈ [2n],
∆(yi, yj) < δ is less than 1. But for every string yi, the number of strings
that are of distance at most δ to it is

(
m

d δm e
)

which at most 0.99 · 2H(δ)m for
m sufficiently large (see Appendix) and so for every j > i, the probability
that yj falls in this ball is bounded by 0.99 · 2H(δ)m/2m. Since there are at
most 22n such pairs i, j, we only need to show that

0.99 · 22n 2H(δ)m

2m
< 1 .

which is indeed the case for our choice of m. �

Remark 18.10
By a slightly more clever argument, we can get rid of the constant 2 above,
and show that there exists such a code E : {0, 1}n → {0, 1}n/(1−H(δ)) (see
Exercise 6). We do not know whether this is the smallest value ofm possible.

Why half? Lemma 18.9 only provides codes of distance δ for δ < 1/2
and you might wonder whether this is inherent or can we have codes of even
greater distance. It turns out we can have codes of distance 1/2 but only if we
allow m to be exponentially larger than n (i.e., m ≥ 2n/2). For every δ > 1/2,
if n is sufficiently large then there is no ECC E : {0, 1}n → {0, 1}m that has
distance δ, no matter how large m is. Both these bounds are explored in
Exercise 7.

The mere existence of an error correcting code is not sufficient for most
applications: we need to actually be able to compute them. For this we need
to show an explicit function E : {0, 1}n → {0, 1}m that is an ECC satisfying
the following properties:

Efficient encoding There is a polynomial time algorithm to compute E(x)
from x.

Efficient decoding There is a polynomial time algorithm to compute x
from every y such that ∆(y,E(x)) < ρ for some ρ. (For this to be
possible, the number ρ must be less than δ/2, where δ is the distance
of E.)

There is a very rich and still ongoing body of work dedicated to this
task, of which Section 18.5 describes a few examples.
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Note 18.11 (High dimensional geometry)
While we are normally used to geometry in two or three dimensions, we can
get some intuition on error correcting codes by considering the geometry of
high dimensional spaces. Perhaps the strongest effect of high dimension is the
following: compare the cube with all sides 1 and the ball of radius 1/4. In one
dimension, the ratio between their areas is 1/(1/2) = 2, in two dimensions
it is 1/(π1/42) = 16/π, while in three dimensions it is 1/(4/3π1/43) = 48/π.
Note that as the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (Similarly for any two radii r1 > r2 the volume
of the m-dimension ball of radius r1 is exponentially larger than the volume
of the r2-radius ball.)

0   1/4        3/4   1
Ball volume=1/2

0   1/4        3/4   1 0   1/4        3/4   1

       1   3/4  1/4

B.V. = π(1/4)2~3.14/16 B.V. =4/3π(1/4)3 ~ 3.14/48

This intuition lies behind the existence of an error correcting code with
distance 1/4 mapping n bit strings intom = 5n bit strings. We can have 2m/5

codewords that are all of distance at least 1/4 from one another because, also
in the Hamming distance, the volume of the radius 1/4 ball is exponentially
smaller than the volume of the cube {0, 1}n. Therefore, we can “pack” 2m/5

such balls within the cube.
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x

E(x)

corrupted E(x)

x

f

E(f)

algorithm computing f
w/ prob 1-ρ

length n string function on {0,1}n =
string of length 2n

algorithm computing f perfectly

Figure 18.2: An ECC allows to map a string x to E(x) such as x can be reconstructed
from a corrupted version of E(x). The idea is to treat a function f : {0, 1}n → {0, 1}
as a string in {0, 1}2n

, encode it using an ECC to a function f̂ . Intuitively, f̂ should be
hard on the average case if f was hard on the worst case, since an algorithm to solve f̂
with probability 1− ρ could be transformed (using the ECC’s decoding algorithm) to an
algorithm computing f on every input.

18.4.1 Local decoding

For use in hardness amplification, we need ECCs with more than just ef-
ficient encoding and decoding algorithms: we need local decoders, in other
words, decoding algorithms whose running time is polylogarithmic. Let us
see why.

Recall that we are viewing a function from {0, 1}n to {0, 1} as a string
of length 2n. To amplify its hardness, we take an ECC and map function
f to its encoding E(f). To prove that this works, it suffices to show how
to turn any circuit that correctly computes many bits of E(f) into a circuit
that correctly computes all bits of f . This is formalized using a local decoder,
which is a decoding algorithm that can compute any desired bit in the string
for f using a small number of random queries in any string y that has high
agreement with (in other words, low hamming distance to) E(f). Since we
are interested in the circuits of size poly(n)— in other words, polylogarithmic
in 2n —this must also be the running time of the local decoder.

Definition 18.12 (Local decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ and q be some numbers. A
local decoder for E handling ρ errors is an algorithm L that, given random
access to a string y such that ∆(y,E(x)) < ρ for some (unknown) x ∈
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x

E(x)

corrupted E(x)

local
decoder

compute x
j

Figure 18.3: A local decoder gets access to a corrupted version of E(x) and an index i
and computes from it xi (with high probability).

{0, 1}n, and an index j ∈ N, runs for polylog(m) time and outputs xj with
probability at least 2/3.

Remark 18.13
The constant 2/3 is arbitrary and can be replaced with any constant larger
than 1/2, since the probability of getting a correct answer can be amplified
by repetition.

Notice, local decoding may be useful in applications of ECC’s that have
nothing to do with hardness amplification. Even in context of CD storage,
it seems nice if we do not to have to read the entire CD just to recover one
bit of x.

Using a local decoder, we can turn our intuition above of hardness am-
plification into a proof.

Theorem 18.14
Suppose that there is an ECC with polynomial-time encoding algorithm
and a local decoding algorithm handling ρ errors (where ρ is a constant
independent of the input length). Suppose also that there is f ∈ E with
Hwrs(f)(n) ≥ S(n) for some function S : N → N satisfying S(n) ≥ n. Then,
there exists ε > 0 and g ∈ E with Hwrs(g)(n) ≥ S(εn)ε

The proof of Theorem 18.14 follows essentially from the definition, and
we will prove it for the case of a particular code later on in Theorem 18.24.
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18.5 Constructions of Error Correcting Codes

We now describe some explicit functions that are error correcting codes,
building up to the construction of an explicit ECC of constant distance
with polynomial-time encoding and decoding. Section 18.6 describes local
decoding algorithms for some of these codes.

18.5.1 Walsh-Hadamard Code.

For two strings x, y ∈ {0, 1}n, define x � y to be the number
∑n

i=1 xiyi
(mod 2). The Walsh-Hadamard code is the function WH : {0, 1}n → {0, 1}2

n

that maps a string x ∈ {0, 1}n into the string z ∈ {0, 1}2
n

where for every
y ∈ {0, 1}n, the yth coordinate of z is equal to x � y (we identify {0, 1}n
with [2n] in the obvious way).

Claim 18.15
The function WH is an error correcting code of distance 1/2.

Proof: First, note that WH is a linear function. By this we mean that if
we take x+ y to be the componentwise addition of x and y modulo 2, then
WH(x+ y) = WH(x)+WH(y). Now, for every x 6= y ∈ {0, 1}n we have that
the number of 1’s in the string WH(x)+WH(y) = WH(x+y) is equal to the
number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices
to show that for every z 6= 0n, at least half of the coordinates in WH(z) are
1. Yet this follows from the random subsum principle (Claim A.3) that says
that the probability for y ∈R {0, 1}n that z � y = 1 is exactly 1/2. �

18.5.2 Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is expo-
nential in the input size. By Lemma 18.9 we know that we can do much
better (at least if we’re willing to tolerate a distance slightly smaller than
1/2). To get towards explicit codes with better output, we need to make a
detour to codes with non-binary alphabet.

Definition 18.16
For every set Σ and x, y ∈ Σm, we define ∆(x, y) = 1

m |{i : xi 6= yi}|. We say
that E : Σn → Σm is an error correcting code with distance δ over alphabet
Σ if for every x 6= y ∈ Σn, ∆(E(x), E(y)) ≥ δ.

Allowing a larger alphabet makes the problem of constructing codes
easier. For example, every ECC with distance δ over the binary ({0, 1})
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alphabet automatically implies an ECC with the same distance over the
alphabet {0, 1, 2, 3}: just encode strings over {0, 1, 2, 3} as strings over {0, 1}
in the obvious way. However, the other direction does not work: if we take an
ECC over {0, 1, 2, 3} and transform it into a code over {0, 1} in the natural
way, the distance might grow from δ to 2δ (Exercise 8).

The Reed-Solomon code is a construction of an error correcting code
that can use as its alphabet any field F:
Definition 18.17
Let F be a field and n,m numbers satisfying n ≤ m ≤ |F|. The Reed-
Solomon code from Fn to Fm is the function RS : Fn → Fm that on input
a0, . . . , an−1 ∈ Fn outputs the string z0, . . . , zm−1 where

zj =
n−1∑
i=0

aif
i
j

and fj denotes the jth element of F under some ordering.

Lemma 18.18
The Reed-Solomon code RS : Fn → Fm has distance 1− n

m .

Proof: As in the case of Walsh-Hadamard code, the function RS is also
linear in the sense that RS(a+ b) = RS(a) + RS(b) (where addition is taken
to be componentwise addition in F). Thus, as before we only need to show
that for every a 6= 0n, RS(a) has at most n coordinates that are zero. But
this immediate from the fact that a nonzero n− 1 degree polynomial has at
most n roots (see appendix). �

18.5.3 Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output
and the Reed-Solomon code has the drawback of a non-binary alphabet.
We now show we can combine them both to obtain a code without neither
of these drawbacks:
Definition 18.19
If RS is the Reed-Solomon code mapping Fn to Fm (for some n,m,F) and WH

is the Walsh-Hadamard code mapping {0, 1}log |F| to {0, 1}2
log |F|

= {0, 1}|F|,
then the code WH ◦RS maps {0, 1}n log |F| to {0, 1}m|F| in the following way:

1. View RS as a code from {0, 1}n log |F| to Fm and WH as a code from
F to {0, 1}|F| using the canonical representation of elements in F as
strings in {0, 1}log |F|.
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x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

Figure 18.4: If E1,E2 are ECC’s such that E1 : {0, 1}n → Σm and E2 : σ → {0, 1}k,
then the concatenated code E : {0, 1}n → {0, 1}nk maps x into the sequence of blocks
E2(E1(x)1), . . . , E2(E1(x)m).

2. For every input x ∈ {0, 1}n log |F|, WH◦RS(x) is equal to WH(RS(x)1), . . . ,WH(RS(x)m)
where RS(x)i denotes the ith symbol of RS(x).

Note that the code WH◦RS can be computed in time polynomial in n,m
and |F|. We now analyze its distance:

Claim 18.20
Let δ1 = 1−n/m be the distance of RS and δ2 = 1/2 be the distance of WH.
Then WH ◦ RS is an ECC of distance δ1δ2.

Proof: Let x, y be two distinct strings in {0, 1}log |F|n. If we set x′ = RS(x′)
and y′ = RS(y′) then ∆(x′, y′) ≥ δ1. If we let x′′ (resp. y′′) to be the binary
string obtained by applying WH to each of these blocks, then whenever two
blocks are distinct, the corresponding encoding will have distance δ2, and so
δ(x′′, y′′) ≥ δ1δ2. �

Remark 18.21
Because for every k ∈ N, there exists a finite field |F| of size in [k, 2k] (e.g.,
take a prime in [k, 2k] or a power of two) we can use this construction
to obtain, for every n, a polynomial-time computable ECC E : {0, 1}n →
{0, 1}20n

2

of distance 0.4.

Both Definition 18.19 and Lemma 18.20 easily generalize for codes other
than Reed-Solomon and Hadamard. Thus, for every two ECC’s E1 : {0, 1}n →
Σm and E2 : Σ→ {0, 1}k their concatenation E2 ◦E1 is a code from {0, 1}n
to {0, 1}mk that has distance at least δ1δ2 where δ1 (resp. δ2) is the distance
of E1 (resp. E2), see Figure 18.6. In particular, using a different binary code
than WH, it is known how to use concatenation to obtain a polynomial-time
computable ECC E : {0, 1}n → {0, 1}m of constant distance δ > 0 such that
m = O(n).
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18.5.4 Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases
of the following family of codes known as Reed-Muller codes:

Definition 18.22 (Reed-Muller codes)
Let F be a finite field, and let `, d be numbers with d < |F|. The Reed Muller

code with parameters F, `, d is the function RM : F(`+dd ) → F|F|` that maps
every `-variable polynomial P over F of total degree d to the values of P on
all the inputs in F`.

That is, the input is a polynomial of the form

g(x1, . . . , x`) =
∑

i1+i2+...+i`≤`
ci1,...,i`x

i1
1 x

i2
2 · · ·x

i`
`

specified by the vector of
(
`+d
d

)
coefficients {ci1,...,i`} and the output is the

sequence {g(x1, . . . , x`)} for every x1, . . . , x` ∈ F.

Setting ` = 1 one obtains the Reed-Solomon code (for m = |F|), while
setting d = 1 and F = GF(2) one obtains a slight variant of the Walsh-
Hadamard code. (I.e., the code that maps every x ∈ {0, 1}n into the 2 · 2n
long string z such that for every y ∈ {0, 1}n,a ∈ {0, 1}, zy,a = x � y + a
(mod 2).)

The Schwartz-Zippel Lemma (Lemma A.23 in the Appendix) shows that
the Reed-Muller code is an ECC with distance 1 − d/|F|. Note that this
implies the previously stated bounds for the Walsh-Hadamard and Reed-
Solomon codes.

18.5.5 Decoding Reed-Solomon.

To actually use an error correcting code to store and retrieve information,
we need a way to efficiently decode a data x from its encoding E(x) even if
E(x) has been corrupted in a fraction ρ of its coordinates. We now show this
for the Reed-Solomon code, that treats x as a polynomial g, and outputs
the values of this polynomial on m inputs.

We know (see Theorem A.22 in the Appendix) that a univariate degree
d polynomial can be interpolated from any d+ 1 values. Here we consider a
robust version of this procedure, whereby we wish to recover the polynomial
from m values of which ρm are “faulty” or “noisy”.

Let (a1, b1), (a2, b2), . . . , (am, bm) be a sequence of (point, value) pairs.
We say that a degree d polynomial g(x) describes this (ai, bi) if g(ai) = bi.
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We are interested in determining if there is a degree d polynomial g that
describes (1− ρ)m of the pairs. If 2ρm > d then this polynomial is unique
(exercise). We desire to recover it, in other words, find a degree d polynomial
g such that

g(ai) = bi for at (1− ρ)m least values of i. (8)

The apparent difficulty is in identifying the noisy points; once those
points are identified, we can recover the polynomial.

Randomized interpolation: the case of ρ < 1/(d+ 1)

If ρ is very small, say, ρ < 1/(2d) then we can actually use the standard
interpolation technique: just select d + 1 points at random from the set
{(ai, bi)} and use them to interpolate. By the union bound, with probability
at least 1−ρ(d+1) > 0.4 all these points will be non-corrupted and so we will
recover the correct polynomial. (Because the correct polynomial is unique,
we can verify that we have obtained it, and if unsuccessful, try again.)

Berlekamp-Welch Procedure: the case of ρ < (m− d)/(2m)

The Berlekamp-Welch procedure works when the error rate ρ is bounded
away from 1/2; specifically, ρ < (m − d)/(2m). For concreteness, assume
m = 4d and ρ = 1/4.

1. We claim that if the polynomial g exists then there is a degree 2d
polynomial c(x) and a degree d nonzero polynomial e(x) such that

c(ai) = bie(ai) for all i. (9)

The reason is that the desired e(x) can be any nonzero degree d poly-
nomial whose roots are precisely the ai’s for which g(ai) 6= bi, and then
just let c(x) = g(x)e(x). (Note that this is just an existence argument;
we do not know g yet.))

2. Let c(x) =
∑

i≤2d cix
i and e(x) =

∑
i≤d eix

i. The ei’s and ci’s are
our unknowns, and these satisfy 4d linear equations given in (??), one
for each ai. The number of unknowns is 3d + 2, and our existence
argument in part 1 shows that the system is feasible. Solve it using
Gaussian elimination to obtain a candidate c, e.
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3. Let c, e are any polynomials obtained in part 2. Since they satisfy (9)
and bi = g(ai) for at least 3d values of i, we conclude that

c(ai) = g(ai)e(ai) for at least 3d values of i.

Hence c(x) − g(x)e(x) is a degree 2d polynomial that has at least 3d
roots, and hence is identically zero. Hence e divides c and that in fact
c(x) = g(x)e(x).

4. Divide c by e to recover g.

18.5.6 Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algo-
rithm. Recall that if E1 : {0, 1}n → Σm and E2 : Σ→ {0, 1}k are two ECC’s
then E2◦E1 maps every string x ∈ {0, 1}n to the string E2(E1(x)1) · · ·E2(E1(x)n).
Suppose that we have a decoder for E1 (resp. E2) that can handle ρ1 (resp.
ρ2) errors. Then, we have a decoder for E2 ◦ E1 that can handle ρ2ρ1

errors. The decoder, given a string y ∈ {0, 1}mk composed of m blocks
y1, . . . , ym ∈ {0, 1}k, first decodes each block yi to a symbol zi in Σ, and
then uses the decoder of E1 to decode z1, . . . , zm. The decoder can in-
deed handle ρ1ρ2 errors since if ∆(y,E2 ◦ E1(x)) ≤ ρ1ρ2 then at most ρ1 of
the blocks of y are of distance at least ρ2 from the corresponding block of
E2 ◦ E1(x).

18.6 Local Decoding of explicit codes.

We now show local decoder algorithm (c.f. Definition 18.12) for several
explicit codes.

18.6.1 Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code
that handles ρ errors for every ρ < 1/4. This fraction of errors we handle is
best possible, as it can be easily shown that there cannot exist a local (or
non-local) decoder for a binary code handling ρ errors for every ρ ≥ 1/4.

Walsh-Hadamard Local Decoder for ρ < 1/4:

Input: j ∈ [n], random access to a function f : {0, 1}n → {0, 1} such that
Pry[g(y) 6= x� y] ≤ ρ for some ρ < 1/4 and x ∈ {0, 1}n.
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Lx

x

Figure 18.5: Given access to a corrupted version of a polynomial P : F` → F, to compute
P (x) we pass a random line Lx through x, and use Reed-Solomon decoding to recover the
restriction of P to the line Lx.

Output: A bit b ∈ {0, 1}. (Our goal: xj = b.)

Operation: Let ej be the vector in {0, 1}n that is equal to 0 in all the
coordinates except for the jth and equal to 1 on the jth coordinate.
The algorithm chooses y ∈R {0, 1}n and outputs f(y) + f(y + ej)
(mod 2) (where y + ej denotes componentwise addition modulo 2, or
equivalently, flipping the jth coordinate of y).

Analysis: Since both y and y + ej are uniformly distributed (even though
they are dependent), the union bound implies that with probability
1 − 2ρ, f(y) = x � y and f(y + ej) = x � (y + ej). But by the
bilinearity of the operation �, this implies that f(y) + f(y + ej) =
x � y + x � (y + ej) = 2(x � y) + x � ej = x � ej (mod 2). Yet,
x� ej = xj and so with probability 1− 2ρ, the algorithm outputs the
right value.

Remark 18.23
This algorithm can be modified to locally compute not just xi = x � ej

but in fact the value x � z for every z ∈ {0, 1}n. Thus, we can use it to
compute not just every bit of the original message x but also every bit of
the uncorrupted codeword WH(x). This property is sometimes called the
self correction property of the Walsh-Hadamard code.

18.6.2 Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. (Note that Defini-
tion 18.12 can be easily extended to the case of codes, such as Reed-Muller,
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that use non-binary alphabet.) It runs in time polynomial in ` and d, which,
for an appropriate setting of the parameters, is polylogarithmic in the output
length of the code. Convention: Recall that the input to a Reed-Muller
code is an `-variable d-degree polynomial P over some field F. When we
discussed the code before, we assumed that this polynomial is represented
as the list of its coefficients. However, below it will be more convenient for
us to assume that the polynomial is represented by a list of its values on
its first

(
d+`
`

)
inputs according to some canonical ordering. Using standard

interpolation, we still have a polynomial-time encoding algorithm even given
this representation. Thus, it suffices to show an algorithm that, given access
to a corrupted version of P , computes P (x) for every x ∈ F`

Reed-Muller Local Decoder for ρ < (1− d/|F|)/4− 1/|F|.

Input: A string x ∈ F`, random access to a function f such that Prx∈F` [P (x) 6=
f(x)] < ρ, where P : F` → F is an `-variable degree-d polynomial.

Output: y ∈ F (Goal: y = P (x).)

Operation: 1. Let Lx, be a random line passing through x. That is
Lx = {x+ ty : t ∈ F} for a random y ∈ F`.

2. Query f on all the |F| points of Lx to obtain a set of points
{(t, f(x+ ty))} for every t ∈ F.

3. Run the Reed-Solomon decoding algorithm to obtain the uni-
variate polynomial Q : F→ F such that Q(t) = f(x+ ty) for the
largest number of t’s (see Figure 18.5).3

4. Output Q(0).

Analysis: For every d-degree `-variable polynomial P , the univariate poly-
nomial Q(t) = P (x+ ty) has degree at most d. Thus, to show that the
Reed-Solomon decoding works, it suffices to show that with probabil-
ity at least 1/2, the number of points on z ∈ Lx for which f(z) 6= P (z)
is less than (1 − d/|F|)/2. Yet, for every t 6= 0, the point x + ty is
uniformly distributed (independently of x), and so the expected num-
ber of points on Lx for which f and P differ is at most ρ|F| + 1.
By Markov inequality, the probability that there will be more than
2ρ|F|+2 < (1−d/|F|)|F|/2 such points is at most 1/2 and hence Reed-
Solomon decoding will be successful with probability 1/2. In this case,

3If ρ is sufficiently small, (e.g., ρ < 1/(10d)), then we can use the simpler randomized
Reed-Solomon decoding procedure described in Section 18.5.5.
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x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

E1 decoder

E2 decoder E2 decoder

q1 queries

O(q2 log q1) queries

Figure 18.6: To locally decode a concatenated code E2 ◦ E1 we run the decoder for E1

using the decoder for E2. The crucial observation is that if y is within ρ1ρ2 distance to
E2 ◦ E1(x) then at most a ρ1 fraction of the blocks in y are of distance more than ρ2 the
corresponding block in E2 ◦ E1(x).

we obtain the correct polynomial q that is the restriction of Q to the
line Lx and hence q(0) = P (x).

18.6.3 Local decoding of concatenated codes.

Given two locally decodable ECC’s E1 and E2, we can locally decode their
concatenation E1◦E2 by the natural algorithm. Namely, we run the decoder
for E1, but answer its queries using the decoder for E2 (see Figure 18.6).

Local decoder for concatenated code: ρ < ρ1ρ2

The code: If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are codes with
decoders of q1 (resp. q2) queries with respect to ρ1 (resp. ρ2) errors,
let E = E2◦E1 be the concatenated code mapping {0, 1}n to {0, 1}mk.

Input: An index i ∈ [n], random access to a string y ∈ {0, 1}km such that
∆(y,E1 ◦ E2(x)) < ρ1ρ2 for some x ∈ {0, 1}n.

Output: b ∈ {0, 1}n (Goal: b = xi)

Operation: Simulate the actions of the decoder for E1, whenever the de-
coder needs access to the jth symbol of E1(x), use the decoder of E2

with O(q2 log q1 log |Σ|) queries applied to the jth block of y to recover
all the bits of this symbol with probability at least 1− 1/(2q1).
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Analysis: The crucial observation is that at most a ρ1 fraction of the length
k blocks in y can be of distance more than ρ2 from the corresponding
blocks in E2◦E1(x). Therefore, with probability at least 0.9, all our q1
answers to the decoder of E1 are consistent with the answer it would
receive when accessing a string that is of distance at most ρ1 from a
codeword of E1.

18.6.4 Putting it all together.

We now have the ingredients to prove our second main theorem of this
chapter: transformation of a hard-on-the-worst-case function into a function
that is “mildly” hard on the average case.

Theorem 18.24 (Worst-case hardness to mild hardness)
Let S : N→ N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists
a function g ∈ E and a constant c > 0 such that H0.99

avg (g)(n) ≥ S(n/c)/nc for every
sufficiently large n.

Proof: For every n, we treat the restriction of f to {0, 1}n as a string
f ′ ∈ {0, 1}N where N = 2n. We then encode this string f ′ using a suitable
error correcting code E : {0, 1}N → {0, 1}N

C

for some constant C > 1. We
will define the function g on every input x ∈ {0, 1}Cn to output the xth

coordinate of E(f ′).4 For the function g to satisfy the conclusion of the
theorem, all we need is for the code E to satisfy the following properties:

1. For every x ∈ {0, 1}N , E(x) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(N) running
time and queries and can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard
code with a Reed-Muller code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

• The field F is of size log5N .

• The number of variables ` is equal to logN/ log logN .
4By padding with zeros as necessary, we can assume that all the inputs to g are of

length that is a multiple of C.
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• The degree is equal to log2N .

RM takes an input of length at least (d` )
` > N (and so using padding

we can assume its input is {0, 1}n). Its output is of size |F|` ≤ poly(n).
Its distance is at least 1− 1/ logN .

2. Let WH denote the Walsh-Hadamard code from {0, 1}logF = {0, 1}5 log logN

to {0, 1}|F| = {0, 1}log5N .

Our code will be WH ◦ RM. Combining the local decoders for Walsh-
Hadamard and Reed-Muller we get the desired result. �

Combining Theorem 18.24 with Yao’s XOR Lemma (Theorem 18.2), we
get the following corollary:

Corollary 18.25
Let S : N → N and f ∈ E with Hwrs(f)(n) ≥ S(n) for every n. Then, there

exists an S(
√
`)ε-pseudorandom generator for some constant ε > 0.

Proof: By Theorem 18.24, under this assumption there exists a function
g ∈ E with H0.99

avg (g)(n) ≥ S′(n) = S(n)/poly(n), where we can assume
S′(n) ≥

√
S(n) for sufficiently large n (otherwise S is polynomial and the

theorem is trivial). Consider the function g⊕k where k = c logS′(n) for a
sufficiently small constant c. By Yao’s XOR Lemma, on inputs of length
kn, it cannot be computed with probability better than 1/2 + 2−cS

′(n)/1000

by circuits of size S′(n). Since S(n) ≤ 2n, kn <
√
n, and hence we get that

Havg(g⊕k) ≥ Sc/2000. �

As already mentioned, this implies the following corollaries:

1. If there exists f ∈ E such that Hwrs(f) ≥ 2n
Ω(1)

then BPP ⊆ QuasiP.

2. If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆ SUBEXP.

However, Corollary 18.25 is still not sufficient to show that BPP = P
under any assumption on the worst-case hardness of some function in E. It
only yields an S(

√
`)Ω(1)-pseudorandom generator, while what we need is an

S(Ω(`))Ω(1)-pseudorandom generator.

Web draft 2006-09-28 18:09



DRAFT

402 18.7. LIST DECODING

18.7 List decoding

Our approach to obtain stronger worst-case to average-case reduction will
be to bypass the XOR Lemma, and use error correcting codes to get di-
rectly from worst-case hardness to a function that is hard to compute with
probability slightly better than 1/2. However, this idea seems to run into a
fundamental difficulty: if f is worst-case hard, then it seems hard to argue
that the encoding of f , under any error correcting code is hard to compute
with probability 0.6. The reason is that any error-correcting code has to
have distant at most 1/2, which implies that there is no decoding algorithm
that can recover x from E(x) if the latter was corrupted in more than a
1/4 of its locations. Indeed, in this case there is not necessarily a unique
codeword closest to the corrupted word. For example, if E(x) and E(x′)
are two codewords of distance 1/2, let y be the string that is equal to E(x)
on the first half of the coordinates and equal to E(x′) on the second half.
Given y, how can a decoding algorithm know whether to return x or x′?

This seems like a real obstacle, and indeed was considered as such in
many contexts where ECC’s were used, until the realization of the impor-
tance of the following insight: “If y is obtained by corrupting E(x) in, say,
a 0.4 fraction of the coordinates (where E is some ECC with good enough
distance) then, while there may be more than one codeword within distance
0.4 to y, there can not be too many such codewords.”

Theorem 18.26 (Johnson Bound)
If E : {0, 1}n → {0, 1}m is an ECC with distance at least 1/2 − ε, then for
every x ∈ {0, 1}m, and δ ≥

√
ε, there exist at most 1/(2δ2) vectors y1, . . . , y`

such that ∆(x, yi) ≤ 1/2− δ for every i ∈ [`].

Proof: Suppose that x, y1, . . . , y` satisfy this condition, and define ` vectors
z1, . . . , z` in Rm as follows: for every i ∈ [`] and k ∈ [m], set zi,k to equal
+1 if yk = xk and set it to equal −1 otherwise. Under our assumptions, for
every i ∈ [`],

m∑
k=1

zi,k ≥ 2δm , (10)

since zi agrees with x on an 1/2 + δ fraction of its coordinates. Also, for
every i 6= j ∈ [`],

〈zi, zj〉 =
m∑
k=1

zi,kzj,k ≤ 2εm ≤ 2δ2m (11)

Web draft 2006-09-28 18:09



DRAFT

18.7. LIST DECODING 403

since E is a code of distance at least 1/2 − ε. We will show that (10) and
(11) together imply that ` ≤ 1/(2δ2).

Indeed, set w =
∑`

i=1 zi. On one hand, by (11)

〈w,w〉 =
∑̀
i=1

〈zi, zi〉+
∑
i6=j
〈zi, zj〉 ≤ `m+ `22δ2m.

On the other hand, by (10),
∑

k wk =
∑

i,j zi,j ≥ 2δm` and hence

〈w,w〉 ≥ |
∑
k

wk|2/m ≥ 4δ2m`2 ,

since for every c, the vector w ∈ Rm with minimal two-norm satisfying∑
k wk = c is the uniform vector (c/m, c/m, . . . , c/m). Thus 4δ2m`2 ≤

`m+ 2`2δ2m, implying that ` ≤ 1/(2δ2). �

18.7.1 List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted
codeword can be just as good as unique decoding. For example, we may have
some outside information on which messages are likely to appear, allowing
us to know which of the messages in the list is the correct one. However,
to take advantage of this we need an efficient algorithm that computes this
list. Such an algorithm was discovered in 1996 by Sudan for the popular
and important Reed-Solomon code. It can recover a polynomial size list of
candidate codewords given a Reed-Solomon codeword that was corrupted in
up to a 1 − 2

√
d/|F| fraction of the coordinates. Note that this tends to 1

as |F|/d grows, whereas the Berlekamp-Welch unique decoding algorithm of
Section 18.5.5 gets “stuck” when the fraction of errors surpasses 1/2.

On input a set of data points {(ai, bi)}mi=1 in F2, Sudan’s algorithm re-
turns all degree d polynomials g such that the number of i’s for which
g(ai) = bi is at least 2

√
d/|F|m. It relies on the following observation:

Lemma 18.27
For every set of m data pairs (a1, b1), . . . , (am, bm), there is a bivariate poly-
nomial Q(z, x) of degree at most d

√
me+1 in z and x such that Q(bi, ai) = 0

for each i = 1, . . . ,m. Furthermore, there is a polynomial-time algorithm to
construct such a Q.
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Proof: Let k = d
√
me + 1. Then the unknown bivariate polynomial

Q =
∑k

i=0

∑k
j=0Qijz

ixj has (k + 1)2 coefficients and these coefficients are
required to satisfy m linear equations of the form:

k∑
i=0

k∑
j=0

Qij(bt)i(at)j for t = 1, 2, . . . ,m.

Note that the at’s, bt’s are known and so we can write down these equations.
Since the system is homogeneous and the number of unknowns exceeds

the number of constraints, it has a nonzero solution. Furthermore this so-
lution can be found in polynomial time. �

Lemma 18.28
Let d be any integer and k > (d + 1)(d

√
me + 1). If p(x) is a degree d

polynomial that describes k of the data pairs, then z − p(x) divides the
bivariate polynomial Q(z, x) described in Lemma 18.27.

Proof: By construction, Q(bt, at) = 0 for every data pair (at, bt). If p(x)
describes this data pair, then Q(p(at), at) = 0. We conclude that the uni-
variate polynomial Q(p(x), x) has at least k roots, whereas its degree is
d(d
√
ne + 1) < k. Hence Q(p(x), x) = 0. By the division algorithm for

polynomials, Q(p(x), x) is exactly the remainder when Q(z, x) is divided by
(z − p(x)). We conclude that z − p(x) divides Q(z, x). �

Now it is straightforward to describe Sudan’s list decoding algorithm.
First, find Q(z, x) by the algorithm of Lemma 18.27. Then, factor it using
a standard algorithm for bivariate factoring (see [VG99]). For every factor
of the form (z − p(x)), check by direct substitution whether or not p(x)
describes 2

√
d/|F|m data pairs. Output all such polynomials.

18.8 Local list decoding: getting to BPP = P.

Analogously to Section 18.4.1, to actually use list decoding for hardness
amplification, we need to provide local list decoding algorithms for the codes
we use. Fortunately, such algorithms are known for the Walsh-Hadamard
code, the Reed-Muller code, and their concatenation.

Definition 18.29 (Local list decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ > 0 and q be some numbers.
An algorithm L is called a local list decoder for E handling ρ errors, if for
every x ∈ {0, 1}n and y ∈ {0, 1}m satisfying ∆(E(x), y) ≤ ρ, there exists a
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number i0 ∈ [poly(n/ε)] such that for every j ∈ [m], on inputs i0, j and with
random access to y, L runs for poly(log(m)/ε) time and outputs xj with
probability at least 2/3.

Remark 18.30
One can think of the number i0 as the index of x in the list of poly(n/ε)
candidate messages output by L. Definition 18.29 can be easily generalized
to codes with non-binary alphabet.

18.8.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-
Hadamard code: the proof of the Goldreich-Levin Theorem (Theorem 10.14)
provided an an algorithm that given access to a “black box” that computes
the function y 7→ x�y (for x, y ∈ {0, 1}n) with probability 1/2+ ε, computes
a list of values x1, . . . , xpoly(n/ε) such that xi0 = x for some i0. In the
context of that theorem, we could find the right value of x from that list by
checking it against the value f(x) (where f is a one-way permutation). This
is a good example for how once we have a list decoding algorithm, we can
use outside information to narrow the list down.

18.8.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code.
Recall that the codeword of this code is the list of evaluations of a d-degree
`-variable polynomial P : F` → F. The local decoder for Reed-Muller gets
random access to a corrupted version of P and two inputs: an index i and
x ∈ F`. Below we describe such a decoder that runs in poly(d, `, |F|) and
outputs P (x) with probability at least 0.9 assuming that i is equal to the
“right” index i0. Note: To be a valid local list decoder, given the index i0,
the algorithm should output P (x) with high probability for every x ∈ F`.
The algorithm described below is only guaranteed to output the right value
for most (i.e., a 0.9 fraction) of the x’s in F`. We transform this algorithm to
a valid local list decoder by combining it with the Reed-Muller local decoder
described in Section 18.6.2.

Reed-Muller Local List Decoder for ρ < 1− 10
√
d/|F|

Inputs: • Random access to a function f such that Prx∈F` [P (x) =
f(x)] > 10

√
d/|F| where P : F` → F is an `-variable d-degree

polynomial. We assume |F| > d4 and that both d > 1000. (This
can always be ensured in our applications.)
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• An index i0 ∈ [|F|`+1] which we interpret as a pair (x0, y0) with
x0 ∈ F`, y0 ∈ F,

• A string x ∈ F`.

Output: y ∈ F (For some pair (x0, y0), it should hold that P (x) = y with
probability at least 0.9 over the algorithm’s coins and x chosen at ran-
dom from F`.)

Operation: 1. Let Lx,x0 be a random degree 3 curve passing through x,
x0. That is, we find a random degree 3 univariate polynomial
q : F → F` such that q(0) = x and q(r) = x0 for some random
r ∈ F. (See Figure 18.7.)

2. Query f on all the |F| points of Lx,x0 to obtain the set S of the
|F| pairs {(t, f(q(t)) : t ∈ F)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain
a list g1, . . . , gk of all degree 3d polynomials that have at least
8
√
d|F| agreement with the pairs in S.

4. If there is a unique i such that gi(r) = y0 then output gi(0).
Otherwise, halt without outputting anything.

Lx,x0

x

x0

Figure 18.7: Given access to a corrupted version of a polynomial P : F` → F and some
index (x0, y0), to compute P (x) we pass a random degree-3 curve Lx,x0 through x and x0,
and use Reed-Solomon list decoding to recover a list of candidates for the restriction of P
to the curve Lx,x0 . If only one candidate satisfies that its value on x0 is y0, then we use
this candidate to compute P (x).

We will show that for every f : F` → F that agrees with an `-variable
degree d polynomial on a 10

√
d/|F| fraction of its input, and every x ∈ F`,

if x0 is chosen at random from F` and y0 = P (x0), then with probability at
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least 0.9 (over the choice of x0 and the algorithm’s coins) the above decoder
will output P (x). By a standard averaging argument, this implies that there
exist a pair (x0, y0) such that given this pair, the algorithm outputs P (x)
for a 0.9 fraction of the x’s in F`.

Let x ∈ F`, if x0 is chosen randomly in F` and y0 = P (x0) then the
following

For every x ∈ F`, the following fictitious algorithm can be easily seen
to have an identical output to the output of our decoder on the inputs x, a
random x0 ∈R F` and y0 = P (x0):

1. Choose a random degree 3 curve L that passes through x. That is,
L = {q(t) : t ∈ F} where q : F → F` is a random degree 3 polynomial
satisfying q(0) = x.

2. Obtain the list g1, . . . , gm of all univariate polynomials over F such
that for every i, there are at least 6

√
d|F| values of t such that gi(t) =

f(q(t)).

3. Choose a random r ∈ F. Assume that you are given the value y0 =
P (q(r)).

4. If there exists a unique i such that gi(r) = y0 then output gi(0).
Otherwise, halt without an input.

Yet, this fictitious algorithm will output P (x) with probability at least
0.9. Indeed, since all the points other than x on a random degree 3 curve
passing through x are pairwise independent, Chebyshev’s inequality implies
that with probability at least 0.99, the function f will agree with the poly-
nomial P on at least 8

√
d|F| points on this curve (this uses the fact that√

d/|F| is smaller than 10−6). Thus the list g1, . . . , gm we obtain in Step 2
contains the polynomial g : F→ F defined as g(t) = P (q(t)). We leave it as
Exercise 9 to show that there can not be more than

√
|F |/4d polynomials in

this list. Since two 3d-degree polynomials can agree on at most 3d+1 points,

with probability at least (3d+1)
√
|F |/4d

|F| < 0.01, if we choose a random r ∈ F,
then g(r) 6= gi(r) for every gi 6= g in this list. Thus, with this probability,
we will identify the polynomial g and output the value g(0) = P (x). �

18.8.3 Local list decoding of concatenated codes.

If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two codes that are locally
list decodable then so is the concatenated code E2 ◦E1 : {0, 1}n → {0, 1}mk.
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As in Section 18.6.3, the idea is to simply run the local decoder for E1 while
answering its queries using the decoder of E2. More concretely, assume that
the decoder for E1 takes an index in the set I1, uses q1 queries, and can
handle 1 − ε1 errors, and that I2, q2 and ε2 are defined analogously. Our
decoder for E2 ◦E1 will take a pair of indices i1 ∈ I1 and i2 ∈ I2 and run the
decoder for E1 with the index i1, and whenever this decoder makes a query
answer it using the decoder E2 with the index i2. (See Section 18.6.3.) We
claim that this decoder can handle 1/2 − ε1ε2|I2| number of errors. Indeed,
if y agrees with some codeword E2 ◦ E1(x) on an ε1ε2|I2| fraction of the
coordinates then there are ε1|I2| blocks on which it has at least 1/2 + ε2
agreement with the blocks this codeword. Thus, by an averaging argument,
there exists an index i2 such that given i2, the output of the E2 decoder
agrees with E1(x) on ε1 symbols, implying that there exists an index i1 such
that given (i1, i2) and every coordinate j, the combined decoder will output
xj with high probability.

18.8.4 Putting it all together.

As promised, we can use local list decoding to transform a function that
is merely worst-case hard into a function that cannot be computed with
probability significantly better than 1/2:

Theorem 18.31 (Worst-case hardness to strong hardness)
Let S : N→ N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists

a function g ∈ E and a constant c > 0 such that Havg(g)(n) ≥ S(n/c)1/c for every
sufficiently large n.

Proof sketch: As in Section 18.6.4, for every n, we treat the restriction
of f to {0, 1}n as a string f ′ ∈ {0, 1}N where N = 2n and encode it using
the concatenation of a Reed-Muller code with the Walsh-Hadamard code.
For the Reed-Muller code we use the following parameters:

• The field F is of size S(n)1/100. 5

• The degree d is of size log2N .

5We assume here that S(n) > logN1000 and that it can be computed in 2O(n) time.
These assumptions can be removed by slightly complicating the construction (namely,
executing it while guessing that S(n) = 2k, and concatenating all the results.)

Web draft 2006-09-28 18:09



DRAFT

18.8. LOCAL LIST DECODING: GETTING TO BPP = P. 409

• The number of variables ` is 2 logN/ logS(n).

The function g is obtained by applying this encoding to f . Given a
circuit of size S(n)1/100 that computes g with probability better than 1/2 +
1/S(n)1/50, we will be able to transform it, in S(n)O(1) time, to a circuit
computing f perfectly. We hardwire the index i0 to this circuit as part of
its description. �

What have we learned?

• Yao’s XOR Lemma allows to amplify hardness by transforming a Boolean
function with only mild hardness (cannot be computed with say 0.99 success)
into a Boolean function with strong hardness (cannot be computed with 0.51
success).

• An error correcting code is a function that maps every two strings into a pair
of strings that differ on many of their coordinates. An error correcting code
with a local decoding algorithm can be used to transform a function hard in
the worst-case into a function that is mildly hard on the average case.

• A code over the binary alphabet can have distance at most 1/2. A code with
distance δ can be uniquely decoded up to δ/2 errors. List decoding allows to
a decoder to handle almost a δ fraction of errors, at the expense of returning
not a single message but a short list of candidate messages.

• We can transform a function that is merely hard in the worst case to a function
that is strongly hard in the average case using the notion of local list decoding
of error correcting codes.

Chapter notes and history

many attributions still missing.

Impagliazzo and Wigderson [IW01] were the first to prove that BPP = P
if there exists f ∈ E such that Hwrs(f) ≥ 2Ω(n) using a derandomized version of
Yao’s XOR Lemma. However, the presentation here follows Sudan, Trevisan,
and Vadhan [STV], who were the first to point the connection between local
list decoding and hardness amplification, and gave (a variant of) the Reed-
Muller local list decoding algorithm described in Section 18.8. They also
showed a different approach to achieve the same result, by first showing
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that the NW generator and a mildly hard function can be used to obtain
from a short random seed a distribution that has high pseudoentropy, which
is then converted to a pseudorandom distribution via a randomness extractor
(see Chapter 17).

The question raised in Problem 5 is treated in O’Donnell [O’D04], where
a hardness amplification lemma is given for NP. For a sharper result, see
Healy, Vadhan, and Viola [HVV04].

Exercises

§1 Let X1, . . . , Xn be independent random variables such that Xi is equal
to 1 with probability 1 − δ and equal to 0 with probability δ. Let
X =

∑k
i=1Xi (mod 2). Prove that Pr[X = 1] = 1/2 + (1− 2δ)k.

Hint:DefineYi=(−1)
Xi

andY=∏k
i=1Yi.Then,usethefact

thattheexpectationofaproductofindependentrandomvariables
istheproductoftheirexpectations.

§2 Prove Farkas’ Lemma: if C,D ⊆ Rm are two convex sets then there
exists a vector z ∈ Rm and a number a ∈ R such that

x ∈ C ⇒ 〈x, z〉 ≥ a
y ∈ D ⇒ 〈y, z〉 ≤ a

Hint:StartbyprovingthisinthecasethatCandDareε-
separated,whichmeansthatforsomeε>0,‖x−y‖2≥εforevery
x∈Candy∈D.Inthiscaseyoucantakeztobetheshortest
vectoroftheformx−yforx∈Candy∈D.

§3 Prove the Min-Max Theorem (see Note 18.7) using Farkas’ Lemma.

§4 Prove the duality theorem for linear programming using Farkas’ Lemma.
That is, prove that for every m × n matrix A, and vectors c ∈ Rn,
b ∈ Rn,

max
x∈Rns.t.
Ax≤b
x≥0

〈x, c〉 = min
y∈Rms.t.
A†y≥c
y≥0

〈y,b〉

where A† denotes the transpose of A and for two vectors u,v we say
that u ≥ v if ui ≥ vi for every i.
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§5 Suppose we know that NP contains a function that is weakly hard for
all polynomial-size circuits. Can we use the XOR Lemma to infer the
existence of a strongly hard function in NP? Why or why not?

§6 For every δ < 1/2 and sufficiently large n, prove that there exists a
function E : {0, 1}n → {0, 1}n/(1−H(δ)) that is an error correcting code
with distance δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).

Hint:Useagreedystrategy,toselectthecodewordsofEoneby
one,neveraddingacodewordthatiswithindistanceδtoprevious
ones.Whenwillyougetstuck?

§7 Show that for every E : {0, 1}n → {0, 1}m that is an error correcting
code of distance 1/2, 2n < 10

√
n. Show if E is an error correcting code

of distance δ > 1/2, then 2n < 10/(δ − 1/2).

§8 Let E : {0, 1}n → {0, 1}m be a δ-distance ECC. Transform E to a code
E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2 in the obvious way. Show that E′

has distance δ. Show that the opposite direction is not true: show an
example of a δ-distance ECC E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2 such
that the corresponding binary code has distance 2δ.

§9 Let f :F → F be any function. Suppose integer d ≥ 0 and number ε
satisfy ε > 2

√
d
|F| . Prove that there are at most 2/ε degree d polyno-

mials that agree with f on at least an ε fraction of its coordinates.

Hint:Thefirstpolynomialdescribesfinanεfractionofpoints
sayS1,thesecondpolynomialdescribesfinε−d/|F|fractionof
pointsS2whereS1∩S2=∅,etc.

§10 (Linear codes) We say that an ECC E : {0, 1}n → {0, 1}m is linear if
for every x, x′ ∈ {0, 1}n, E(x + x′) = E(x) + E(x′) where + denotes
componentwise addition modulo 2. A linear ECC E can be described
by an m × n matrix A such that (thinking of x as a column vector)
E(x) = Ax for every x ∈ {0, 1}n.

(a) Prove that the distance of a linear ECC E is equal to the mini-
mum over all nonzero x ∈ {0, 1}n of the fraction of 1’s in E(x).

(b) Prove that for every δ > 0, there exists a linear ECC E : {0, 1}n →
{0, 1}1.1n/(1−H(δ)) with distance δ, where H(δ) = δ log(1/δ)+(1−
δ) log(1/(1− δ))¿
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Hint:Usetheprobabilisticmethod-showthisholdsforarandom
matrix.

(c) Prove that for some δ > 0 there is an ECC E : {0, 1}n →
{0, 1}poly(n) of distance δ with polynomial-time encoding and de-
coding mechanisms. (You need to know about the field GF(2k)
to solve this, see the appendix.)

Hint:UsetheconcatenationofReed-SolomonoverGF(2
k
)with

theWalsh-Hadamardcode.

(d) We say that a linear code E : {0, 1}n → {0, 1}m is ε-biased if
for every non-zero x ∈ {0, 1}n, the fraction of 1’s in E(x) is
between 1/2 − ε and 1/2 + ε. Prove that for every ε > 0, there
exists an ε-biased linear code E : {0, 1}n → {0, 1}poly(n/ε) with
a polynomial-time encoding algorithm.
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Chapter 19

PCP and Hardness of
Approximation

“...most problem reductions do not create or preserve such
gaps...To create such a gap in the generic reduction (cf.
Cook)...also seems doubtful. The intuitive reason is that compu-
tation is an inherently unstable, non-robust mathematical object,
in the the sense that it can be turned from non-accepting to ac-
cepting by changes that would be insignificant in any reasonable
metric.”
Papadimitriou and Yannakakis, 1991 [PY91]

The PCP Theorem provides an interesting new characterization for NP,
as the set of languages that have a “locally testable” membership proof. It
is reminiscent of —and was motivated by— results such as IP =PSPACE.
Its essence is the following:

Suppose somebody wants to convince you that a Boolean formula is
satisfiable. He could present the usual certificate, namely, a satisfying as-
signment, which you could then check by substituting back into the formula.
However, doing this requires reading the entire certificate. The PCP The-
orem shows an interesting alternative: this person can easily rewrite his
certificate so you can verify it by probabilistically selecting a constant num-
ber of locations—as low as 3 bits— to examine in it. Furthermore, this
probabilistic verification has the following properties: (1) A correct certifi-
cate will never fail to convince you (that is, no choice of your random coins
will make you reject it) and (2) If the formula is unsatisfiable, then you are
guaranteed to reject every claimed certificate with high probability.
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Of course, since Boolean satisfiability is NP-complete, every other NP
language can be deterministically and efficiently reduced to it. Thus the
PCP Theorem applies to every NP language. We mention one counterin-
tuitive consequence. Let A be any one of the usual axiomatic systems of
mathematics for which proofs can be verified by a deterministic TM in time
that is polynomial in the length of the proof. Recall the following language
is in NP:

L = {〈ϕ, 1n〉 : ϕ has a proof in A of length ≤ n} .

The PCP Theorem asserts that L has probabilistically checkable certifi-
cates. Such certificate can be viewed as an alternative notion of “proof” for
mathematical statements that is just as valid as the usual notion. However,
unlike standard mathematical proofs, where every line of the proof has to
be checked to verify its validity, this new notion guarantees that proofs are
probabilistically checkable by examining only a constant number of bits in
them1.

This new, “robust” notion of certificate/proof has an important con-
sequence: it implies that many optimization problems are NP-hard not
only to solve exactly but even to approximate. As mentioned in Chapter 2,
the P versus NP question is practically important —as opposed to “just”
philosophically important— because thousands of real-life combinatorial op-
timization problems are NP-hard. By showing that even computing approx-
imate solutions to many of these problems is NP-hard, the PCP Theorem
extends the practical importance of the theory of NP-completeness, as well
as its philosophical significance.

This seemingly mysterious connection between the PCP Theorem —
which concerns probabilistic checking of certificates— and the NP-hardness
of computing approximate solutions is actually quite straightforward. All
NP-hardness results ultimately derive from the Cook-Levin theorem (Sec-
tion 2.3.1), which expresses accepting computations of a nondeterministic
Turing Machine with satisfying assignments to a Boolean formula. Unfor-
tunately, the standard representations of computation are quite nonrobust,
meaning that they can be incorrect if even one bit is incorrect (see the quote
at the start of this chapter). The PCP Theorem, by giving a robust repre-
sentation of the certificate for NP languages, allow new types of reductions;
see Section 19.2.3.

Below, we use the term “PCP Theorems” for the body of other results
of a similar nature to the PCP Theorem that found numerous applications

1One newspaper article about the discovery of the PCP Theorem carried the headline
“New shortcut found for long math proofs!”
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in complexity theory. Some important ones appear in the next Chapter, in-
cluding one that improves the PCP Theorem so that verification is possible
by reading only 3 bits in the proof!

19.1 PCP and Locally Testable Proofs

According to our usual definition, language L is in NP if there is a poly-
time Turing machine V (“verifier”) that, given input x, checks certificates
(or membership proofs) to the effect that x ∈ L. This means,

x ∈ L⇒ ∃π s.t. V π(x) = 1
x /∈ L⇒ ∀π V π(x) = 0,

where V π denotes “a verifier with access to certificate π”.
The class PCP (short for “Probabilistically Checkable Proofs”) is a gen-

eralization of this notion, with the following changes. First, the verifier is
probabilistic. Second, the verifier has random access to the proof string Π.
This means that each bit of the proof string can be independently queried
by the verifier via a special address tape: if the verifier desires say the ith
bit in the proof string, it writes i on the address tape and then receives the
bit π[i].2 (This is reminiscent of oracle TMs introduced in Chapter 4.) The
definition of PCP treats queries to the proof as a precious resource, to be
used sparingly. Note also that since the address size is logarithmic in the
proof size, this model in principle allows a polynomial-time verifier to check
membership proofs of exponential size.

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects
its queries based only on its input and random tape, whereas an adaptive
verifier can in addition rely upon bits it has already queried in π to select its
next queries. We restrict verifiers to be nonadaptive, since most PCP The-
orems can be proved using nonadaptive verifiers. (But Exercise 3 explores
the power of adaptive queries.)

Definition 19.1 ((r, q)-verifier)
Let L be a language and q, r : N → N. We say that L has an (r(n), q(n))-
verifier if there’s a polynomial-time probabilistic algorithm V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to a
string π ∈ {0, 1}∗ (which we call the proof ), V uses at most r(n)

2Though widely used, the term “random access” is misleading since it doesn’t involve
any notion of randomness per se. “Indexed access” would be more accurate.
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Verifier
Input: x in {0,1}n
r(n) coins

q(n) queries

proof: π

Figure 19.1: A PCP verifier for a language L gets an input x and random access to
a string π. If x ∈ L then there exists a string π that makes the verifier accepts, while if
x 6∈ L then the verifier rejects every proof π with probability at least 1/2.

random coins and makes at most q(n) non-adaptive queries to locations
of π (see Figure 19.1). Then it outputs “1”(for “accept”) or “0” (for
“reject”). We use the notation V π(x) to denote the random variable
representing V ’s output on input x and with random access to π.

Completeness: If x ∈ L then there exists a proof π ∈ {0, 1}∗ such that
Pr[V π(x) = 1] = 1. We call π the correct proof for x.

Soundness: If x 6∈ L then for every proof π ∈ {0, 1}∗, Pr[V π(x) = 1] ≤ 1/2.

We say that a language L is in PCP(r(n), q(n)) if L has a (c · r(n), d ·
q(n))-verifier for some constants c, d.

Sometimes we consider verifiers for which the probability “1/2” is replaced
by some other number, called the soundness parameter.

Theorem 19.2 (PCP Theorem [AS98, ALM+98])
NP = PCP(log n, 1).

Notes:

1. Without loss of generality, proofs checkable by an (r, q)-verifier contain
at most q2r bits. The verifier looks at only q places of the proof for
any particular choice of its random coins, and there are only 2r such
choices. Any bit in the proof that is read with 0 probability (i.e., for
no choice of the random coins) can just be deleted.

2. The previous remark implies PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)).
The proofs checkable by an (r(n), q(n)-verifier have size at most 2O(r(n))q(n).
A nondeterministic machine could guess the proof in 2O(r(n))q(n) time,
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and verify it deterministically by running the verifier for all 2O(r(n))

possible choices of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

As a special case, PCP(log n, 1) ⊆ NTIME(2O(logn)) = NP: this is
the trivial direction of the PCP Theorem.

3. The constant 1/2 in the soundness requirement of Definition 19.1 is
arbitrary, in the sense that changing it to any other positive constant
smaller than 1 will not change the class of languages defined. Indeed, a
PCP verifier with soundness 1/2 that uses r coins and makes q queries
can be converted into a PCP verifier using cr coins and cq queries with
soundness 2−c by just repeating its execution c times (see Exercise 1).

Example 19.3
To get a better sense for what a PCP proof system looks like, we sketch
two nontrivial PCP systems:

1. The language GNI of pairs of non-isomorphic graphs is in PCP(poly(n), 1).
Say the input for GNI is 〈G0, G1〉, whereG0, G1 have both n nodes. The
verifier expects π to contain, for each labeled graph H with n nodes,
a bit π[H] ∈ {0, 1} corresponding to whether H ≡ G0 or H ≡ G1

(π[H] can be arbitrary if neither case holds). In other words, π is an
(exponentially long) array of bits indexed by the (adjacency matrix
representations of) all possible n-vertex graphs.

The verifier picks b ∈ {0, 1} at random and a random permutation. She
applies the permutation to the vertices of Gb to obtain an isomorphic
graph, H. She queries the corresponding bit of π and accepts iff the
bit is b.

If G0 6≡ G1, then clearly a proof π can be constructed which makes
the verifier accept with probability 1. If G1 ≡ G2, then the probability
that any π makes the verifier accept is at most 1/2.

2. The protocols in Chapter 9 can be used (see Exercise 5) to show that
the permanent has PCP proof system with polynomial randomness
and queries. Once again, the length of the proof will be exponential.

In fact, both of these results are a special case of the following theorem
a “scaled-up” version of the PCP Theorem which we will not prove.
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Theorem 19.4 (Scaled-up PCP, [?, ALM+98, AS98])
PCP(poly, 1) = NEXP

19.2 PCP and Hardness of Approximation

The PCP Theorem implies that for many NP optimization problems, com-
puting near-optimal solutions is no easier than computing exact solutions.

We illustrate the notion of approximation algorithms with an example.
MAX3SAT is the problem of finding, given a 3CNF Boolean formula ϕ as
input, an assignment that maximizes the number of satisfied clauses. This
problem is of course NP-hard, because the corresponding decision problem,
3SAT, is NP-complete.

Definition 19.5
For every 3CNF formula ϕ, define val(ϕ) to be the maximum fraction of
clauses that can be satisfied by any assignment to ϕ’s variables. In partic-
ular, if ϕ is satisfiable then val(ϕ) = 1.

Let ρ ≤ 1. An algorithm A is a ρ-approximation algorithm for MAX3SAT
if for every 3CNF formula ϕ with m clauses, A(ϕ) outputs an assignment
satisfying at least ρ · val(ϕ)m of ϕ’s clauses.

In many practical settings, obtaining an approximate solution to a prob-
lem may be almost as good as solving it exactly. Moreover, for some com-
putational problems, approximation is much easier than an exact solution.

Example 19.6 (1/2-approximation for MAX3SAT)
We describe a polynomial-time algorithm that computes a 1/2-approximation
for MAX3SAT. The algorithm assigns values to the variables one by one in
a greedy fashion, whereby the ith variable is assigned the value that results
in satisfying at least 1/2 the clauses in which it appears. Any clause that gets
satisfied is removed and not considered in assigning values to the remaining
variables. Clearly, the final assignment will satisfy at least 1/2 of all clauses,
which is certainly at least half of the maximum that the optimum assignment
could satisfy.

Using semidefinite programming one can also design a polynomial-time
(7/8 − ε)-approximation algorithm for every ε > 0 (see references). (Ob-
taining such a ratio is trivial if we restrict ourselves to 3CNF formulae
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with three distinct variables in each clause. Then a random assignment has
probability 7/8 to satisfy it, and by linearity of expectation, is expected to
satisfy a 7/8 fraction of the clauses. This observation can be turned into a
simple probabilistic or even deterministic 7/8-approximation algorithm.)

For a few problems, one can even design (1−ε)-approximation algorithms
for every ε > 0. Exercise 10 asks you to show this for the NP-complete
knapsack problem.

Researchers are extremely interested in finding the best possible approx-
imation algorithms for NP-hard optimization problems. Yet, until the early
1990’s most such questions were wide open. In particular, we did not know
whether MAX3SAT has a polynomial-time ρ-approximation algorithm for
every ρ < 1. The PCP Theorem has the following Corollary.

Corollary 19.7
There exists some constant ρ < 1 such that if there is a polynomial-time
ρ-approximation algorithm for MAX3SAT then P = NP.

Later, in Chapter 20, we show a stronger PCP Theorem by H̊astad
which implies that for every ε > 0, if there is a polynomial-time (7/8+ε)-
approximation algorithm for MAX3SAT then P = NP. Hence the approxi-
mation algorithm for this problem mentioned in Example 19.6 is very likely
optimal. The PCP Theorem (and the other PCP theorems that followed it)
imply a host of such hardness of approximation results for many important
problems, often showing that known approximation algorithms are optimal.

19.2.1 Gap-producing reductions

To prove Corollary 19.7 for some fixed ρ < 1, it suffices to give a polynomial-
time reduction f that maps 3CNF formulae to 3CNF formulae such that:

ϕ ∈ 3SAT⇒ val(f(ϕ)) = 1 (1)
ϕ 6∈ L⇒ val(f(ϕ)) < ρ (2)

After all, if a ρ-approximation algorithm were to exist for MAX3SAT, then
we could use it to decide membership of any given formula ϕ in 3SAT by
applying reduction f on ϕ and then running the approximation algorithm on
the resultant 3CNF formula f(ϕ). If val(f(ϕ) = 1, then the approximation
algorithm would return an assignment that satisfies at least ρ fraction of the
clauses, which by property (2) tells us that ϕ ∈ 3SAT.
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Later (in Section 19.2) we show that the PCP Theorem is equivalent to
the following Theorem:

Theorem 19.8
There exists some ρ < 1 and a polynomial-time reduction f satisfying (1)
and (2).

By the discussion above, Theorem 19.8 implies Corollary 19.7 and so
rules out a polynomial-time ρ-approximation algorithm for MAX3SAT (un-
less P = NP).

Why doesn’t the Cook-Levin reduction suffice to prove Theo-
rem 19.8? The first thing one would try is the reduction from any NP
language to 3SAT in the Cook-Levin Theorem (Theorem 2.11). Unfortu-
nately, it doesn’t give such an f because it does not satisfy property (2): we
can always satisfy almost all of the clauses in the formulae produced by the
reduction (see Exercise 9 and also the “non-robustness” quote at the start
of this chapter).

19.2.2 Gap problems

The above discussion motivates the definition of gap problems, a notion
implicit in (1) and (2). It is also an important concept in the proof of the
PCP Theorem itself.

Definition 19.9 (GAP 3SAT)
Let ρ ∈ (0, 1). The ρ-GAP 3SAT problem is to determine, given a 3CNF
formula ϕ whether:

• ϕ is satisfiable, in which case we say ϕ is a YES instance of ρ-GAP 3SAT.

• val(ϕ) ≤ ρ, in which case we say ϕ is a NO instance of ρ-GAP 3SAT.

An algorithm A is said to solve ρ-GAP 3SAT if A(ϕ) = 1 if ϕ is a YES
instance of ρ-GAP 3SAT and A(ϕ) = 0 if ϕ is a NO instance. Note that
we do not make any requirement on A(ϕ) if ϕ is neither a YES nor a NO
instance of ρ-GAP qCSP.

Our earlier discussion of the desired reduction f can be formalized as
follows.
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Definition 19.10
Let ρ ∈ (0, 1). We say that ρ-GAP 3SAT is NP-hard if for every language L
there is a polynomial-time computable function f such that

x ∈ L⇒ f(x) is a YES instance of ρ-GAP 3SAT

x 6∈ L⇒ f(x) is a NO instance of ρ-GAP 3SAT

19.2.3 Constraint Satisfaction Problems

Now we generalize the definition of 3SAT to constraint satisfaction problems
(CSP), which allow clauses of arbitrary form (instead of just OR of literals)
including those depending upon more than 3 variables. Sometimes the vari-
ables are allowed to be non-Boolean. CSPs arise in a variety of application
domains and play an important role in the proof of the PCP Theorem.
Definition 19.11
Let q,W be natural numbers. A qCSPW instance ϕ is a collection of func-
tions ϕ1, . . . , ϕm (called constraints) from {0..W−1}n to {0, 1} such that each
function ϕi depends on at most q of its input locations. That is, for every
i ∈ [m] there exist j1, . . . , jq ∈ [n] and f : {0..W−1}q → {0, 1} such that
ϕi(u) = f(uj1 , . . . , ujq) for every u ∈ {0..W−1}n.

We say that an assignment u ∈ {0..W−1}n satisfies constraint ϕi if
ϕi(u) = 1. The fraction of constraints satisfied by u is

∑m
i=1 ϕi(u)
m , and we

let val(ϕ) denote the maximum of this value over all u ∈ {0..W−1}n. We say
that ϕ is satisfiable if val(ϕ) = 1.

We call q the arity of ϕ and W the alphabet size. If W = 2 we say that ϕ
uses a binary alphabet and call ϕ a qCSP-instance (dropping the subscript
2).

Example 19.12
3SAT is the subcase of qCSPW where q = 3, W = 2, and the constraints are
OR’s of the involved literals.

Similarly, the NP-complete problem 3COL can be viewed as a subcase
of 2CSP3 instances where for each edge (i, j), there is a constraint on the
variables ui, uj that is satisfied iff ui 6= uj . The graph is 3-colorable iff
there is a way to assign a number in {0, 1, 2} to each variable such that all
constraints are satisfied.

Notes:
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1. We define the size of a qCSPW -instance ϕ to be the number of con-
straints m it has. Because variables not used by any constraints are
redundant, we always assume n ≤ qm. Note that a qCSPW instance
over n variables with m constraints can be described using O(mnqW q)
bits. Usually q,W will be constants (independent of n,m).

2. As in the case of 3SAT, we can define maximization and gap prob-
lems for CSP instances. In particular, for any ρ ∈ (0, 1), we define
ρ-GAP qCSPW as the problem of distinguishing between a qCSPW -
instance ϕ that is satisfiable (called a YES instance) and an instance
ϕ with val(ϕ) ≤ ρ (called a NO instance). As before, we will drop the
subscript W in the case of a binary alphabet.

3. The simple greedy approximation algorithm for 3SAT can be general-
ized for the MAX qCSP problem of maximizing the number of satisfied
constraints in a given qCSP instance. That is, for any qCSPW in-
stance ϕ with m constraints, the algorithm will output an assignment
satisfying val(ϕ)

W q m constraints. Thus, unless NP ⊆ P, the problem
2−q-GAP qCSP is not NP hard.

19.2.4 An Alternative Formulation of the PCP Theorem

We now show how the PCP Theorem is equivalent to the NP-hardness of
a certain gap version of qCSP. Later, we will refer to this equivalence as the
“hardness of approximation viewpoint” of the PCP Theorem.

Theorem 19.13 (PCP Theorem, alternative formulation)
There exist constants q ∈ N, ρ ∈ (0, 1) such that ρ-GAP qCSP is NP-hard.

We now show Theorem 19.13 is indeed equivalent to the PCP Theorem:

Theorem 19.2 implies Theorem 19.13. Assume that NP ⊆ PCP(log n, 1).
We will show that 1/2-GAP qCSP is NP-hard for some constant q. It is
enough to reduce a single NP-complete language such as 3SAT to 1/2-GAP qCSP
for some constant q. Under our assumption, 3SAT has a PCP system in
which the verifier V makes a constant number of queries, which we denote
by q, and uses c log n random coins for some constant c. Given every input
x and r ∈ {0, 1}c logn, define Vx,r to be the function that on input a proof π
outputs 1 if the verifier will accept the proof π on input x and coins r. Note
that Vx,r depends on at most q locations. Thus for every x ∈ {0, 1}n, the
collection ϕ = {Vx,r}r∈{0,1}c logn is a polynomial-sized qCSP instance. Fur-
thermore, since V runs in polynomial-time, the transformation of x to ϕ can
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also be carried out in polynomial-time. By the completeness and soundness
of the PCP system, if x ∈ 3SAT then ϕ will satisfy val(ϕ) = 1, while if
x 6∈ 3SAT then ϕ will satisfy val(ϕ) ≤ 1/2. �

Theorem 19.13 implies Theorem 19.2. Suppose that ρ-GAP qCSP is
NP-hard for some constants q,ρ < 1. Then this easily translates into a
PCP system with q queries, ρ soundness and logarithmic randomness for
any language L: given an input x, the verifier will run the reduction f(x)
to obtain a qCSP instance ϕ = {ϕi}mi=1. It will expect the proof π to be an
assignment to the variables of ϕ, which it will verify by choosing a random
i ∈ [m] and checking that ϕi is satisfied (by making q queries). Clearly, if
x ∈ L then the verifier will accept with probability 1, while if x 6∈ L it will
accept with probability at most ρ. The soundness can be boosted to 1/2 at
the expense of a constant factor in the randomness and number of queries
(see Exercise 1). �

Remark 19.14
Since 3CNF formulas are a special case of 3CSP instances, Theorem 19.8
(ρ-GAP 3SAT is NP-hard) implies Theorem 19.13 (ρ-GAP qCSP is NP-hard).
Below we show Theorem 19.8 is also implied by Theorem 19.13, concluding
that it is also equivalent to the PCP Theorem.

It is worth while to review this very useful equivalence between the “proof
view” and the “hardness of approximation view” of the PCP Theorem:

PCP verifier (V ) ←→ CSP instance (ϕ)
PCP proof (π) ←→ Assignment to variables (u)
Length of proof ←→ Number of variables (n)

Number of queries (q) ←→ Arity of constraints (q)
Number of random bits (r) ←→ Logarithm of number of constraints (logm)

Soundness parameter ←→ Maximum of val(ϕ) for a NO instance
Theorem 19.2 (NP ⊆ PCP(log n, 1)) ←→ Theorem 19.13 (ρ-GAP qCSP is NP-hard)

19.2.5 Hardness of Approximation for 3SAT and INDSET.

The CSP problem allows arbitrary functions to serve as constraints, which
may seem somewhat artificial. We now show how Theorem 19.13 implies
hardness of approximation results for the more natural problems of MAX3SAT
(determining the maximum number of clauses satisfiable in a 3SAT formula)
and MAX INDSET (determining the size of the largest independent set in a
given graph).
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The following two lemmas use the PCP Theorem to show that unless
P = NP, both MAX3SAT and MAX INDSET are hard to approximate within
a factor that is a constantless than 1. ( Section 19.3 proves an even stronger
hardness of approximation result for INDSET.)

Lemma 19.15 (Theorem 19.8, restated)
There exists a constant 0 < ρ < 1 such that ρ-GAP 3SAT is NP-hard.

Lemma 19.16
There exist a polynomial-time computable transformation f from 3CNF
formulae to graphs such that for every 3CNF formula ϕ, f(ϕ) is an n-vertex
graph whose largest independent set has size val(ϕ)n7 .

Proof of Lemma 19.15: Let ε > 0 and q ∈ N be such that by The-
orem 19.13, (1−ε)-GAP qCSP is NP-hard. We show a reduction from (1−
ε)-GAP qCSP to (1−ε′)-GAP 3SAT where ε′ > 0 is some constant depending
on ε and q. That is, we will show a polynomial-time function mapping YES
instances of (1−ε)-GAP qCSP to YES instances of (1−ε′)-GAP 3SAT and NO
instances of (1−ε)-GAP qCSP to NO instances of (1−ε′)-GAP 3SAT.

Let ϕ be a qCSP instance over n variables with m constraints. Each
constraint ϕi of ϕ can be expressed as an AND of at most 2q clauses, where
each clause is the OR of at most q variables or their negations. Let ϕ′ denote
the collection of at most m2q clauses corresponding to all the constraints
of ϕ. If ϕ is a YES instance of (1−ε)-GAP qCSP (i.e., it is satisfiable) then
there exists an assignment satisfying all the clauses of ϕ′. if ϕ is a NO
instance of (1−ε)-GAP qCSP then every assignment violates at least an ε
fraction of the constraints of ϕ and hence violates at least an ε

2q fraction of
the constraints of ϕ. We can use the Cook-Levin technique of Chapter 2
(Theorem 2.11), to transform any clause C on q variables on u1, . . . , uq
to a set C1, . . . , Cq of clauses over the variables u1, . . . , uq and additional
auxiliary variables y1, . . . , yq such that (1) each clause Ci is the OR of at
most three variables or their negations, (2) if u1, . . . , uq satisfy C then there
is an assignment to y1, . . . , yq such that u1, . . . , uq, y1, . . . , yq simultaneously
satisfy C1, . . . , Cq and (3) if u1, . . . , uq does not satisfy C then for every
assignment to y1, . . . , yq, there is some clause Ci that is not satisfies by
u1, . . . , uq, y1, . . . , yq.

Let ϕ′′ denote the collection of at most qm2q clauses over the n + qm
variables obtained in this way from ϕ′. Note that ϕ′′ is a 3SAT formula. Our
reduction will map ϕ to ϕ′′. Completeness holds since if ϕ was satisfiable
then so will be ϕ′ and hence ϕ′′. Soundness holds since if every assignment
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violates at least an ε fraction of the constraints of ϕ, then every assign-
ment violates at least an ε

2q fraction of the constraints of ϕ′, and so every
assignment violates at least an ε

q2q fraction of the constraints of ϕ′′. �

Proof of Lemma 19.16: Let ϕ be a 3CNF formula on n variables with
m clauses. We define a graph G of 7m vertices as follows: we associate
a cluster of 7 vertices in G with each clause of ϕ. The vertices in cluster
associated with a clause C correspond to the 7 possible assignments to the
three variables C depends on (we call these partial assignments, since they
only give values for some of the variables). For example, if C is u2 ∨ u5 ∨ u7

then the 7 vertices in the cluster associated with C correspond to all partial
assignments of the form u1 = a, u2 = b, u3 = c for a binary vector 〈a, b, c〉 6=
〈1, 1, 1〉. (If C depends on less than three variables we treat one of them
as repeated and then some of the 7 vertices will correspond to the same
assignment.) We put an edge between two vertices of G if they correspond
to inconsistent partial assignments. Two partial assignments are consistent
if they give the same value to all the variables they share. For example,
the assignment u1 = 1, u2 = 0, u3 = 0 is inconsistent with the assignment
u3 = 1, u5 = 0, u7 = 1 because they share a variable (u3) to which they give
a different value. In addition, we put edges between every two vertices that
are in the same cluster.

Clearly transforming ϕ into G can be done in polynomial time. Denote
by α(G) to be the size of the largest independent set in G. We claim that
α(G) = val(ϕ)m. For starters, note that α(G) ≥ val(ϕ)m. Indeed, let u be
the assignment that satisfies val(ϕ)m clauses. Define a set S as follows: for
each clause C satisfied by u, put in S the vertex in the cluster associated
with C that corresponds to the restriction of u to the variables C depends
on. Because we only choose vertices that correspond to restrictions of the
assignment u, no two vertices of S correspond to inconsistent assignments
and hence S is an independent set of size val(ϕ)m.

Suppose that G has an independent set S of size k. We will use S
to construct an assignment u satisfying k clauses of ϕ, thus showing that
val(ϕ)m ≥ α(G). We define u as follows: for every i ∈ [n], if there is a vertex
in S whose partial assignment gives a value a to ui, then set ui = a; otherwise
set ui = 0. This is well defined because S is an independent set, and each
variable ui can get at most a single value by assignments corresponding to
vertices in S. On the other hand, because we put all the edges within each
cluster, S can contain at most a single vertex in each cluster, and hence
there are k distinct cluster with members in S. By our definition of u it
satisfies all the clauses associated with these clusters. �
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Remark 19.17
In Chapter 2, we defined L′ to be NP-hard if every L ∈ NP reduces to
L′. The reduction was a polynomial-time function f such that x ∈ L ⇔
f(x) ∈ L′. In all cases, we proved that x ∈ L⇒ f(x) ∈ L′ by showing a way
to map a certificate to the fact that x ∈ L to a certificate to the fact that
x′ ∈ L′. Although the definition of a Karp reduction does not require that
this mapping is efficient, it often turned out that the proof did provide a
way to compute this mapping in polynomial time. The way we proved that
f(x) ∈ L′ ⇒ x ∈ L was by showing a way to map a certificate to the fact
that x′ ∈ L′ to a certificate to the fact that x ∈ L. Once again, the proofs
typically yield an efficient way to compute this mapping.

A similar thing happens in the gap preserving reductions used in the
proofs of Lemmas 19.15 and 19.16 and elsewhere in this chapter. When
reducing from, say, ρ-GAP qCSP to ρ′-GAP 3SAT we show a function f that
maps a CSP instance ϕ to a 3SAT instance ψ satisfying the following two
properties:

Completeness We can map a satisfying assignment of ϕ to a satisfying
assignment to ψ

Soundness Given any assignment that satisfies more than a ρ′ fraction of
ψ’s clauses, we can map it back into an assignment satisfying more
than a ρ fraction of ϕ’s constraints.

19.3 n−δ-approximation of independent set is NP-
hard.

We now show a much stronger hardness of approximation result for the
independent set (INDSET) problem than Lemma 19.16. Namely, we show
that there exists a constant δ ∈ (0, 1) such that unless P = NP, there is
no polynomial-time nδ-approximation algorithm for INDSET. That is, we
show that if there is a polynomial-time algorithm A that given an n-vertex
graph G outputs an independent set of size at least opt

nδ
(where opt is the

size of the largest independent set in G) then P = NP. We note that an
even stronger result is known: the constant δ can be made arbitrarily close
to 1 [?, ?]. This factor is almost optimal since the independent set problem
has a trivial n-approximation algorithm: output a single vertex.

Our main tool will be the notion of expander graphs (see Note 19.18
and Chapter 16). Expander graphs will also be used in the proof of PCP
Theorem itself. We use here the following property of expanders:

Web draft 2006-09-28 18:09



DRAFT

19.3. N−δ-APPROXIMATION OF INDEPENDENT SET IS NP-HARD.427

Note 19.18 (Expander graphs)
Expander graphs are described in Chapter 16. We define there a parameter
λ(G) ∈ [0, 1], for every regular graph G (see Definition 16.3). The main
property we need in this chapter is that for every regular graph G = (V,E)
and every S ⊆ V with |S| ≤ |V |/2,

Pr
(u,v)∈E

[u ∈ S, v ∈ S] ≤ |S|
|V |

(
1
2

+
λ(G)

2

)
(3)

Another property we use is that λ(G`) = λ(G)` for every ` ∈ N, where G` is
obtained by taking the adjacency matrix of G to the `th power (i.e., an edge
in G` corresponds to an (`−1)-step path in G).
For every c ∈ (0, 1), we call a regular graph G satisfying λ(G) ≤ c a c-
expander graph. If c < 0.9, we drop the prefix c and simply call G an
expander graph. (The choice of the constant 0.9 is arbitrary.) As shown
in Chapter 16, for every constant c ∈ (0, 1) there is a constant d and an
algorithm that given input n ∈ N , runs in poly(n) time and outputs the
adjacency matrix of an n-vertex d-regular c-expander (see Theorem 16.24).
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Lemma 19.19
Let G = (V,E) be a λ-expander graph for some λ ∈ (0, 1). Let S be a subset
of V with |S| = β|V | for some β ∈ (0, 1). Let (X1, . . . , X`) be a tuple of
random variables denoting the vertices of a uniformly chosen ( −̀1)-step path
in G. Then,

(β − 2λ)k ≤ Pr[∀i∈[`]Xi ∈ S] ≤ (β + 2λ)k

The upper bound of Lemma 19.19 is implied by Theorem ??; we omit
the proof of the lower bound.

The hardness result for independent set follows by combining the follow-
ing lemma with Lemma 19.16:

Lemma 19.20
For every λ > 0 there is a polynomial-time computable reduction f that
maps every n-vertex graph G into an m-vertex graph H such that

(α̃(G)− 2λ)logn ≤ α̃(H) ≤ (α̃(G) + 2λ)logn

where α̃(G) is equal to the fractional size of the largest independent set in
G.

Recall that Lemma 19.16 shows that there are some constants β, ε ∈
(0, 1) such that it is NP-hard to tell whether a given graph G satisfies (1)
α̃(G) ≥ β or (2) α̃(G) ≤ (1 − ε)β. By applying to G the reduction of
Lemma 19.20 with parameter λ = βε/8 we get that in case (1), α̃(H) ≥
(β − βε/4)logn = (β(1 − ε/4))logn, and in case (2), α̃(H) ≤ ((1 − ε)β +
βε/4)logn = (β(1− 0.75ε))logn. We get that the gap between the two cases
is equal to clogn for some c > 1 which is equal to mδ for some δ > 0 (where
m = poly(n) is the number of vertices in H).

Proof of Lemma 19.20: Let G, λ be as in the lemma’s statement. We
let K be an n-vertex λ-expander of degree d (we can obtain such a graph
in polynomial-time, see Note 19.18). We will map G into a graph H of
ndlogn−1 vertices in the following way:

• The vertices of H correspond to all the (log n−1)-step paths in the
λ-expander K.

• We put an edge between two vertices u, v of H corresponding to the
paths 〈u1, . . . , ulogn〉 and 〈v1, . . . , vlogn〉 if there exists an edge in G
between two vertices in the set {u1, . . . , ulogn, v1, . . . , vlogn}.
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A subset T of H’s vertices corresponds to a subset of log n-tuples of
numbers in [n], which we can identify as tuples of vertices in G. We let
V (T ) denote the set of all the vertices appearing in one of the tuples of T .
Note that in this notation, T is an independent set in H if and only if V (T )
is an independent set of G. Thus for every independent set T in H, we have
that |V (T )| ≤ α̃(G)n and hence by the upper bound of Lemma 19.19, T
takes up less than an (α̃(H)+2λ)logn fraction of H’s vertices. On the other
hand, if we let S be the independent set of G of size α̃(G)n then by the lower
bound of Lemma 19.19, an (α̃− 2λ)logn fraction of H’s vertices correspond
to paths fully contained in S, implying that α̃(H) ≥ (α̃(G)− 2λ)logn. �

19.4 NP ⊆ PCP(poly(n), 1): PCP based upon Walsh-
Hadamard code

We now prove a weaker version of the PCP theorem, showing that every
NP statement has an exponentially-long proof that can be locally tested
by only looking at a constant number of bits. In addition to giving a taste
of how one proves PCP Theorems, this section builds up to a stronger
Corollary 19.26, which will be used in the proof of the PCP theorem.

Theorem 19.21
NP ⊆ PCP(poly(n), 1)

We prove this theorem by designing an appropriate verifier for an NP-
complete language. The verifier expects the proof to contain an encoded
version of the usual certificate. The verifier checks such an encoded certifi-
cate by simple probabilistic tests.

19.4.1 Tool: Linearity Testing and the Walsh-Hadamard Code

We use the Walsh-Hadamard code (see Section 18.5, though the treatment
here is self-contained). It is a way to encode bit strings of length n by linear
functions in n variables over GF(2); namely, the function WH : {0, 1}∗ →
{0, 1}∗ mapping a string u ∈ {0, 1}n to the truth table of the function x 7→
u� x, where for x,y ∈ {0, 1}n we define x� y =

∑n
i=1 xiyi (mod 2). Note

that this is a very inefficient encoding method: an n-bit string u ∈ {0, 1}n
is encoded using |WH(u)| = 2n bits. If f ∈ {0, 1}2

n

is equal to WH(u) for
some u then we say that f is a Walsh-Hadamard codeword. Such a string
f ∈ {0, 1}2

n

can also be viewed as a function from {0, 1}n to {0, 1}.
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The Walsh-Hadamard code is an error correcting code with minimum
distance 1/2, by which we mean that for every u 6= u′ ∈ {0, 1}n, the encodings
WH(u) and WH(u) differ in half the bits. This follows from the familiar
random subsum principle (Claim A.3) since exactly half of the strings x ∈
{0, 1}n satisfy u�x 6= u′�x. Now we talk about local tests for the Walsh-
Hadamard code (i.e., tests making only O(1) queries).

Local testing of Walsh-Hadamard code. Suppose we are given access
to a function f : {0, 1}n → {0, 1} and want to test whether or not f is
actually a codeword of Walsh-Hadamard. Since the Walsh-Hadamard code-
words are precisely the set of all linear functions from {0, 1}n to {0, 1}, we
can test f by checking that

f(x + y) = f(x) + f(y) (4)

for all the 22n pairs x,y ∈ {0, 1}n (where “+” on the left side of (pcp:eq:lintest)
denotes vector addition over GF(2)n and on the right side denotes addition
over GF(2)).

But can we test f by querying it in only a constant number of places?
Clearly, if f is not linear but very close to being a linear function (e.g., if
f is obtained by modifying a linear function on a very small fraction of its
inputs) then such a local test will not be able to distinguish f from a linear
function. Thus we set our goal on a test that on one hand accepts every
linear function, and on the other hand rejects with high probability every
function that is far from linear. It turns out that the natural test of choosing
x,y at random and verifying (4) achieves this goal:
Definition 19.22
Let ρ ∈ [0, 1]. We say that f, g : {0, 1}n → {0, 1} are ρ-close if Prx∈R{0,1}n [f(x) =
g(x)] ≥ ρ. We say that f is ρ-close to a linear function if there exists a linear
function g such that f and g are ρ-close.

Theorem 19.23 (Linearity Testing [?])
Let f : {0, 1}n → {0, 1} be such that

Pr
x,y∈R{0,1}n

[f(x + y) = f(x) + f(y)] ≥ ρ

for some ρ > 1/2. Then f is ρ-close to a linear function.

We defer the proof of Theorem 19.23 to Section 20.3 of the next chap-
ter. For every δ ∈ (0, 1/2), we can obtain a linearity test that rejects with
probability at least 1/2 every function that is not (1−δ)-close to a linear func-
tion, by testing Condition (4) repeatedly O(1/δ) times with independent
randomness. We call such a test a (1−δ)-linearity test.
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Local decoding of Walsh-Hadamard code. Suppose that for δ < 1
4

the function f : {0, 1}n → {0, 1} is (1−δ)-close to some linear function f̃ .
Because every two linear functions differ on half of their inputs, the function
f̃ is uniquely determined by f . Suppose we are given x ∈ {0, 1}n and random
access to f . Can we obtain the value f̃(x) using only a constant number
of queries? The naive answer is that since most x’s satisfy f(x) = f̃(x),
we should be able to learn f̃(x) with good probability by making only the
single query x to f . The problem is that x could very well be one of the
places where f and f̃ differ. Fortunately, there is still a simple way to learn
f̃(x) while making only two queries to f :

1. Choose x′ ∈R {0, 1}n.

2. Set x′′ = x + x′.

3. Let y′ = f(x′) and y′′ = f(x′′).

4. Output y′ + y′′.

Since both x′ and x′′ are individually uniformly distributed (even though
they are dependent), by the union bound with probability at least 1 − 2δ
we have y′ = f̃(x′) and y′′ = f̃(x′′). Yet by the linearity of f̃ , f̃(x) =
f̃(x′ + x′′) = f̃(x′) + f̃(x′′), and hence with at least 1 − 2δ probability
f̃(x) = y′ + y′′.3 This technique is called local decoding of the Walsh-
Hadamard code since it allows to recover any bit of the correct codeword (the
linear function f̃) from a corrupted version (the function f) while making
only a constant number of queries. It is also known as self correction of the
Walsh-Hadamard code.

19.4.2 Proof of Theorem 19.21

We will show a (poly(n), 1)-verifier proof system for a particular NP-complete
language L. The result that NP ⊆ PCP(poly(n), 1) follows since every
NP language is reducible to L. The NP-complete language L we use is
QUADEQ, the language of systems of quadratic equations over GF(2) =
{0, 1} that are satisfiable.

3We use here the fact that over GF(2), a+ b = a− b.
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Example 19.24
The following is an instance of QUADEQ over the variables u1, . . . , u5:

u1u2 + u3u4 + u1u5 = 1
u2u3 + u1u4 = 0

u1u4 + u3u5 + u3u4 = 1

This instance is satisfiable since the all-1 assignment satisfies all the equa-
tions.

More generally, an instance of QUADEQ over the variables u1, . . . , un is
of the form AU = b, where U is the n2-dimensional vector whose 〈i, j〉th
entry is uiuj , A is an m× n2 matrix and b ∈ {0, 1}m. In other words, U is
the tensor product u ⊗ u, where x ⊗ y for a pair of vectors x,y ∈ {0, 1}n
denotes the n2-dimensional vector (or n × n matrix) whose (i, j) entry is
xiyj . For every i, j ∈ [n] with i ≤ j, the entry Ak,〈i,j〉 is the coefficient of
uiuj in the kth equation (we identify [n2] with [n] × [n] in some canonical
way). The vector b consists of the right hand side of the m equations. Since
ui = (ui)2 in GF(2), we can assume the equations do not contain terms of
the form u2

i .
Thus a satisfying assignment consists of u1, u2, . . . , un ∈ GF(2) such that

its tensor product U = u⊗ u satisfies AU = b. We leave it as Exercise 12
to show that QUADEQ, the language of all satisfiable instances, is indeed
NP-complete.

WH(u) WH(uOu)x

Figure 19.2: The PCP proof that a set of quadratic equations is satisfiable consists of
WH(u) and WH(u⊗u) for some vector u. The verifier first checks that the proof is close to
having this form, and then uses the local decoder of the Walsh-Hadamard code to ensure
that u is a solution for the quadratic equation instance.

We now describe the PCP system for QUADEQ. Let A,b be an in-
stance of QUADEQ and suppose that A,b is satisfiable by an assignment
u ∈ {0, 1}n. The correct PCP proof π for A, b will consist of the Walsh-
Hadamard encoding for u and the Walsh-Hadamard encoding for u⊗u, by
which we mean that we will design the PCP verifier in a way ensuring that it
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accepts proofs of this form with probability one, satisfying the completeness
condition. (Note that π is of length 2n + 2n

2
.)

Below, we repeatedly use the following fact:

random subsum principle: If u 6= v then for at least 1/2 the choices of x,
u � x 6= v � x. Realize that x can be viewed as a random subset of indices
in [1, . . . , n] and the principle says that with probability 1/2 the sum of the
ui’s over this index set is different from the corresponding sum of vi’s.

The verifier. The verifier V gets access to a proof π ∈ {0, 1}2
n+2n

2

, which
we interpret as a pair of functions f : {0, 1}n → {0, 1} and g : {0, 1}n

2

→
{0, 1}.

Step 1: Check that f , g are linear functions.

As already noted, this isn’t something that the verifier can check per se
using local tests. Instead, the verifier performs a 0.99-linearity test on both
f, g, and rejects the proof at once if either test fails.

Thus, if either of f, g is not 0.99-close to a linear function, then V rejects
with high probability. Therefore for the rest of the procedure we can assume
that there exist two linear functions f̃ : {0, 1}n → {0, 1} and g̃ : {0, 1}n

2

→
{0, 1} such that f̃ is 0.99-close to f , and g̃ is 0.99-close to g. (Note: in a
correct proof, the tests succeed with probability 1 and f̃ = f and g̃ = g.)

In fact, we will assume that for Steps 2 and 3, the verifier can query f̃ , g̃
at any desired point. The reason is that local decoding allows the verifier
to recover any desired value of f̃ , g̃ with good probability, and Steps 2 and
3 will only use a small (less than 15) number of queries to f̃ , g̃. Thus with
high probability (say > 0.9) local decoding will succeed on all these queries.

notation: To simplify notation in the rest of the procedure we use f, g
for f̃ , g̃ respectively. Furthermore, we assume both f and g are linear, and
thus they must encode some strings u ∈ {0, 1}n and w ∈ {0, 1}n

2

. In other
words, f, g are the functions given by f(r) = u� r and g(z) = w � z.

Step 2: Verify that g encodes u⊗ u, where u ∈ {0, 1}n is the string
encoded by f .

Verifier V does the following test 3 times: “Choose r, r′ independently
at random from {0, 1}n, and if f(r)f(r′) 6= g(r⊗ r′) then halt and reject.”
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In a correct proof, w = u⊗ u, so

f(r)f(r′) =

∑
i∈[n]

uiri

∑
j∈[n]

ujr
′
j

 =

∑
i,j∈[n]

uiujrir
′
j = (u⊗ u)� (r⊗ r′),

which in the correct proof is equal to g(r⊗ r′). Thus Step 2 never rejects a
correct proof.

Suppose now that, unlike the case of the correct proof, w 6= u⊗ u. We
claim that in each of the three trials V will halt and reject with probability
at least 1

4 . (Thus the probability of rejecting in at least one trial is at least
1−(3/4)3 = 37/64.) Indeed, let W be an n×n matrix with the same entries
as w, let U be the n × n matrix such that Ui,j = uiuj and think of r as a
row vector and r′ as a column vector. In this notation,

g(r⊗ r′) = w � (r⊗ r′) =
∑
i,j∈[n]

wi,jrir
′
j = rWr′

f(r)f(r′) = (u� r)(u� r′) = (
n∑
i=1

uiri)(
n∑
j=1

ujr
′
j) =

∑
i,j∈[n]

uiujrirj = rUr′

And V rejects if rWr′ 6= rUr′. The random subsum principle implies
that if W 6= U then at least 1/2 of all r satisfy rW 6= rU . Applying the
random subsum principle for each such r, we conclude that at least 1/2 the
r′ satisfy rWr′ 6= rUr′. We conclude that the test rejects for at least 1/4 of
all pairs r, r′.

Step 3: Verify that f encodes a satisfying assignment.
Using all that has been verified about f, g in the previous two steps, it

is easy to check that any particular equation, say the kth equation of the
input, is satisfied by u, namely,∑

i,j

Ak,(i,j)uiuj = bk. (5)

Denoting by z the n2 dimensional vector (Ak,(i,j)) (where i, j vary over
[1..n]), we see that the left hand side is nothing but g(z). Since the verifier
knows Ak,(i,j) and bk, it simply queries g at z and checks that g(z) = bk.

The drawback of the above idea is that in order to check that u satisfies
the entire system, the verifier needs to make a query to g for each k =
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1, 2, . . . ,m, whereas the number of queries is required to be independent of
m. Luckily, we can use the random subsum principle again! The verifier
takes a random subset of the equations and computes their sum mod 2. (In
other words, for k = 1, 2, . . . ,m multiply the equation in (5) by a random bit
and take the sum.) This sum is a new quadratic equation, and the random
subsum principle implies that if u does not satisfy even one equation in the
original system, then with probability at least 1/2 it will not satisfy this
new equation. The verifier checks that u satisfies this new equation.

(Actually, the above test has to be repeated twice to ensure that if u
does not satisfy the system, then Step 3 rejects with probability at least
3/4.)

19.4.3 PCP’s of proximity

Theorem 19.21 says that (exponential-sized) certificates for NP languages
can be checked by examining only O(1) bits in them. The proof actually
yields a somewhat stronger result, which will be used in the proof of the
PCP Theorem. This concerns the following scenario: we hold a circuit C in
our hands that has n input wires. Somebody holds a satisfying assignment
u. He writes down WH(u) as well as another string π for us. We do a
probabilistic test on this by examining O(1) bits in these strings, and at the
end we are convinced of this fact.

Concatenation test. First we need to point out a property of Walsh-
Hadamard codes and a related concatenation test. In this setting, we are
given two linear functions f, g that encode strings of lengths n and n + m
respectively. We have to check by examining only O(1) bits in f, g that if u
and v are the strings encoded by f, g (that is, f = WH(u) and h = WH(v))
then u is the same as the first n bits of v. By the random subsum principle,
the following simple test rejects with probability 1/2 if this is not the case.
Pick a random x ∈ {0, 1}n, and denote by X ∈ GF(2)m+n the string whose
first n bits are x and the remaining bits are all-0. Verify that f(X) = g(x).

With this test in hand, we can prove the following corollary.

Corollary 19.25 (Exponential-sized PCP of proximity.)
There exists a verifier V that given any circuit C of size m and with n inputs
has the following property:

1. If u ∈ {0, 1}n is a satisfying assignment for circuit C, then there is

a string π2 of size 2poly(m) such that V accepts WH(u) ◦ π2 with
probability 1. (Here ◦ denotes concatenation.)
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2. For every strings π1, π2 ∈ {0, 1}∗, where π1 has 2n bits, if V accepts
π1 ◦ π2 with probability at least 1/2, then π1 is 0.99-close to WH(u)
for some u that satisfies C.

3. V uses poly(m) random bits and examines only O(1) bits in the pro-
vided strings.

Proof: One looks at the proof of NP-completeness of QUADEQ to realize
that given circuit C with n input wires and size m, it yields an instance of
QUADEQ of size O(m) such that u ∈ {0, 1}n satisfies the circuit iff there is a
string v of size M = O(m) such that u◦v satisfies the instance of QUADEQ.
(Note that we are thinking of u both as a string of bits that is an input to
C and as a string over GF(2)n that is a partial assignment to the variables
in the instance of QUADEQ.)

The verifier expects π2 to contain whatever our verifier of Theorem 19.21
expects in the proof for this instance of QUADEQ, namely, a linear function
f that is WH(w), and another linear function g that is WH(w ⊗ w) where
w satisfies the QUADEQ instance. The verifier checks these functions as
described in the proof of Theorem 19.21.

However, in the current setting our verifer is also given a string π1 ∈
{0, 1}2

n

. Think of this as a function h : GF(2)n → GF(2). The verifier
checks that h is 0.99-close to a linear function, say h̃. Then to check that f̃
encodes a string whose first n bits are the same as the string encoded by h̃,
the verifier does a concatenation test.

Clearly, the verifier only reads O(1) bits overall. �

The following Corollary is also similarly proven and is the one that will
actually be used later. It concerns a similar situation as above, except the
inputs to the circuit C are thought of as the concatenation of two strings of
lengths n1, n2 respectively where n = n1 + n2.

Corollary 19.26 (PCP of proximity when assignment is in two pieces)
There exists a verifier V that given any circuit C with n input wires and
size m and also two numbers n1, n2 such that n1 + n2 = n has the following
property:

1. If u1 ∈ {0, 1}n1 ,u2 ∈ {0, 1}n2 is such that u1 ◦ u2 is a satisfying

assignment for circuit C, then there is a string π3 of size 2poly(m) such
that V accepts WH(u1) ◦WH(u2) ◦ π3 with probability 1.

2. For every strings π1, π2, π3 ∈ {0, 1}∗, where π1 and π2 have 2n1 and 2n2

bits respectively, if V accepts π1 ◦π2 ◦π3 with probability at least 1/2,
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then π1, π2 are 0.99-close to WH(u1), WH(u2) respectively for some
u1,u2 such that u1 ◦ u2 is a satisfying assignment for circuit C.

3. V uses poly(m) random bits and examines only O(1) bits in the pro-
vided strings.

19.5 Proof of the PCP Theorem.

As we have seen, the PCP Theorem is equivalent to Theorem 19.13, stating
that ρ-GAP qCSP is NP-hard for some constants q and ρ < 1. Consider the
case that ρ = 1−ε where ε is not necessarily a constant but can be a function
of m (the number of constraints). Since the number of satisfied constraints
is always a whole number, if ϕ is unsatisfiable then val(ϕ) ≤ 1 − 1/m.
Hence, the gap problem (1−1/m)-GAP 3CSP is a generalization of 3SAT and
is NP hard. The idea behind the proof is to start with this observation,
and iteratively show that (1−ε)-GAP qCSP is NP-hard for larger and larger
values of ε, until ε is as large as some absolute constant independent of m.
This is formalized in the following lemma.
Definition 19.27
Let f be a function mapping CSP instances to CSP instances. We say
that f is a CL-reduction (short for complete linear-blowup reduction) if it
is polynomial-time computable and for every CSP instance ϕ with m con-
straints, satisfies:

Completeness: If ϕ is satisfiable then so is f(ϕ).

Linear blowup: The new qCSP instance f(ϕ) has at most Cm constraints
and alphabet W , where C and W can depend on the arity and the
alphabet size of ϕ (but not on the number of constraints or variables).

Lemma 19.28 (PCP Main Lemma)
There exist constants q0 ≥ 3, ε0 > 0, and a CL-reduction f such that for
every q0CSP-instance ϕ with binary alphabet, and every ε < ε0, the instance
ψ = f(ϕ) is a q0CSP (over binary alphabet) satisfying

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− 2ε

Lemma 19.28 can be succinctly described as follows:

Arity Alphabet Constraints Value
Original q0 binary m 1− ε

⇓ ⇓ ⇓ ⇓
Lemma 19.28 q0 binary Cm 1− 2ε
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This Lemma allows us to easily prove the PCP Theorem.

Proving Theorem 19.2 from Lemma 19.28. Let q0 ≥ 3 be as stated
in Lemma 19.28. As already observed, the decision problem q0CSP is NP-
hard. To prove the PCP Theorem we give a reduction from this problem to
GAP q0CSP. Let ϕ be a q0CSP instance. Let m be the number of constraints
in ϕ. If ϕ is satisfiable then val(ϕ) = 1 and otherwise val(ϕ) ≤ 1 − 1/m.
We use Lemma 19.28 to amplify this gap. Specifically, apply the function f
obtained by Lemma 19.28 to ϕ a total of logm times. We get an instance
ψ such that if ϕ is satisfiable then so is ψ, but if ϕ is not satisfiable (and so
val(ϕ) ≤ 1− 1/m) then val(ψ) ≤ 1−min{2ε0, 1− 2logm/m} = 1− 2ε0. Note
that the size of ψ is at most C logmm, which is polynomial in m. Thus we
have obtained a gap-preserving reduction from L to the (1−2ε0)-GAP q0CSP
problem, and the PCP theorem is proved. �

The rest of this section proves Lemma 19.28 by combining two transfor-
mations: the first transformation amplifies the gap (i.e., fraction of violated
constraints) of a given CSP instance, at the expense of increasing the alpha-
bet size. The second transformation reduces back the alphabet to binary,
at the expense of a modest reduction in the gap. The transformations are
described in the next two lemmas.

Lemma 19.29 (Gap Amplification [?])
For every ` ∈ N, there exists a CL-reduction g` such that for every CSP
instance ϕ with binary alphabet, the instance ψ = g`(ϕ) has has arity only
2 (but over a non-binary alphabet) and satisfies:

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− `ε

for every ε < ε0 where ε0 > 0 is a number depending only on ` and the arity
q of the original instance ϕ.

Lemma 19.30 (Alphabet Reduction)
There exists a constant q0 and a CL- reduction h such that for every CSP
instance ϕ, if ϕ had arity two over a (possibly non-binary) alphabet {0..W−1}
then ψ = h(ϕ) has arity q0 over a binary alphabet and satisfies:

val(ϕ) ≤ 1− ε⇒ val(h(ϕ)) ≤ 1− ε/3

Lemmas 19.29 and 19.30 together imply Lemma 19.28 by setting f(ϕ) =
h(g6(ϕ)). Indeed, if ϕ was satisfiable then so will f(ϕ). If val(ϕ) ≤ 1− ε, for
ε < ε0 (where ε0 the value obtained in Lemma 19.29 for ` = 6, q = q0) then
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val(g6(ϕ)) ≤ 1 − 6ε and hence val(h(g6(ϕ))) ≤ 1 − 2ε. This composition is
described in the following table:

Arity Alphabet Constraints Value
Original q0 binary m 1− ε

⇓ ⇓ ⇓ ⇓
Lemma 19.29 2 W Cm 1− 6ε

⇓ ⇓ ⇓ ⇓
Lemma 19.30 q0 binary C ′Cm 1− 2ε

19.5.1 Gap Amplification: Proof of Lemma 19.29

To prove Lemma 19.29, we need to exhibit a function g that maps a qCSP
instance to a 2CSPW instance over a larger alphabet {0..W−1} in a way that
increases the fraction of violated constraints.

We will show that we may assume without loss of generality that the
instance of qCSP has a specific form. To describe this we need a definition.

We will assume that the instance satisfies the following properties, since
we can give a simple CL-reduction from qCSP to this special type of qCSP.
(See the “Technical Notes” section at the end of the chapter.) We will call
such instances “nice.”

Property 1: The arity q is 2 (though the alphabet may be nonbinary).

Property 2: Let the constraint graph of ψ be the graph G with vertex set
[n] where for every constraint of ϕ depending on the variables ui, uj ,
the graph G has the edge (i, j). We allow G to have parallel edges and
self-loops. Then G is d-regular for some constant d (independent of
the alphabet size) and at every node, half the edges incident to it are
self-loops.

Property 3: The constraint graph is an expander.

The rest of the proof consists of a “powering” operation for nice 2CSP
instances. This is described in the following Lemma.

Lemma 19.31 (Powering)
Let ψ be a 2CSPW instance satisfying Properties 1 through 3. For every
number t, there is an instance of 2CSP ψt such that:

1. ψt is a 2CSPW ′-instance with alphabet size W ′ < W d5t , where d de-
note the degree of ψ’s constraint graph. The instance ψt has dt+

√
tn

constraints, where n is the number of variables in ψ.
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2. If ψ is satisfiable then so is ψt.

3. For every ε < 1
d
√
t
, if val(ψ) ≤ 1 − ε then val(ψt) ≤ 1 − ε′ for ε′ =

√
t

105dW 4 ε.

4. The formula ψt is computable from ψ in time polynomial in m and
W dt .

Proof: Let ψ be a 2CSPW -instance with n variables and m = nd con-
straints, and as before let G denote the constraint graph of ψ.

The formula ψt will have the same number of variables as ψ. The new
variables y = y1, . . . , yn take values over an alphabet of size W ′ = W d5t ,
and thus a value of a new variable yi is a d5t-tuple of values in {0..W−1}. We
will think of this tuple as giving a value in {0..W−1} to every old variable
uj where j can be reached from ui using a path of at most t +

√
t steps in

G (see Figure 19.3). In other words, the tuple contains an assignment for
every uj such that j is in the ball of radius t+

√
t and center i in G. For this

reason, we will often think of an assignment to yi as “claiming” a certain
value for uj . (Of course, another variable yk could claim a different value
for uj .) Note that since G has degree d, the size of each such ball is no more
than dt+

√
t+1 and hence this information can indeed be encoded using an

alphabet of size W ′.

k

k’i

t+t 1/2

t+t 1/2t+t 1/2

Figure 19.3: An assignment to the formula ψt consists of n variables over an alphabet

of size less than W d5t

, where each variable encodes the restriction of an assignment of
ψ to the variables that are in some ball of radius t +

√
t in ψ’s constraint graph. Note

that an assignment y1, . . . , yn to ψt may be inconsistent in the sense that if i falls in the
intersection of two such balls centered at k and k′, then yk may claim a different value for
ui than the value claimed by yk′ .
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For every (2t+ 1)-step path p = 〈i1, . . . , i2t+2〉 in G, we have one corre-
sponding constraint Cp in ψt (see Figure 19.4). The constraint Cp depends
on the variables yi1 and yi2t+1 and outputs False if (and only if) there is
some j ∈ [2t+ 1] such that:

1. ij is in the t+
√
t-radius ball around i1.

2. ij+1 is in the t+
√
t-radius ball around i2t+2

3. If w denotes the value yi1 claims for uij and w′ denotes the value yi2t+2

claims for uij+1 , then the pair (w,w′) violates the constraint in ϕ that
depends on uij and uij+1 .

t+
t1

/2

t
t

2t+1
t+t 1/2

i

k
i’

k’

Figure 19.4: ψt has one constraint for every path of length 2t+1 in ψ’s constraint graph,
checking that the views of the balls centered on the path’s two endpoints are consistent
with one another and the constraints of ψ.

A few observations are in order. First, the time to produce such an
assignment is polynomial in m and W dt , so part 4 of Lemma 19.29 is trivial.

Second, for every assignment to u1, u2, . . . , un we can “lift” it to a canon-
ical assignment to y1, . . . , yn by simply assigning to each yi the vector of
values assumed by uj ’s that lie in a ball of radius t+

√
t and center i in G.

If the assignment to the uj ’s was a satisfying assignment for ψ, then this
canonical assignment satisfies ψt, since it will satisfy all constraints encoun-
tered in walks of length 2t + 1 in G. Thus part 2 of Lemma 19.29 is also
trivial.

This leaves part 3 of the Lemma, the most difficult part. We have to
show that if val(ψ) ≤ 1−ε then every assignment to the yi’s satisfies at most
1 − ε′ fraction of constraints in ψt, where ε < 1

d
√
t

and ε′ =
√
t

105dW 4 ε. This
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is tricky since an assignment to the yi’s does not correspond to any obvious
assignment for the ui’s: for each uj , different values could be claimed for
it by different yi’s. The intuition will be to show that these inconsistencies
among the yi’s can’t happen too often (at least if the assignment to the yi’s
satisfies 1− ε′ constraints in ψt).

From now on, let us fix some arbitrary assignment y = y1, . . . , yn to ψt’s
variables. The following notion is key.

The plurality assignment: For every variable ui of ψ, we define the ran-
dom variable Zi over {0, . . . ,W−1} to be the result of the following process:
starting from the vertex i, take a t step random walk in G to reach a vertex
k, and output the value that yk claims for ui. We let zi denote the plurality
(i.e., most likely) value of Zi. If more than one value is most likely, we
break ties arbitrarily. This assignment is called a plurality assignment (see
Figure 19.5). Note that Zi = zi with probability at least 1/W .

t+
t1

/2

t

i

k

Figure 19.5: An assignment y for ψt induces a plurality assignment u for ψ in the
following way: ui gets the most likely value that is claimed for it by yk, where k is
obtained by taking a t-step random walk from i in the constraint graph of ψ.

Since val(ψ) ≤ 1− ε, every assignment for ψ fails to satisfy 1− ε fraction
of the constraints, and this is therefore also true for the plurality assignment.
Hence there exists a set F of εm = εnd constraints in ψ that are violated by
the assignment z = z1, . . . , zn. We will use this set F to show that at least
an ε′ fraction of ψt’s constraints are violated by the assignment y.

Why did we define the plurality assignment z in this way? The reason is
illustrated by the following claim, showing that for every edge f = (i, i′) of
G, among all paths that contain the edge f somewhere in their “midsection”,
most paths are such that the endpoints of the path claim the plurality values
for ui and ui′ .
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Claim 19.32
For every edge f = (i, i′) in G define the event Bj,f over the set of (2t+1)-step
paths in G to contain all paths 〈i1, . . . , i2t+2〉 satisfying:

• f is the jth edge in the path. That is, f = (ij , ij+1).

• yi1 claims the plurality value for ui.

• yi2t+2 claims the plurality value for ui′ .

Let δ = 1
100W 2 . Then for every j ∈

{
t, . . . , t+ δ

√
t
}

, Pr[Bj,f ] ≥ 1
nd2W 2 .

Proof: First, note that because G is regular, the jth edge of a random path
is a random edge, and hence the probability that f is the jth edge on the
path is equal to 1

nd . Thus, we need to prove that,

Pr[endpoints claim plurality values for ui, ui′ (resp.)|f is jth edge] ≥ 1
2W 2

(6)
We start with the case j = t + 1. In this case (6) holds essentially by

definition: the left-hand side of (6) is equal to the probability that the event
that the endpoints claim the plurality for these variables happens for a path
obtained by joining a random t-step path from i to a random t-step path
from i′. Let k be the endpoint of the first path and k′ be the endpoint of the
second path. Let Wi be the distribution of the value that yk claims for ui,
where k is chosen as above, and similarly define Wi′ to be the distribution
of the value that yk′ claims for ui′ . Note that since k and k′ are chosen
independently, the random variables Wi and Wi′ are independent. Yet by
definition the distribution of Wi identical to the distribution Zi, while the
distribution of Wi′ is identical to Zi′ . Thus,

Pr[endpoints claim plurality values for ui, ui′ (resp.)|f is jth edge] =
Pr
k,k′

[Wi = zi ∧Wi′ = zi′ ] = Pr
k

[Wi = zi] Pr
k′

[Wi′ = zi′ ] ≥ 1
W 2

In the case that j 6= 2t+1 we need to consider the probability of the event
that endpoints claim the plurality values happening for a path obtained by
joining a random t− 1 + j-step path from i to a random t+ 1− j-step path
from i′ (see Figure 19.6). Again we denote by k the endpoint of the first
path, and by k′ the endpoint of the second path, by Wi the value yk claims
for ui and by Wi′ the value yk′ claims for ui′ . As before, Wi and Wi′ are inde-
pendent. However, this time Wi and Zi may not be identically distributed.
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Fortunately, we can show that they are almost identically distributed, in
other words, the distributions are statistically close. Specifically, because
half of the constraints involving each variable are self loops, we can think of
a t-step random walk from a vertex i as follows: (1) throw t coins and let St
denote the number of the coins that came up “heads” (2) take St “real” (non
self-loop) steps on the graph. Note that the endpoint of a t-step random
walk and a t′-step random walk will be identically distributed if in Step (1)
the variables St and St′ turn out to be the same number. Thus, the statis-
tical distance of the endpoint of a t-step random walk and a t′-step random
walk is bounded by the statistical distance of St and St′ where S` denotes the
binomial distribution of the sum of ` balanced independent coins. However,
the distributions St and St+δ

√
t are within statistical distance at most 10δ

for every δ, t (see Exercise 15) and hence in our case Wi and Wi′ are 1
10W -

close to Zi and Zi′ respectively. Thus |Prk[Wi = zi] − Pr[Zi = zi]| < 1
10W ,

|Prk[Wi′ = zi′ ] − Pr[Zi′ = zi′ ]| < 1
10W which proves (6) also for the case

j 6= 2t+ 1. �

t+
t1

/2

t+εt1/2
t-εt1/2

2t+1

t+t 1/2

i

k
i’

k’

Figure 19.6: By definition, if we take two t-step random walks from two neighbors i and
i′, then the respective endpoints will claim the plurality assignments for ui and uj with
probability more than 1/(2W 2). Because half the edges of every vertex in G have self
loops, this happens even if the walks are not of length t but of length in [t− ε

√
t, t+

√
t]

for sufficiently small ε.

Recall that F is the set of constraints of ψ (=edges in G) violated by
the plurality assignment z. Therefore, if f ∈ F and j ∈

{
t, . . . , t+ δ

√
t
}

then all the paths in Bj,f correspond to constraints of ψt that are violated
by the assignment y. Therefore, we might hope that the fraction of vio-
lated constraints in ψt is at least the sum of Pr[Bj,f ] for every f ∈ F and
j ∈

{
t, . . . , t+ δ

√
t
}
. If this were the case we’d be done since Claim 19.32
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implies that this sum is at least δ
√
tεnd

2nW 2 = δ
√
tε

2W 2 > ε′. However, this is in-
aaccurate since we are overcounting paths that contain more than one such
violation (i.e., paths which are in the intersection of Bj,f and Bj′,f ′ for
(j, f) 6= (j′, f ′)). To bound the effect of this overcounting we prove the
following claim:

Claim 19.33
For every k ∈ N and set F of edges with |F | = εnd for ε < 1

kd ,∑
j,j′∈{t..t+k}
f,f ′∈F

(j,f) 6=(j′,f ′)

Pr[Bj,f ∩Bj,f ′ ] ≤ 30kdε (7)

Proof: Only one edge can be the jth edge of a path, and so for every f 6= f ′,
Pr[Bj,f ∩Bj,f ′ ] = 0. Thus the left-hand side of (7) simplifies to∑

j 6=j′∈{t..t+k}

∑
f 6=f ′

Pr[Bj,f ∩Bj′,f ′ ] (8)

Let Aj be the event that the jth edge is in the set F . We get that (8) is
equal to ∑

j 6=j′∈{t..t+k}

Pr[Aj ∩Aj′ ] = 2
∑

j<j′∈{t..t+k}

Pr[Aj ∩Aj′ ] (9)

Let S be the set of at most dεn vertices that are adjacent to an edge in
F . For j′ < j, Pr[Aj ∩ Aj′ ] is bounded by the probability that a random
(j′−j)-step path in G has both endpoints in S, or in other words that
a random edge in the graph Gj

′−j has both endpoints in S. Using the
fact that λ(Gj

′−j) = λ(G)j
′−j ≤ 0.9j

′−j , this probability is bounded by
dε(dε + 0.9|j−j

′|) (see Note 19.18). Plugging this into (9) and using the
formula for summation of arithmetic series, we get that:

2
∑

j<j′∈{t,...,t+k}

Pr[Aj ∩Aj′ ] ≤

2
∑

j∈{t,...,t+k}

t+k−j∑
i=1

dε(dε+ 0.9i) ≤

2k2d2ε2 + 2kdε
∞∑
i=1

0.9i ≤ 2k2d2ε2 + 20kdε ≤ 30kdε

where the last inequality follows from ε < 1
kd . �
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Wrapping up. Claims 19.32 and 19.33 together imply that

∑
j∈{t..t+δ√t}

f∈F

Pr[Bj,f ] ≥ δ
√
tε 1

2W 2 (10)

∑
j,j′∈{t..t+δ√t}

f,f ′∈F
(j,f) 6=(j′,f ′)

Pr[Bj,f ∩Bj′,f ′ ] ≤ 30δ
√
tdε (11)

But (10) and (11) together imply that if p is a random constraint of ψt

then

Pr[p violated by y] ≥ Pr[
⋃

j∈{t..t+δ√t}
f∈F

Bj,f ] ≥
δ
√
tε

240dW 2

where the last inequality is implied by the following technical claim:

Claim 19.34
Let A1, . . . , An be n subsets of some set U satisfying

∑
i<j |Ai ∩ Aj | ≤

C
∑n

i=1 |Ai| for some number C ∈ N. Then,∣∣∣∣∣
n⋃
i=1

Ai

∣∣∣∣∣ ≥
∑n

i=1 |Ai|
4C

Proof: We make 2C copies of every element u ∈ U to obtain a set Ũ with
|Ũ | = 2C|U |. Now for every subset Ai ⊆ U , we obtain Ãi ⊆ Ũ as follows: for
every u ∈ Ai, we choose at random one of the 2C copies to put in Ãi. Note
that |Ãi| = |Ai|. For every i, j ∈ [n], u ∈ Ai ∩ Aj , we denote by Ii,j,u the
indicator random variable that is equal to 1 if we made the same choice for
the copy of u in Ãi and Ãj , and equal to 0 otherwise. Since E[Ii,j,u] = 1

2C ,

E
[
|Ãi ∩ Ãj |

]
=

∑
u∈Ai∩Aj

E[Ii,j,u] =
|Ai ∩Aj |

2C

and

E

∑
i<j

|Ãi ∩ Ãj |

 =

∑
i<j |Ai ∩Aj |

2C
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This means that there exists some choice of Ã1, . . . , Ãj such that

n∑
i=1

|Ãi| =
n∑
i=1

|Ai| ≥ 2
∑
i<j

|Ãi ∩ Ãj |

which by the inclusion-exclusion principle (see Section ??) means that | ∪i
Ãi| ≥ 1/2

∑
i |Ãi|. But because there is a natural 2C-to-one mapping from

∪iÃi to ∪iAi we get that

| ∪ni=1 Ai| ≥
| ∪ni=1 Ãi|

2C
≥
∑n

i=1 |Ãi|
4C

=
∑n

i=1 |Ai|
4C

�

Since ε′ < δ
√
tε

240dW 2 , this proves the lemma. �

19.5.2 Alphabet Reduction: Proof of Lemma 19.30

Lemma 19.30 is actually a simple consequence of Corollary 19.26, once we
restate it using our “qCSP view” of PCP systems.

Corollary 19.35 (qCSP view of PCP of proximity.)
There exists positive integer q0 and an exponential-time transformation that
given any circuit C of size m and and n inputs and two numbers n1, n2 such

that n1 + n2 = n produces an instance ψC of q0CSP of size 2poly(m) over a
binary alphabet such that:

1. The variables can be thought of as being partitioned into three sets
π1, π2, π3 where π1 has 2n1 variables and π2 has 2n2 variables.

2. If u1 ∈ {0, 1}n1 ,u2 ∈ {0, 1}n2 is such that u1 ◦ u2 is a satisfying

assignment for circuit C, then there is a string π3 of size 2poly(m) such
that WH(u1) ◦WH(u2) ◦ π3 satisfies ψC .

3. For every strings π1, π2, π3 ∈ {0, 1}∗, where π1 and π2 have 2n1 and
2n2 bits respectively, if π1 ◦ π2 ◦ π3 satisfy at least 1/2 the constraints
of ψC , then π1, π2 are 0.99-close to WH(u1), WH(u2) respectively for
some u1,u2 such that u1 ◦u2 is a satisfying assignment for circuit C.

Now we are ready to prove Lemma 19.30.

Proof of Lemma 19.30: Suppose the given arity 2 formula ϕ has n
variables u1, u2, . . . , un, alphabet {0..W−1} andN constraints C1, C2, . . . , CN .
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Think of each variable as taking values that are bit strings in {0, 1}k, where
k = d logW e. Then if constraint C` involves variables say ui, uj we may
think of it as a circuit applied to the bit strings representing ui, uj where
the constraint is said to be satisfied iff this circuit outputs 1. Say m is an
upperbound on the size of this circuit over all constraints. Note that m is at
most 22k < W 4. We will assume without loss of generality that all circuits
have the same size.

If we apply the transformation of Corollary 19.35 to this circuit we obtain
an instance of q0CSP, say ψCl . The strings ui, uj get replaced by strings of
variables Ui, Uj of size 22k < 2W

2
that take values over a binary alphabet.

We also get a new set of variables that play the role analogous to π3 in the
statement of Corollary 19.35. We call these new variables Πl.

Our reduction consists of applying the above transformation to each con-
straint, and taking the union of the q0CSP instances thus obtained. However,
it is important that these new q0CSP instances share variables, in the fol-
lowing way: for each old variable ui, there is a string of new variables Ui of
size 22k and for each constraint Cl that contains ui, the new q0CSP instance
ψCl uses this string Ui. (Note though that the Πl variables are used only
in ψCl and never reused.) This completes the description of the new q0CSP
instance ψ (see Figure 19.7). Let us see that it works.

Original instance:

constraints:

variables:
(over alphabet [W])

u1 u2 u3 ...... un

C1 C2 Cm

Transformed instance:

constraints:

variables:
(over alphabet {0.1}) U1=WH(u1)

...... ......

U2=WH(u2) Un=WH(un) Π1 Πm

... ... ...
cluster 1 cluster 2 cluster m

.......

Figure 19.7: The alphabet reduction transformation maps a 2CSP instance ϕ over
alphabet {0..W−1} into a qCSP instance ψ over the binary alphabet. Each variable of
ϕ is mapped to a block of binary variables that in the correct assignment will contain
the Walsh-Hadamard encoding of this variable. Each constraint C` of ϕ depending on
variables ui, uj is mapped to a cluster of constraints corresponding to all the PCP of
proximity constraints for C`. These constraint depend on the encoding of ui and uj ,
and on additional auxiliary variables that in the correct assignment contain the PCP of
proximity proof that these are indeed encoding of values that make the constraint C` true.
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Suppose the original instance ϕ was satisfiable by an assignment u1, . . . ,un.
Then we can produce a satisfying assignment for ψ by using part 2 of Corol-
lary 19.35, so that for each constraint Cl involving ui, uj , the encodings
WH(ui),WH(ui) act as π1, π2 and then we extend these via a suitable string
π3 into a satisfying assignment for ψCl .

On the other hand if val(ϕ) < 1− ε then we show that val(ψ) < 1− ε/2.
Consider any assignment U1,U2, . . . ,Un,Π1, . . . ,ΠN to the variables of ψ.
We “decode” it to an assignment for ϕ as follows. For each i = 1, 2, . . . , n,
if the assignment to Ui is 0.99-close to a linear function, let ui be the string
encoded by this linear function, and otherwise let ui be some arbitrary
string. Since val(ϕ) < 1 − ε, this new assignment fails to satisfy at least ε
fraction of constraints in ϕ. For each constraint Cl of ϕ that is not satisfied
by this assignment, we show that at least 1/2 of the constraints in ψCl are
not satisfied by the original assignment, which leads to the conclusion that
val(ψ) < 1 − ε/2. Indeed, suppose Cl involves ui, uj . Then ui ◦ uj is not a
satisfying assignment to circuit Cl, so part 3 of Corollary 19.35 implies that
regardless of the value of variables in Πl, the assignment Ui ◦ uj ◦ Πl must
have failed to satisfy at least 1/2 the constraints of ψCl . �

19.6 The original proof of the PCP Theorem.

The original proof of the PCP Theorem, which resisted simplification for
over a decade, used algebraic encodings and ideas that are complicated ver-
sions of our proof of Theorem 19.21. (Indeed, Theorem 19.21 is the only
part of the original proof that still survives in our writeup.) Instead of the
linear functions used in Welsh-Hadamard code, they use low degree multi-
variate polynomials. These allow procedures analogous to the linearity test
and local decoding, though the proofs of correctness are a fair bit harder.
The alphabet reduction is also somewhat more complicated. The crucial
part of Dinur’s simpler proof, the one given here, is the gap amplification
lemma (Lemma 19.29) that allows to iteratively improve the soundness pa-
rameter of the PCP from very close to 1 to being bounded away from 1
by some positive constant. This general strategy is somewhat reminiscent
of the zig-zag construction of expander graphs and Reingold’s deterministic
logspace algorithm for undirect connectivity described in Chapter 16.
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Chapter notes

Problems

§1 Prove that for every two functions r, q : N → N and constant s < 1,
changing the constant in the soundness condition in Definition 19.1
from 1/2 to s will not change the class PCP(r, q).

§2 Prove that for every two functions r, q : N → N and constant c > 1/2,
changing the constant in the completeness condition in Definition 19.1
from 1 to c will not change the class PCP(r, q).

§3 Prove that any language L that has a PCP-verifier using r coins and q
adaptive queries also has a standard (i.e., non-adaptive) verifier using
r coins and 2q queries.

§4 Prove that PCP(0, log n) = P. Prove that PCP(0,poly(n)) = NP.

§5 Let L be the language of matrices A over GF(2) satisfying perm(A) = 1
(see Chapters ?? and 9). Prove that L is in PCP(poly(n),poly(n)).

§6 Show that if SAT ∈ PCP(r(n), 1) for r(n) = o(log n) then P = NP.
(Thus the PCP Theorem is probably optimal up to constant factors.)

§7 (A simple PCP Theorem using logspace verifiers) Using the fact that a
correct tableau can be verified in logspace, we saw the following exact
characterization of NP:

NP = {L : there is a logspace machine M s.t x ∈ L iff ∃y : M accepts (x, y).} .

Note that M has two-way access to y.

Let L-PCP(r(n)) be the class of languages whose membership proofs
can be probabilistically checked by a logspace machine that usesO(r(n))
random bits but makes only one pass over the proof. (To use the ter-
minology from above, it has 2-way access to x but 1-way access to y.)
As in the PCP setting, “probabilistic checking of membership proofs”
means that for x ∈ L there is a proof y that the machine accepts with
probability 1 and if not, the machine rejects with probability at least
1/2. Show that NP = L-PCP(log n). Don’t assume the PCP Theorem!
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Hint:Designaverifierfor3SAT.Thetrivialideawouldbethat
theproofcontainsasatisfyingassignmentandtheverifierrandomly
picksaclauseandreadsthecorrespondingthreebitsintheproof
tocheckiftheclauseissatisfied.Thisdoesn’twork.Why?The
betterideaistorequirethe“proof”tocontainmanycopiesofthe
satisfyingassignment.Theverifiersusespairwiseindependenceto
runtheprevioustestonthesecopies—whichmayormaynotbe
thesamestring.

(This simple PCP Theorem is implicit in Lipton [Lip90]. The sug-
gested proof is due to van Melkebeek.)

§8 Suppose we define J − PCP (r(n)) similarly to L − PCP (r(n)), ex-
cept the verifier is only allowed to read O(r(n)) successive bits in the
membership proof. (It can decide which bits to read.) Then show that
J − PCP (log n) ⊆ L.

§9 Prove that there is an NP-language L and x 6∈ L such that f(x) is
a 3SAT formula with m constraints having an assignment satisfying
more than m−m0.9 of them, where f is the reduction from f to 3SAT
obtained by the proof of the Cook-Levin theorem (Section 2.3.1).

Hint:showthatforanappropriatelanguageL,aslightchangein
theinputfortheCook-Levinreductionwillalsocauseonlyaslight
changeintheoutput,eventhoughthischangemightcauseaYES
instanceofthelanguagetobecomeaNOinstance.

§10 Show a poly(n, 1/ε)-time 1 + ε-approximation algorithm for the knap-
sack problem. That is, show an algorithm that given n + 1 numbers
a1, . . . , an ∈ N (each represented by at most n bits) and k ∈ [n], finds
a set S ⊆ [n] with |S| ≤ k such that

∑
i∈S ai ≥

opt
1+ε where

opt = max
S⊆[n],|S|≤k

∑
i∈S

ai

Hint:firstshowthattheproblemcanbesolvedexactlyusingdy-
namicprogrammingintimepoly(n,m)ifallthenumbersinvolved
areintheset[m].Then,showonecanobtainanapproximation
algorithmbykeepingonlytheO(log(1/e)+logn)mostsignificant
bitsofeverynumber.

§11 Show a polynomial-time algorithm that given a satisfiable 2CSP-instance
ϕ (over binary alphabet) finds a satisfying assignment for ϕ.
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§12 Prove that QUADEQ is NP-complete.

Hint:showyoucanexpresssatisfiabilityforSATformulasusing
quadraticequations.

§13 Prove that if Z,U are two n×n matrices over GF(2) such that Z 6= U
then

Pr
r,r′∈R{0,1}n

[rZr′ 6= rUr′] ≥ 1
4

Hint:usinglinearityreducethistothecasethatUistheallzero
matrix,andthenprovethisusingtwoapplicationsoftherandom
subsumprinciple.

§14 Show a deterministic poly(n, 2q)-time algorithm that given a qCSP-
instance ϕ (over binary alphabet) with m clauses outputs an assign-
ment satisfying m/2q of these assignment.

Hint:onewaytosolvethisistouseq-wiseindependentfunctions
??.

§15 Let St be the binomial distribution over t balanced coins. That is,
Pr[St = k] =

(
t
k

)
2−t. Prove that for every δ < 1, the statistical

distance of St and St+δ√t is at most 10ε.

Hint:approximatethebinomialcoefficientusingStirling’sfor-
mulaforapproximatingfactorials.

§16 The long-code for a set {0, . . . ,W −1} is the function LC : {0, . . . ,W −
1} → {0, 1}2

W

such that for every i ∈ {0..W−1} and a function f :
{0..W−1} → {0, 1}, (where we identify f with an index in [2w]) the f th

position of LC(i), denoted by LC(i)f , is f(i). We say that a function
L : {0, 1}2

W

→ {0, 1} is a long-code codeword if L = LC(i) for some
i ∈ {0..W−1}.

(a) Prove that LC is an error-correcting code with distance half. That
is, for every i 6= j ∈ {0..W−1}, the fractional Hamming distance
of LC(i) and LC(j) is half.

(b) Prove that LC is locally-decodable. That is, show an algorithm
that given random access to a function L : 2{0,1}

W

→ {0, 1} that
is (1−ε)-close to LC(i) and f : {0..W−1} → {0, 1} outputs LC(i)f
with probability at least 0.9 while making at most 2 queries to L.
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(c) Let L = LC(i) for some i ∈ {0..W−1}. Prove the for every
f : {0..W−1} → {0, 1}, L(f) = 1− L(f), where f is the negation
of f (i.e. , f(i) = 1− f(i) for every i ∈ {0..W−1}).

(d) Let T be an algorithm that given random access to a function
L : 2{0,1}

W

→ {0, 1}, does the following:

i. Choose f to be a random function from {0..W−1} → {0, 1}.
ii. If L(f) = 1 then output True.
iii. Otherwise, choose g : {0..W−1} → {0, 1} as follows: for every

i ∈ {0..W−1}, if f(i) = 0 then set g(i) = 0 and otherwise set
g(i) to be a random value in {0, 1}.

iv. If L(g) = 0 then output True; otherwise output False.

Prove that if L is a long-code codeword (i.e., L = LC(i) for some
i) then T outputs True with probability one.
Prove that if L is a linear function that is non-zero and not
a longcode codeword then T outputs True with probability at
most 0.9.

(e) Prove that LC is locally testable. That is, show an algorithm
that given random access to a function L : {0, 1}W → {0, 1}
outputs True with probability one if L is a long-code codeword
and outputs False with probability at least 1/2 if L is not 0.9-
close to a long-code codeword, while making at most a constant
number of queries to L.

Hint:usethetestTabovecombinedwithlinearitytesting,self
correction,andasimpletesttoruleouttheconstantzerofunction.

(f) Using the test above, give an alternative proof for the Alphabet
Reduction Lemma (Lemma 19.30).

Hint:Totransforma2CSPWformulaϕovernvariablesinto
aqCSPψoverbinaryalphabet,use2

W
variablesu

1
j,...,u

2
W

jfor
eachvariableujofϕ.Inthecorrectproofthesevariableswill
containthelongcodeencodingofuj.Then,addasetof2

W2
vari-

ablesy
1
i,...,y

2
W2

iforeachconstraintϕiofϕ.Inthecorrectproof
thesevariableswillcontainthelongcodeencodingoftheassign-
mentfortheconstraintϕi.Foreveryconstraintofϕ,ψwillcontain
constraintsfortestingthelongcodeofboththexandyvariables
involvedintheconstraint,testingconsistencybetweenthexvari-
ablesandtheyvariables,andtestingthattheyvariablesactually
encodeasatisfyingassignment.
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Omitted proofs

The preprocessing step transforms a qCSP-instance ϕ into a “nice” 2CSP-
instance ψ through the following three claims:

Claim 19.36
There is a CL- reduction mapping any qCSP instance ϕ into a 2CSP2q in-
stance ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/q

Proof: Given a qCSP-instance ϕ over n variables u1, . . . , un with m con-
straints, we construct the following 2CSP2q formula ψ over the variables
u1, . . . , un, y1, . . . , ym. Intuitively, the yi variables will hold the restriction
of the assignment to the q variables used by the ith constraint, and we will
add constraints to check consistency: that is to make sure that if the ith

constraint depends on the variable uj then uj is indeed given a value con-
sistent with yi. Specifically, for every ϕi of ϕ that depends on the variables
u1, . . . , uq, we add q constraints {ψi,j}j∈[q] where ψi,j(yi, uj) is true iff yi
encodes an assignment to u1, . . . , uq satisfying ϕi and uj is in {0, 1} and
agrees with the assignment yi. Note that the number of constraints in ψ is
qm.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1−ε and let
u1, . . . , uk, y1, . . . , ym be any assignment to the variables of ψ. There exists
a set S ⊆ [m] of size at least εm such that the constraint ϕi is violated by
the assignment u1, . . . , uk. For any i ∈ S there must be at least one j ∈ [q]
such that the constraint ψi,j is violated. �

Claim 19.37
There is an absolute constant d and a CL- reduction mapping any 2CSPW
instance ϕ into a 2CSPW instance ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/(100Wd).

and the constraint graph of ψ is d-regular. That is, every variable in ψ
appears in exactly d constraints.

Proof: Let ϕ be a 2CSPW instance, and let {Gn}n∈N be an explicit family
of d-regular expanders. Our goal is to ensure that each variable appears in
ϕ at most d + 1 times (if a variable appears less than that, we can always
add artificial constraints that touch only this variable). Suppose that ui is
a variable that appears in k constraints for some n > 1. We will change
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ui into k variables y1
i , . . . , y

k
i , and use a different variable of the form yji in

the place of ui in each constraint ui originally appeared in. We will also
add a constraint requiring that yji is equal to yj

′

i for every edge (j, j′) in
the graph Gk. We do this process for every variable in the original instance,
until each variable appears in at most d equality constraints and one original
constraint. We call the resulting 2CSP-instance ψ. Note that if ϕ has m
constraints then ψ will have at most m+ dm constraints.

Clearly, if ϕ is satisfiable then so is ψ. Suppose that val(ϕ) ≤ 1− ε and
let y be any assignment to the variables of ψ. We need to show that y
violates at least εm

100W of the constraints of ψ. Recall that for each variable
ui that appears k times in ϕ, the assignment y has k variables y1

i , . . . , y
k
i .

We compute an assignment u to ϕ’s variables as follows: ui is assigned the
plurality value of y1

i , . . . , y
k
i . We define ti to be the number of yji ’s that

disagree with this plurality value. Note that 0 ≤ ti ≤ k(1−1/W ) (where W
is the alphabet size). If

∑n
i=1 ti ≥

ε
4m then we are done. Indeed, by (3) (see

Note 19.18), in this case we will have at least
∑n

i=1
ti

10W ≥
ε

40Wm equality
constraints that are violated.

Suppose now that
∑n

i=1 ti <
ε
4m. Since val(ϕ) ≤ 1 − ε, there is a set S

of at least εm constraints violated in ϕ by the plurality assignment u. All of
these constraints are also present in ψ and since we assume

∑n
i=1 ti <

ε
4m,

at most half of them are given a different value by the assignment y than the
value given by u. Thus the assignment y violates at least ε

2m constraints in
ψ. �

Claim 19.38
There is an absolute constant d and a CL-reduction mapping any 2CSPW
instance ϕ with d′-regular constraint graph for d ≥ d′ into a 2CSPW instance
ψ such that

val(ϕ) ≤ 1− ε⇒ val(ψ) ≤ 1− ε/(10d)

and the constraint graph of ψ is a 4d-regular expander, with half the edges
coming out of each vertex being self-loops.

Proof: There is a constant d and an explicit family {Gn}n∈N of graphs
such that for every n, Gn is a d-regular n-vertex 0.1-expander graph (See
Note 19.18).

Let ϕ be a 2CSP-instance as in the claim’s statement. By adding self
loops, we can assume that the constraint graph has degree d (this can at
worst decrease the gap by factor of d). We now add “null” constraints
(constraints that always accept) for every edge in the graph Gn. In addition,
we add 2d null constraints forming self-loops for each vertex. We denote by
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ψ the resulting instance. Adding these null constraints reduces the fraction
of violated constraints by a factor at most four. Moreover, because any
regular graph H satisfies λ(H) ≤ 1 and because of λ’s subadditivity (see
Exercise 2, Chapter 16), λ(ψ) ≤ 3

4 + 1
4λ(Gn) ≤ 0.9 where by λ(ψ) we denote

the parameter λ of ψ’s constraint graph. �
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Chapter 20

More PCP Theorems and
the Fourier Transform
Technique

The PCP Theorem has several direct applications in complexity theory,
in particular showing that unless P = NP, many NP optimization prob-
lems can not be approximated in polynomial-time to within arbitrary preci-
sion. However, for some applications, the standard PCP Theorem does not
suffice, and we need stronger (or simply different) “PCP Theorems”. In
this chapter we survey some of these results and their proofs. The Fourier
transform technique turned out to be especially useful in advanced PCP
constructions, and in other areas in theoretical computer science. We de-
scribe the technique and show two of its applications. First, we use Fourier
transforms to prove the correctness of the linearity testing algorithm of Sec-
tion 19.4, completing the proof of the PCP Theorem. We then use it to
prove a stronger PCP Theorem due to H̊astad, showing tight inapproxima-
bility results for many important problems, including MAX3SAT.

20.1 Parallel Repetition of PCP’s

Recall that the soundness parameter of a PCP system is the probability
that the verifier may accept a false statement. Definition 19.1 specified
the soundness parameter to be 1/2, but as we noted, it can be reduced
to an arbitrary small constant by increasing the number of queries. Yet
for some applications we need a system with, say, three queries, but an
arbitrarily small constant soundness parameter. Raz has shown that this
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can be achieved if we consider systems with non binary alphabet. (For a
finite set S, we say that a PCP verifier uses alphabet S if it takes as input a
proof string π in S∗.) The idea is simple and natural: use parallel repetition.
That is, we take a PCP verifier V and run ` independent copies of it, to
obtain a new verifier V ` such that a query of V ` is the concatenation of
the ` queries of V , and an answer is a concatenation of the ` answers. (So,
if the original verifier V used proofs over, say, the binary alphabet, then
the verifier V ` will use the alphabet {0, 1}`.) The verifier V ` accepts the
proof only of all the ` executions of V accept. Formally, we define parallel
repetition as follows:
Definition 20.1 (Parallel repetition)
Let S be a finite set. Let V be a PCP verifier using alphabet S and let
` ∈ N. The `-times parallel repeated V is the verifier V ` that operates as
follows:

1. V ` uses the alphabet Ŝ = S`. We denote the input proof string to V `

by π̂.

2. Let q denote the number of queries V makes. On any input x, V `

chooses ` independent random tapes r1, . . . , r` for V , and runs V on
the input and these tapes to obtain ` sets of q queries

i11, i12, . . . , i1q

i21, i22, . . . , i2q

. . .

i`1, i`2, . . . , i`q

3. V ` makes q queries i1, . . . , iq to π̂ where ij is 〈i1j , . . . , i`j〉 (under a
suitable encoding of N` into N).

4. For j ∈ [q], denote 〈a1
j , . . . , a

`
j〉 = π̂(ij). The verifier V ` accepts if and

only for every k ∈ [`], the verifier V on random tape rk accepts when
given the responses ak1, . . . , a

k
q .

Remark 20.2
For every input x, if there is a proof π such that on input x, the verifier V
accepts π with probability one, then there is a proof π̂ such that on input
x, the verifier V ` accepts π̂ with probability one. Namely, for every `-tuple
of positions i1, . . . , i`, the proof π̂ contains the tuple 〈π[i1], . . . , π[i`]〉. Note
that |π̂| = |π|`.
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Original V Parallel repeated V ` Sequential repeated V seq`

Alphabet size W W ` W

Proof size m m` m

Random coins used r `r `r

Number of queries q q `q

Completeness probability 1 1 1
soundness parameter 1− δ (1− δa)b` (1− δ)`

Table 20.1: Parameters of `-times parallel repeated verifier V ` vs. parameters for
sequential repetition.

Why is it called “parallel repetition”? We call the verifier V ` the
parallel repeated version of V to contrast with sequential repetition. If V
is a PCP verifier and ` ∈ N, we say that `-times sequentially repeated V ,
denoted V seq`, is the verifier that chooses ` random tapes for V , then makes
the q` queries corresponding to these tapes one after the other, and accepts
only if all the instances accept. Note that V seq` uses the same alphabet as
V , and uses proofs of the same size. The relation between the parameters
of V , V ` and V seq` is described in Table 20.1.

It is a simple exercise to show that if V ’s soundness parameter was 1− δ
then V seq` soundness parameter will be equal to (1−δ)`. One may expect the
soundness parameter of the parallel repeated verifier V ` to also be (1− δ)`.
It turns out this is not the case (there is a known counterexample [?]),
however the soundness parameter does decay exponentially with the number
of repetitions:

Theorem 20.3 (Parallel Repetition Lemma, [Raz98])
There exist constants a, b (independent of ` but depending on the alphabet

size used and number of queries) such that the soundness parameter of V `

is at most (1− δa)b`

We omit the proof of Theorem 20.3 for lack of space. Roughly speaking,
the reason analyzing soundness of V ` is so hard is the following: for every
tuple 〈i1, . . . , i`〉, the corresponding position in the proof for V ` is “sup-
posed” to consist of the values π[i1] ◦ · · ·π[i`] where π is some proof for V .
However, a priori, we do not know if the proof satisfies this property. It
may be that the proof is inconsistent and that two tuples containing the ith

position “claim” a different assignment for π[i].

Remark 20.4
The Gap Amplification Lemma (Lemma 19.29) of the previous chapter has
a similar flavor, in the sense that it also reduced the soundness parameter
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at the expense of an increase in the alphabet size. However, that lemma
assumed that the soundness parameter is very close to 1, and its proof does
not seem to generalize for soundness parameters smaller than 1/2. We note
that a weaker version of Theorem 20.3, with a somewhat simpler proof, was
obtained by Feige and Kilian [?]. This weaker version is sufficient for many
applications, including for H̊astad’s 3-query PCP theorem (see Section 20.2
below).

20.2 H̊astad’s 3-bit PCP Theorem

In most cases, the PCP Theorem does not immediately answer the question
of exactly how well can we approximate a given optimization problem (even
assuming P 6= NP). For example, the PCP Theorem implies that if P 6=
NP then MAX3SAT cannot be c-approximated in polynomial-time for some
constant ρ < 1. But if one follows closely the proof of Theorem 19.13, this
constant ρ turns out to be very close to one, and in particular it is larger than
0.999. On the other hand, as we saw in Example 19.6, there is a known 7/8-
approximation algorithm for MAX3SAT. What is the true “approximation
complexity” of this problem? In particular, is there a polynomial-time 0.9-
approximation algorithm for it? Similar questions are the motivation behind
many stronger PCP theorems. In particular, the following theorem by
H̊astad implies that for every ε > 0 there is no polynomial-time (7/8+ε)-
approximation for MAX3SAT unless P = NP:
Theorem 20.5 (Håstad’s 3-bit PCP [?])
For every ε > 0 and every language L ∈ NP there is a PCP-verifier V for L
making three (binary) queries having completeness probability at least 1− ε
and soundness parameter at most 1/2 + ε.

Moreover, the test used by V are linear. That is, given a proof π ∈
{0, 1}m, V chooses a triple (i1, i2, i3) ∈ [m]3 and b ∈ {0, 1} according to
some distribution and accepts iff πi1 + πi2 + πi3 = b (mod 2).

Theorem 20.5 immediately implies that the problem MAXE3LIN is NP-
hard to 1/2+ε-approximate for every ε > 0, where MAXE3LIN is the problem
of finding a solution maximizing the number of satisfied equations among a
given system of linear equations over GF(2), with each equation containing
at most 3 variables. Note that this hardness of approximation result is tight
since a random assignment is expected to satisfy half of the equations. Also
note that finding out whether there exists a solution satisfying all of the
equations can be done in polynomial-time using Gaussian elimination (and
hence the imperfect completeness in Theorem 20.5 is inherent).
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The result for MAX3SAT is obtained by the following corollary:

Corollary 20.6
For every ε > 0, computing (7/8+ε)-approximation to MAX3SAT is NP-
hard.

Proof: We reduce MAXE3LIN to MAX3SAT. Take any instance of MAXE3LIN
where we are interested in determining whether (1 − ε) fraction of the
equations can be satisfied or at most 1/2 + ε are. Represent each lin-
ear constraint by four 3CNF clauses in the obvious way. For example,
the linear constraint a + b + c = 0 (mod 2) is equivalent to the clauses
(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c). If a, b, c satisfy the linear con-
straint, they satisfy all 4 clauses and otherwise they satisfy at most 3 clauses.
We conclude that in one case at least (1 − ε) fraction of clauses are simul-
taneously satisfiable, and in the other case at most 1− (1

2 − ε)×
1
4 = 7

8 −
ε
4

fraction are. The ratio between the two cases tends to 7/8 as ε decreases.
Since Theorem 20.5 implies that distinguishing between the two cases is
NP-hard for every constant ε, the result follows. �

20.3 Tool: the Fourier transform technique

The continuous Fourier transform is extremely useful in mathematics and
engineering. Likewise, the discrete Fourier transform has found many uses
in algorithms and complexity, in particular for constructing and analyzing
PCP’s. The Fourier transform technique for PCP’s involves calculating
the maximum acceptance probability of the verifier using Fourier analysis
of the functions presented in the proof string. It is delicate enough to give
“tight” inapproximability results for MAX INDSET, MAX3SAT, and many
other problems.

To introduce the technique we start with a simple example: analysis
of the linearity test over GF(2) (i.e., proof of Theorem 19.23). We then
introduce the Long Code and show how to test for membership in it. These
ideas are then used to prove H̊astad’s 3-bit PCP Theorem.

20.3.1 Fourier transform over GF(2)n

The Fourier transform over GF(2)n is a tool to study functions on the
Boolean hypercube. In this chapter, it will be useful to use the set {+1,−1} =
{±1} instead of {0, 1}. To transform {0, 1} to {±1}, we use the mapping
b 7→ (−1)b (i.e., 0 7→ +1 , 1 7→ −1). Thus we write the hypercube as {±1}n
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instead of the more usual {0, 1}n. Note this maps the XOR operation (i.e.,
addition in GF(2)) into the multiplication operation.

The set of functions from {±1}n to R defines a 2n-dimensional Hilbert
space (see Section ??) as follows. Addition and multiplication by a scalar are
defined in the natural way: (f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x)
for every f, g : {±1}n → R, α ∈ R. We define the inner product of two
functions f, g, denoted 〈f, g〉, to be Ex∈{±1}n [f(x)g(x)].

The standard basis for this space is the set {ex}x∈{±1}n , where ex(y)
is equal to 1 if y = x, and equal to 0 otherwise. This is an orthonormal
basis, and every function f : {±1}n → R can be represented in this basis as
f =

∑
x axex. For every x ∈ {±1}n, the coefficient ax is equal to f(x). The

Fourier basis for this space is the set {χα}α⊆[n] where χα(x) =
∏
i∈α xi (χ∅

is the constant 1 function). These correspond to the linear functions over
GF(2). To see this, note that every linear function of the form b 7→ a � b
(with a,b ∈ {0, 1}n) is mapped by our transformation to the function taking
x ∈ {±1}n to

∏
i s.t. ai=1 xi.

The Fourier basis is indeed an orthonormal basis for the Hilbert space.
Indeed, the random subsum principle implies that for every α, β ⊆ [n],
〈χα, χβ〉 = δα,β where δα,β is equal to 1 iff α = β and equal to 0 otherwise.
This means that every function f : {±1}n → R can be represented as
f =

∑
α⊆[n] f̂αχα. We call f̂α the αth Fourier coefficient of f .

We will often use the following simple lemma:

Lemma 20.7
Every two functions f, g :{±1}n → R satisfy

1. 〈f, g〉 =
∑

α f̂αĝα.

2. (Parseval’s Identity) 〈f, f〉 =
∑

α f̂
2
α

Proof: The second property follows from the first. To prove the first we
expand

〈f, g〉 = 〈
∑
α

f̂αχα,
∑
β

ĝβχβ〉 =

∑
α,β

f̂αĝβ〈χα, χβ〉 =
∑
α,β

f̂αĝβδα,β =
∑
α

f̂αĝα

�
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Example 20.8
Some examples for the Fourier transform of particular functions:

1. If f(u1, u2, . . . , un) = ui (i.e., f is a coordinate function, a concept we
will see again soon) then f = χ{i} and so f̂{i} = 1 and f̂α = 0 for
α 6= {i}.

2. If f is a random boolean function on n bits, then each f̂α is a random
variable that is a sum of 2n binomial variables (equally likely to be
1,−1) and hence looks like a normally distributed variable with stan-
dard deviation 2n/2 and mean 0. Thus with high probability, all 2n

Fourier coefficients have values in [−poly(n)

2n/2
,
poly(n)

2n/2
].

The connection to PCPs: High level view

In the PCP context we are interested in Boolean-valued functions, i.e., those
from GF (2)n to GF (2). Under our transformation these are mapped to
functions from {±1}n to {±1}. Thus, we say that : f {±1}n → R is Boolean
if f(x) ∈ {±1} for every x ∈ {±1}n. Note that if f is Boolean then 〈f, f〉 =
Ex[f(x)2] = 1.

On a high level, we use the Fourier transform in the soundness proofs for
PCP’s to show that if the verifier accepts a proof π with high probability then
π is “close to” being “well-formed” (where the precise meaning of “close-to”
and “well-formed” is context dependent). Technically, we will often be able
to relate the acceptance probability of the verifier to an expectation of the
form 〈f, g〉 = Ex[f(x)g(x)], where f and g are Boolean functions arising
from the proof. We then use techniques similar to those used to prove
Lemma 20.7 to relate this acceptance probability to the Fourier coefficients
of f, g, allowing us to argue that if the verifier’s test accepts with high
probability, then f and g have few relatively large Fourier coefficients. This
will provide us with some nontrivial useful information about f and g, since
in a “generic” or random function, all the Fourier coefficient are small and
roughly equal.

20.3.2 Analysis of the linearity test over GF (2)

We will now prove Theorem 19.23, thus completing the proof of the PCP
Theorem. Recall that the linearity test is provided a function f :GF(2)n →
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GF(2) and has to determine whether f has significant agreement with a
linear function. To do this it picks x,y ∈ GF(2)n randomly and accepts iff
f(x + y) = f(x) + f(y).

Now we rephrase this test using {±1} instead of GF(2), so linear func-
tions turn into Fourier basis functions. For every two vectors x,y ∈ {±1}n,
we denote by xy their componentwise multiplication. That is, xy = (x1y1, . . . , xnyn).
Note that for every basis function χα(xy) = χα(x)χα(y).

For two Boolean functions f, g, 〈f, g〉 is equal to the fraction of inputs
on which they agree minus the fraction of inputs on which they disagree.
It follows that for every ε ∈ [0, 1] and functions f, g : {±1}n → {±1}, f
has agreement 1

2 + ε
2 with g iff 〈f, g〉 = ε. Thus, if f has a large Fourier

coefficient then it has significant agreement with some Fourier basis function,
or in the GF(2) worldview, f is close to some linear function. This means
that Theorem 19.23 can be rephrased as follows:

Theorem 20.9
Suppose that f : {±1}n → {±1} satisfies Prx,y[f(xy) = f(x)f(y)] ≥ 1

2 + ε.

Then, there is some α ⊆ [n] such f̂α ≥ 2ε.

Proof: We can rephrase the hypothesis as Ex,y[f(xy)f(x)f(y)] ≥ (1
2 +ε)−

(1
2 − ε) = 2ε. We note that from now on we do not need f to be Boolean,

but merely to satisfy 〈f, f〉 = 1.
Expressing f by its Fourier expansion,

2ε ≤ Ex,y[f(xy)f(x)f(y)] = Ex,y[(
∑
α

f̂αχα(xy))(
∑
β

f̂βχβ(x))(
∑
γ

f̂γχγ(y))].

Since χα(xy) = χα(x)χα(y) this becomes

= Ex,y[
∑
α,β,γ

f̂αf̂β f̂γχα(x)χα(y)χβ(x)χγ(y)].

Using linearity of expectation:

=
∑
α,β,γ

f̂αf̂β f̂γEx,y[χα(x)χα(y)χβ(x)χγ(y)]

=
∑
α,β,γ

f̂αf̂β f̂γEx [χα(x)χβ(x)]Ey [χα(y)χγ(y)]

(because x,y are independent).
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By orthonormality Ex[χα(x)χβ(x)] = δα,β, so we simplify to

=
∑
α

f̂3
α

≤ (max
α

f̂α)× (
∑
α

f̂2
α)

Since
∑

α f̂
2
α = 〈f, f〉 = 1, this expression is at most maxα

{
f̂α

}
. Hence

maxα f̂α ≥ 2ε and the theorem is proved. �

20.3.3 Coordinate functions, Long code and its testing

Let W ∈ N. We say that f : {±1}W → {±1} is a coordinate function if
there is some w ∈ [W ], such that f(x1, x2, . . . , xW ) = xw; in other words,
f = χ{w}.

Definition 20.10 (Long Code)
The long code for [W ] encodes each w ∈ [W ] by the table of all values of the
function χ{w} : {±1}[W ] → {±1}.

Remark 20.11
Note that w, normally written using logW bits, is being represented using
a table of 2W bits, a doubly exponential blowup! This inefficiency is the
reason for calling the code “long.”

Similar to the test for the Walsh-Hadamard code, when testing the long
code, we are given a function f : {±1}W → {±1}, and want to find out if
f has good agreement with χ{w} for some w, namely, f̂{w} is significant.
Such a test is described in Exercise 16 of the previous chapter, but it is not
sufficient for the proof of H̊astad’s Theorem, which requires a test using only
three queries. Below we show such a three query test albeit at the expense
of achieving the following weaker guarantee: if the test passes with high
probability then f has a good agreement with a function χα with |α| small
(but not necessarily equal to 1). This weaker conclusion will be sufficient in
the proof of Theorem 20.5.

Let ρ > 0 be some arbitrarily small constant. The test picks two uni-
formly random vectors x,y ∈ {±1}W and then a vector z ∈ {±1}[W ]
according to the following distribution: for every coordinate i ∈ [W ], with
probability 1 − ρ we choose zi = +1 and with probability ρ we choose
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zi = −1. Thus with high probability, about ρ fraction of coordinates in z
are −1 and the other 1−ρ fraction are +1. We think of z as a “noise” vector.
The test accepts iff f(x)f(y) = f(xyz). Note that the test is similar to the
linearity test except for the use of the noise vector z.

Suppose f = χ{w}. Then

f(x)f(y)f(xyz) = xwyw(xwywzw) = 1 · zw

Hence the test accepts iff zw = 1 which happens with probability 1− ρ. We
now prove a certain converse:

Lemma 20.12
If the test accepts with probability 1/2 + ε then

∑
α f̂

3
α(1− 2ρ)|α| ≥ 2ε.

Proof: If the test accepts with probability 1/2+ε then E[f(x)f(y)f(xyz)] =
2ε. Replacing f by its Fourier expansion, we have

2ε ≤ Ex,y,z

(
∑
α

f̂αχα(x)) · (
∑
β

f̂βχβ(y)) · (
∑
γ

f̂γχγ(xyz))


= Ex,y,z

∑
α,β,γ

f̂αf̂β f̂γχα(x)χβ(y)χγ(x)χγ(y)χγ(z)


=
∑
α,β,γ

f̂αf̂β f̂γEx,y,z [χα(x)χβ(y)χγ(x)χγ(y)χγ(z)] .

Orthonormality implies the expectation is 0 unless α = β = γ, so this is

=
∑
α

f̂3
αEz[χα(z)]

Now Ez[χα(z)] = Ez

[∏
w∈α zw

]
which is equal to

∏
w∈α E[zw] = (1−2ρ)|α|

because each coordinate of z is chosen independently. Hence we get that

2ε ≤
∑
α

f̂3
α(1− 2ρ)|α|

�

The conclusion of Lemma 20.12 is reminiscent of the calculation in the
proof of Theorem 20.9, except for the extra factor (1 − 2ρ)|α|. This factor
depresses the contribution of f̂α for large α, allowing us to conclude that the
small α’s must contribute a lot. This formalized in the following corollary
(left as Exercise 2).
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Corollary 20.13
If f passes the long code test with probability 1/2 + δ then∑

α:|α|≤k

f̂3
α ≥ 2δ − ε,

where k = 1
2ρ log 1

ε .

20.4 Proof of Theorem 20.5

Recall that our proof of the PCP Theorem implies that there are constants
γ > 0, s ∈ N such that (1−γ)-GAP 2CSPs is NP-hard (see Claim 19.36). This
means that for every NP-language L we have a PCP-verifier for L mak-
ing two queries over alphabet {0, . . . , s − 1} with perfect completeness and
soundness parameter 1−γ. Furthermore this PCP system has the property
that the verifier accepts the answer pair z1, z2 iff z2 = hr(z1) where hr is a
function (depending on the verifier’s randomness r) mapping {0, . . . , s− 1}
to itself (see Exercise 3). We call this the projection property. Using the
Raz’s parallel repetition lemma (Theorem 20.3), we can reduce the sound-
ness parameter to an arbitrary small constant at the expense of increasing
the alphabet. Note that parallel repetition preserves the projection property.

Let L be an NP-language and ε > 0 an arbitrarily small constant. By
the above there exists a constant W and PCP-verifier VRaz (having the
projection property) that makes two queries to a polynomial-sized PCP
proof π with alphabet {1, . . . ,W} such that for every x, if x ∈ L then there
exists π such that Pr[V π

Raz(x) = 1] = 1 and if x 6∈ L then Pr[V π
Raz(x) = 1] < ε

for every π.
Now we describe H̊astad’s verifier VH . It essentially follows VRaz, but

it expects each entry in the PCP proof π to be encoded using the long
code. It expects these encodings to be bifolded, a technical property we now
define and is motivated by the observation that coordinate functions satisfy
χ{w}(−u) = −χ{w}(u), where −u is the vector (−u1, . . . ,−uW ).

Definition 20.14
A function f : {±1}W → {±1} is bifolded if for all u ∈ {±1}W , f(−u) =
−f(u).

Whenever the PCP proof is supposed to contain a longcode codeword
then we may assume without loss of generality that the function is bifolded.
The reason is that the verifier can identify, for each pair of inputs u,−u, one
designated representative —say the one whose first coordinate is +1— and
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just define f(−u) to be −f(u). One benefit —though of no consequence in
the proof— of this convention is that bifolded functions require only half as
many bits to represent. We will use the following fact:

Lemma 20.15
If f : {±1}W → {±1} is bifolded and f̂α 6= 0 then |α| must be an odd
number (and in particular, nonzero).

Proof: By definition,

f̂α = 〈f, χα〉 = 1
2n

∑
u

f(u)
∏
i∈α

ui.

If |α| is even then
∏
i∈α ui =

∏
i∈α(−ui). So if f is bifolded, the terms

corresponding to u and −u have opposite signs and the entire sum is 0. �

H̊astad’s verifier. Recall that VRaz uses its randomness to select a func-
tion two entries i, j in the table π and a function h : [W ] → [W ], and
accepts iff π(j) = h(π(i)). H̊astad’s verifier, denoted VH , expects the proof
π̃ to consist of (bifolded) longcode encodings of each entry of π. The veri-
fier VH emulates VRaz to pick two locations i,j in the table and a function
h : [W ]→ [W ] such that VRaz’s test is to accept iff π[j] = h(π[i]). The proof
π̃ contains in the locations i and j two functions f and g respectively (which
may or may not be the longcode encoding of π(i) and π(j)). Instead of read-
ing the long codes f, g in their entirety, the verifier VH performs a simple test
that is reminiscent of the long code test. For a string y ∈ {±1}W we denote
by h−1(y) the string such that for every w ∈ [W ], h−1(y)w = yh(w). In other
words, for each u ∈ [W ], the bit yu appears in all coordinates of h−1(y) that
are indexed by integers in the subset h−1(u). This is well defined because{
h−1(u) : u ∈ [W ]

}
is a partition of [W ]. VH chooses uniformly at random

u,y ∈ {±1}W and chooses z ∈ {±1}W by letting zi = +1 with probability
1− ρ and zi = −1 with probability ρ. It then accepts Iff

f(u)g(y) = f(h−1(y)uz) (1)

Translating back from {±1} to {0, 1}, note that VH ’s test is indeed linear,
as it accepts iff π̃[i1] + π̃[i2] + π̃[i3] = b for some i1, i2, i3 ∈ [m2W ] and
b ∈ {0, 1}. (The bit b can indeed equal 1 because of the way VH ensures the
bifolding property.)
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Completeness of VH . Suppose f, g are long codes of two integers w, u sat-
isfying h(w) = u (in other words, Vraz would have accepted the assignments
represented by these integers). Then

f(u)g(y)f(h−1(y)uz) = uwyu(h−1(y)uzw
= uwyu(yh(w)uwzw) = zw.

Hence VH accepts iff zw = 1, which happens with probability 1− ρ.

Soundness of VH . We now show that if VH accepts f, g with probability
significantly more than 1/2, then the Fourier transforms of f, g must be
correlated. To formalize this we define for α ⊆ [W ],

h2(α) =
{
u ∈ [W ] :

∣∣h−1(u) ∩ α
∣∣ is odd

}
Notice in particular that for every u ∈ h2(α) there is at least one w ∈ α
such that h(w) = u.

In the next Lemma δ is allowed to be negative.

Lemma 20.16
Let f, g : {±1}W → {±1}, h : [W ]→ [W ] be bifolded functions passing VH ’s
test (1) with probability at least 1/2 + δ. Then∑

α⊆[W ],α 6=∅

f̂2
αĝh2(α)(1− 2ρ)|α| ≥ 2δ

Proof: By hypothesis, f, g are such that E[f(u)f(uh−1(y)z)g(y)] ≥ 2δ.
Replace f, g by their Fourier expansions. We get that

2δ ≤ = Eu,y,z

(
∑
α

f̂αχα(x))(
∑
β

ĝβχβ(y))(
∑
γ

f̂γχγ(uh−1(y)z))


=
∑
α,β,γ

f̂αĝβ f̂γEu,y,z

[
χα(u)χβ(y)χγ(u)χγ(h−1(y))χγ(z)

]
By orthonormality this simplifies to

=
∑
α,β

f̂2
αĝβEy,z

[
χβ(y)χα(h−1(y))χα(z)

]
=
∑
α,β

f̂2
αĝβ(1− 2ρ)|α|Ey

[
χα(h−1(y)χβ(y)

]
(2)
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since χα(z) = (1−2ρ)|α|, as noted in our analysis of the long code test. Now
we have

Ey[χα(h−1(y))χβ(y)] = Ey[
∏
w∈α

h−1(y)w
∏
u∈β

yu]

= Ey[
∏
w∈α

yh(w)

∏
u∈β

yu],

which is 1 if h2(α) = β and 0 otherwise. Hence (2) simplifies to∑
α

f̂2
αĝh2(α)(1− 2ρ)|α|.

Finally we note that since the functions are assumed to be bifolded, the
Fourier coefficients f̂∅ and ĝ∅ are zero. Thus those terms can be dropped
from the summation and the Lemma is proved. �

The following corollary of Lemma 20.16 completes the proof of H̊astad’s
3-bit PCP Theorem.
Corollary 20.17
Let ε be the soundness parameter of VRaz. If ρ, δ satisfy ρδ2 > ε then the
soundness parameter of VH is at most 1/2 + δ.

Proof: Suppose VH accepts a proof π̃ with probability at least 1/2 + δ. We
give a probabilistic construction of a proof π causing VRaz to accept the
same statement with probability at least ρδ2.

Suppose that VRaz uses proofs π with m entries in [W ]. We can think of
π̃ as providing, for every i ∈ [m], a function fi : {±1}W {±1}. We will use
π̃ to construct a proof π for VRaz as follows: we first use fi to come up with
a distribution Di over [W ]. We then let π[i] be a random element from Di.

The distribution Di. Let f = fi. The distribution Di is defined by first
selecting α ⊆ [W ] with probability f̂2

α and then selecting w at random from
α. This is well defined because

∑
α f̂

2
α = 1 and (due to bifolding) f∅ = 0.

Recall that VRaz picks using its random tape a pair i, j of locations and
a function h : [W ] → [W ] and then verifies that π[j] = h(π[i]). Let r be
some possible random tape of VRaz and let i, j, h be the pair of entries in
π and function that are determined by r. We define the indicator random
variable Ir to be 1 if for w ∈R Di and u ∈R Dj it holds that w = h(u) and
to be 0 otherwise. Thus, our goal is to show that

Eπ=D1,...,Dm [Er[Ir]] ≥ ρδ2 (3)
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since that would imply that there exists a table π causing VRaz to accept
with probability at least ρδ2, proving the corollary.

To prove (3) we first notice that linearity of expectation allows us to
exchange the order of the two expectations and so it is enough to bound
Er[EDi,Dj [Ir]] where i, j are the entries determined by the random tape r.
For every r denote by δr the probability that VH accepts π̃ when it uses r
as the random tape for VRaz. The acceptance probability of VH is Er[12 + δr]
and hence Er[δr] = δ.

Let i, j, h be the pair and function determined by r and denote by f = fi
and g = fj where fi (resp. fj) is the function at the ith (resp. jth) entry
of the table π̃. What is the chance that a pair of assignments w ∈R Di and
v ∈R Dj will satisfy the constraint? (i.e., will satisfy v = h(w)?). Recall
that we pick w and u by choosing α with probability f̂2

α, β with probability
ĝ2
β and choosing w ∈R α, v ∈R β. Now if β = h2(α) then for every v ∈ β

there exists w ∈ α with h(w) = v and hence the probability the constraint
is satisfied is at least 1/|α|. Thus, we have that∑

α

1
|α|

f̂2
αĝ

2
h2(α) ≤ EDi,Dj [Ir] (4)

This is similar to (but not quite the same as) the expression in Lemma 20.16,
according to which

2δr ≤
∑
α

f̂2
αĝh2(α)(1− 2ρ)|α|.

However, since one can easily see that (1− 2ρ)|α| ≤ 2√
ρ |α|

we have

2δr ≤
∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 2√
ρ |α|

Or
δr
√
ρ ≤

∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|

Applying the Cauchy-Schwartz inequality,
∑

i aibi ≤ (
∑

i a
2
i )

1/2(
∑

i b
2
i )

1/2,
with f̂α

∣∣ĝπ2(α)

∣∣ 1√
|α|

playing the role of the ai’s and f̂α playing that of the

bi’s, we obtain

δr
√
ρ ≤

∑
α

f̂2
α

∣∣ĝh2(α)

∣∣ 1√
|α|
≤

(∑
α

f̂2
α

)1/2(∑
α

f̂α
2
ĝ2
h2(α)

1
|α|

)1/2

(5)
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Since
∑

α f̂
2
α = 1, by squaring (5) and combining it with (4) we get that

for every r,
δ2rρ ≤ EDi,Dj [Ir]

taking expectation over r and using E[X]2 ≤ E[X2] we get that

δ2ρ = Er[δr]2ρ ≤ Er[δ2r ]ρ ≤ Er[EDi,Dj [Ir]]

proving (3). �

20.5 Learning Fourier Coefficients

Suppose that you are given random access to a Boolean function f : {±1}n →
{±1} and want to find the high Fourier coefficients of f . Of course, we can
compute all of the coefficients in time polynomial in 2n, but is there a faster
algorithm? By the Parseval equality (Lemma 20.7) we know that there can
be at most 1/ε2 coefficients with absolute value larger than ε, and so we can
hope to learn these coefficients in time polynomial in n, and 1/ε. It turns
out we can (almost) achieve this goal:

Theorem 20.18 ([?])
There is an algorithm A that given input n ∈ N,ε ∈ (0, 1) and random
access to a function f : {±1}n → {±1}, runs in poly(n, 1/ε) time and with
probability at least 0.9 outputs a set L of size at most O(1/ε2) such that for
every α ⊆ [n], if |f̂α| > ε then α ∈ L.

Proof: We identify subsets of [n] with strings in {0, 1}m in the obvious
way. For k ≤ n and α ∈ {0, 1}k denote

f̃α? =
∑

β∈{0,1}n−k
f̂2
α◦β,

where ◦ denotes concatenation. By Parseval (Lemma 20.7) f̃? = 1. Note
also that for every k < n and α ∈ {0, 1}k, f̃α? = f̃α0? + f̃α1?. Therefore, if
we think of the full depth-n binary labeled by binary strings of length ≤ n
(with the root being the empty word and the two children of α are α0 and
α1), then at any level of this tree there can be at most 1/ε2 strings α such
that f̃α? > ε2 (the kth level of the tree corresponds to all strings of length
k). Note that if a string α satisfies f̃α? < ε2 then the same holds for every
string of the form α◦β. Our goal will be to find all these strings at all levels,
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and then output all the strings that label leaves in the tree (i.e., all n-bit
strings).

The heart of the algorithm is a procedure Estimate that given α and
oracle access to f(·), outputs an estimate of fα within ε/4 accuracy with
probability 1 − ε2

100n . Using this procedure we work our way from the root
down, and whenever Estimate(α) gives a value smaller than ε/2 we “kill”
this node and will not deal with it and its subnodes. Note that unless the
output of Estimate is more than ε/4-far from the real value (which we will
ensure by the union bound happens with probability less than 0.1 over all
the levels) at most 4/ε nodes will survive at any level. The algorithm will
output the 4/ε leaves that survive.

The procedure Estimate uses the following claim:
Claim 20.19
For every α,

f̃α? = Ex,x′∈R{0,1}k,y∈R{0,1}n−k [f(x ◦ y)f(x′ ◦ y)χα(x)χα(x′)]

Proof: We start with the case that α = 0k. To get some intuition, suppose
that f̃0k? = 1. This means that f can be expressed as a sum of functions of
the form χ0k◦β and hence it does not depend on its first k variables. Thus
f(x◦y) = f(x′◦y) and we’ll get that E[f(x◦y)f(x′◦y)] = E[f(z)2] = 1. More
generally, if f̃0k? is large then that means that in the Fourier representation,
the weight of functions not depending on the first k variables is large and
hence we expect large correlation between f(x′ ◦ y) and f(x ◦ y). This is
verified by the following calculations:

2−n−k
∑

x,x′,y

f(x ◦ y)f(x′ ◦ y) =
basis change

2−n−k
∑

x,x′,y

∑
γ◦β

f̂(γ ◦ β)χγ◦β(x ◦ y)

∑
γ′◦β′

f̂(γ′ ◦ β′)χγ′◦β′(x′ ◦ y)

 =
χγ◦β(x ◦ y) = χγ(x)χβ(y)

2−n−k
∑

x,x′,y

∑
γ◦β

f̂(γ ◦ β)χγ(x)χβ(y)

∑
γ′◦β′

f̂(γ′ ◦ β′)χγ′(x′)χβ′(y)

 =
reordering terms

∑
γ,β,γ′,β′

f̂(γβ)f̂(γ′β′)2−k
(∑

x

χγ′(x)

)
2−k

(∑
x′

χγ(x′)

)
2−(n−k)

(∑
y

χβ(y)χβ′(y)

)
=

Σχγ(x) = 0 for γ 6= 0k∑
β,β′

f̂(0k ◦ β)f̂(0k ◦ β′)δβ,β′ =
∑
β

f̂(0k ◦ β)2 = f̃0k?
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For the case α 6= 0k, we essentially add these factors to translate it to the
case α = 0k. Indeed one can verify that if we define g(x◦y) = f(x◦y)χα(x)
then for every β ∈ {0, 1}n−k. g0k◦β = fα◦β. �

By the Chernoff bound, we can estimate the expectation of Claim 20.19
(and hence f̃α?) using repeated sampling, thus obtaining the procedure
Estimate and completing the proof. �

20.6 Other PCP Theorems: A Survey

The following variants of the PCP Theorem have been obtained and used
for various applications.

20.6.1 PCP’s with sub-constant soundness parameter.

Because `-times parallel repetition transforms a proof of size m to a proof
of size m`, we cannot use it with ` larger than a constant and still have a
polynomial-sized proof. Fortunately, there have been direct constructions
of PCP’s achieving low soundness using larger alphabet size, but without
increasing the proof’s size. Raz and Safra [?] show that there is an absolute
constant q such that for every W ≤

√
log n, every NP language has a q-

query verifier over alphabet {0, . . . ,W − 1} that uses O(log n) random bits,
and has soundness 2−Ω(logW ).

20.6.2 Amortized query complexity.

Some applications require binary-alphabet PCP systems enjoying a tight
relation between the number of queries (that can be an arbitrarily large
constant) and the soundness parameter. The relevant parameter here turns
out to be the free bit complexity [?, ?]. This parameter is defined as follows.
Suppose the number of queries is q. After the verifier has picked its random
string, and picked a sequence of q addresses, there are 2q possible sequences
of bits that could be contained in those addresses. If the verifier accepts
for only t of those sequences, then we say that the free bit parameter is
log t (note that this number need not be an integer). In fact, for most
applications it suffices to consider the amortized free bit complexity [?]. This
parameter is defined as lims→0 fs/ log(1/s), where fs is the number of free
bits needed by the verifier to ensure the soundness parameter is at most
s. H̊astad constructed systems with amortized free bit complexity tending
to zero [?]. That is, for every ε > 0, he gave a PCP-verifier for NP that
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uses O(log n) random bits and ε amortized free bits. He then used this
PCP system to show (using tools from [?, ?, ?]) that MAX INDSET (and
so, equivalently, MAXCLIQUE) is NP-hard to approximate within a factor
of n1−ε for arbitrarily small ε > 0.

20.6.3 Unique games.

Exercises

§1 Prove that there is a polynomial-time algorithm that given a satisfi-
able 2CSPW instance ϕ over {0..W−1} where all the constraints are
permutations (i.e, ϕi checks that uj′ = h(uj) for some j, j′ ∈ [n] and
permutation h : {0..W−1} → {0..W−1}) finds a satisfying assignment
u for ϕ.

§2 Prove Corollary 20.13.

§3 Prove that the PCP system resulting from the proof of Claim 19.36
(Chapter 19) satisfies the projection property.

§4 Let f : {±1}n → {±1} and let I ⊆ [n]. Let MI be the following
distribution: we choose z ∈R MI by for i ∈ I, choose zi to be +1 with
probability 1/2 and −1 with probability 1/2 (independently of other
choices), for i 6∈ I choose zi = +1. We define the variation of f on I
to be Prx∈R{±1}n,z∈RMI

[f(x) 6= f(xz)].

Suppose that the variation of f on I is less than ε. Prove that there
exists a function g : {±1}n → R such that (1) g does not depend on
the coordinates in I and (2) g is 10ε-close to f (i.e., Prx∈R{±1}n [f(x) 6=
g(x)] < 10ε). Can you come up with such a g that outputs values in
{±1} only?

§5 For f : {±1}n → {±1} and x ∈ {±1}n we define Nf (x) to be the
number of coordinates i such that if we let y to be x flipped at the ith

coordinate (i.e., y = xei where ei has −1 in the ith coordinate and +1
everywhere else) then f(x) 6= f(y). We define the average sensitivity
of f , denoted by as(f) to be the expectation of Nf (x) for x ∈R {±1}n.

(a) Prove that for every balanced function f : {±1}n → {±1} (i.e.,
Pr[f(x) = +1] = 1/2), as(f) ≥ 1.

(b) Let f be balanced function from {±1}n to {±1} with as(f) = 1.
Prove that f is a coordinate function or its negation (i.e., f(x) =
xi or f(x) = −xi for some i ∈ [n] and for every x ∈ {±1}n).
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Chapter 21

Quantum Computation

“Turning to quantum mechanics.... secret, secret, close the
doors! we always have had a great deal of difficulty in under-
standing the world view that quantum mechanics represents ...
It has not yet become obvious to me that there’s no real problem.
I cannot define the real problem, therefore I suspect there’s no
real problem, but I’m not sure there’s no real problem. So that’s
why I like to investigate things.”
Richard Feynman 1964

“The only difference between a probabilistic classical world and
the equations of the quantum world is that somehow or other it
appears as if the probabilities would have to go negative..”
Richard Feynman, in “Simulating physics with computers”, 1982

A quantum computer is a computational model that may be physically
realizable and may have an exponential advantage over Turing machines
in solving certain computational problems. In this chapter we survey the
model, its relations to “classical” computational models such as probabilistic
and deterministic Turing machines and the most important algorithms for
quantum computers.

The strong Church-Turing thesis. As complexity theorists, the main
reason to study quantum computers is that they pose a serious challenge
to the strong Church-Turing thesis that stipulates that any physically rea-
sonable computation device can be simulated by a Turing machine with
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polynomial overhead. Quantum computers seem to violate no fundamental
laws of physics and yet currently we do not know any such simulation. In
fact, there’s some evidence to the contrary: there’s a polynomial-time algo-
rithm for quantum computers to factor integers, where despite much effort
no such algorithm is known for deterministic or probabilistic Turing ma-
chines. In fact, the conjectured hardness of this problem underlies several
widely used encryption schemes such as the RSA cryptosystem. Thus the
feasibility of quantum computers is very interesting for anyone interested
in the security of these schemes. Physicists are also interested in quantum
computers as studying them may shed light on quantum mechanics, a theory
which, despite its great success in predicting experiments, is still not fully
understood.

21.1 Quantum physics

Quantum phenomena are counterintuitive. To see this, consider the basic
experiment of quantum mechanics that proves the wave nature of electrons:
the 2-slit experiment. (See Figure 21.1.) A source fires electrons one by one
at a wall. The wall contains two tiny slits. On the far side are small detectors
that light up whenever an electron hits them. We measure the number of
times each detector lights up during the hour. The results are as follows.
When we cover one of the slits, we observe the strongest flux of electrons
right behind the open slit, as one would expect. When both slits are open
we would expect that the number of electrons hitting any particular position
would be the sum of number hitting it when the first slit is open and the
number hitting it when the second slit is open. Instead, what happens is
that there’s an “interference” phenomenon of electrons coming through two
slits. In particular, at several detectors the total electron flux is lower when
both slit are open as compared to when a single slit is open. This defies
explanation if electrons behave as particles or “little balls”.

Figure unavailable in pdf file.

Figure 21.1: 2-slit experiment

The only explanation physics has for this experiment is that an electron
does not behave as a ball. It should be thought of as simultaneously going
through both slits at once, kind of like a wave. Rather than thinking of the
electron has having some non-negative probability of reaching a point x via
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slit i, we think of it has having some amplitude αx,i, where this amplitude is
a complex number (in particular, it can be a negative number). The prob-
ability of an electron hitting x when slit i is open is proportional to |αx,i|2
and the probability of hitting x when both slits are open is proportional to
|αx,1 +αx,2|2. In particular, if, say, αx,1 is positive and αx,2 is negative then
the electron may hit x with smaller probability when both slits are open
than when only one of them is open.

“Nonsense!” you might say. “I need proof that the electron actually
went through both slits.” So you propose the following modification to the
experiment. Position two detectors at the slits; these light up whenever an
electron passed through the slit. Now you can test the hypothesis that the
electron went through both slits simultaneously. If you put such detectors
at the slits, you will see that each electron indeed went through only one slit,
but now you’ll also see that the interference phenomenon disappears and the
graph of electron hits on the wall becomes a simple sum! The explanation
is roughly as follows: the quantum nature of particles “collapses” when
they are “observed.” More specifically, a quantum system evolves according
to certain laws, but “observation” from nosy humans and their detectors
“collapses” the quantum state and this is a nonreversible operation. (This
may seem mysterious and it is; see Chapter notes.) One moral to draw
from this is that quantum computers, if they are ever built, will have to
be carefully isolated from external influences and noise, since noise may be
viewed as a “measurement” performed by the environment on the system.
Of course, we can never completely isolate the system, which means we have
to make quantum computation tolerant of a little noise. This seems to be
possible under some noise models (see Chapter notes).

21.2 Quantum superpositions

Now we describe a quantum register, a basic component of the quantum
computer. Recall the classical register, the building block of the memory in
your desktop computer. An n-bit classical register with n bits consists of n
particles. Each of them can be in 2 states: up and down, or 0 and 1. Thus
there are 2n possible configurations, and at any time the register is in one
of these configurations.

The n-bit quantum register is similar, except at any time it can exist in a
superposition of all 2n configurations. (And the “bits” are called “qubits.”)
Each configuration S ∈ {0, 1}n has an associated amplitude αS ∈ C where
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C is the set of complex numbers.

αS = amplitude of being in configuration S

Physicists like to denote this system state succinctly as
∑

S αS |S 〉. This
is their notation for describing a general vector in the vector space C2n ,
expressing the vector as a linear combination of basis vectors. The basis
contains a vector |S 〉 for each configuration S. The choice of the basis used
to represent the configurations is immaterial so long as we fix a basis once
and for all.

At every step, actions of the quantum computer —physically, this may
involve shining light of the appropriate frequency on the quantum register,
etc.— update αS according to some physics laws. Each computation step
is essentially a linear transformation of the system state. Let α denote the
current configuration (i.e., the system is in state

∑
S αS |S 〉) and U be the

linear operator. Then the next system state is β = Uα. Physics laws require
U to be unitary, which means UU † = I. (Here U † is the matrix obtained
by transposing U and taking the complex conjugate of each entry.) Note an
interesting consequence of this fact: the effect of applying U can be reversed
by applying the operator U †: thus quantum systems are reversible. This
imposes strict conditions on which kinds of computations are permissible
and which are not.

As already mentioned, during the computation steps, the quantum reg-
ister is isolated from the outside world. Suppose we open the system at
some time and observe the state of the register. If the register was in state∑

S αS |S 〉 at that moment, then

Pr[we see configuration S] = |αS |2 (1)

In particular, we have
∑

S |αS |2 = 1 at all times. Note that observation
is an irreversible operator. We get to see one configuration according to the
probability distribution described in (1) and and the rest of the configura-
tions are lost forever.

What if we only observe a few bits of the register —a so-called partial
observation? Then the remaining bits still stay in quantum superposition.
We show this by an example.

Example 21.1
Suppose an n-bit quantum register is in the state∑

s∈{0,1}n−1

αs |0〉 |s〉+ βs |1〉 |s〉 (2)
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(sometimes this is also represented as
∑

s∈{0,1}n−1(αs |0〉 + βs |1〉) |s〉, and
we will use both representations). Now suppose we observe just the first bit
of the register and find it to be 0. Then the new state is ∑

s∈{0,1}n−1

√
|αs|2

−1 ∑
s∈{0,1}n−1

αs |0〉 |s〉 (3)

where the first term is a rescaling term that ensures that probabilities in
future observations sum to 1.

21.3 Classical computation using reversible gates

Motivated by the 2nd Law of Thermodynamics, researchers have tried to de-
sign computers that expend —at least in principle— zero energy. They have
invented reversible gates, which can implement all classical computations in
a reversible fashion. We will study reversible classical gates as a stepping
stone to quantum gates; in fact, they are simple examples of quantum gates.

The Fredkin gate is a popular reversible gate. It has 3 Boolean inputs
and on input (a, b, c) it outputs (a, b, c) if a = 1 and (a, c, b) if a = 0. It is
reversible, in the sense that F (F (a, b, c)) = (a, b, c). Simple induction shows
that if a circuit is made out of Fredkin gates alone and has m inputs then it
must have m outputs as well. Furthermore, we can recover the inputs from
the outputs by just applying the circuit in reverse. Hence a Fredkin gate
circuit is reversible.

Figure unavailable in pdf file.

Figure 21.2: Fredkin gate and how to implement AND with it.

The Fredkin gate is universal, meaning that every circuit of size S that
uses the familiar AND, OR, NOT gates (maximum fanin 2) has an equivalent
Fredkin gate circuit of size O(S). We prove this by showing that we can
implement AND, OR, and NOT using a Fredkin gate some of whose inputs
have been fixed 0 or 1 (these are “control inputs”); see Figure 21.2 for AND
and Figure 21.3 for NOT; we leave OR as exercise. We also need to show
how to copy a value with Fredkin gates, since in a normal circuit, gates can
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have fanout more than 1. To implement a COPY gate using Fredkin gates
is easy and is the same as for the the NOT gate (see Figure 21.3).

Thus to transform a normal circuit into a reversible circuit, we replace
each gate with its Fredkin implementation, with some additional “control”
inputs arriving at each gate to make it compute as AND/OR/NOT. These
inputs have to be initialized appropriately.

The transformation appears in Figure 21.4, where we see that the output
contains some junk bits. With a little more work (see Exercises) we can do
the transformation in such a way that the output has no junk bits, just the
original control bits. The reversible circuit starts with some input bits that
are initialized to 0 and these are transformed into output bits.

Figure unavailable in pdf file.

Figure 21.3: Implementing NOT and COPY with Fredkin Gate

Figure unavailable in pdf file.

Figure 21.4: Converting a normal circuit C into an equivalent circuit C′ of Fredkin
gates. Note that we need additional control inputs

21.4 Quantum gates

A 1-input quantum gate is represented by a unitary 2 × 2 matrix U =
( U00 U01
U10 U11

). When its input bit is 0 the output is the superposition U00 |0〉+
U01 |1〉 and when the input is 1 the output is the superposition U10 |0〉 +
U11 |1〉. When the input bit is in the superposition α0 |0〉+β0 |1〉 the output
bit is a superposition of the corresponding outputs

(α0U00 + β0U10) |0〉+ (α0U01 + β0U11) |1〉. (4)

More succinctly, if the input state vector is (α0, β0) then the output state
vector is (

α
β

)
= U

(
α0

β0

)
If |α|2 + |β|2 = 1 then unitarity of U implies that |α′|2 + |β′|2 = 1.
Similarly, a 2-input quantum gate is represented by a unitary 4×4 matrix

R. When the input is the superposition α00 |00〉 + α01 |01〉 + α10 |10〉 +
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α11 |11〉, the output is β00 |00〉+ β01 |01〉+ β10 |10〉+ β11 |11〉 where
β00

β01

β10

β11

 = R


α00

α01

α10

α11


In general, a quantum gate with k inputs is specified by a unitary 2k×2k

matrix.

Example 21.2
A Fredkin gate is also a valid 3-input quantum gate. We represent it by an
8× 8 matrix that gives its output on all 23 possible inputs. This matrix is a
permutation matrix (i.e., obtainable from the identity matrix by applying a
permutation on all the rows) since the output F (a, b, c) is just a permutation
of the input (a, b, c). Exercise 3 asks you to verify that this permutation
matrix is unitary.

A quantum circuit on n inputs consists of (a) an n-bit quantum regis-
ter (b) a sequence of gates (gj)j=1,2,.... If gj is a k-input gate, then the circuit
specification has to also give a sequence of bit positions (j, 1), (j, 2), . . . , (j, k) ∈
[1, n] in the quantum register to which this gate is applied. The circuit com-
putes by applying these gate operations to the quantum register one by one
in the specified order. The register holds the state of the computation, and
only one gate is applied at any given time.

Example 21.3
Suppose we have an n-bit quantum register in the state

∑
S∈0,1n αS |S 〉. If

we apply a 1-input quantum gate U to the first wire, the new system state
is computed as follows. First “factor” the initial state by expressing each
n-bit configuration as a concatenation of the first bit with the remaining
n− 1 bits: ∑

S′∈{0,1}n−1

α0,S′
∣∣0S′ 〉+ α1,S′

∣∣1S′ 〉. (5)

(Formally we could express everything we are doing in terms of tensor prod-
uct of vector spaces but we will not do that.)
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To obtain the final state apply U on the first bit in each configuration
as explained in equation (4). This yields

∑
S′∈{0,1}n−1

(α0,S′U00 + α1,S′U10)
∣∣0S′ 〉+ (α0,S′U01 + α1,S′U11)

∣∣1S′ 〉 (6)

We can similarly analyze the effect of applying a k-input quantum gate
on any given set of k bits of the quantum register, by first “factoring” the
state vector as above.

21.4.1 Universal quantum gates

You may now be a little troubled by the fact that the set of possible 1-input
quantum gates is the set of all unitary 2 × 2 matrices, an uncountable set.
That seems like bad news for the Radio Shacks of the future, who may feel
obliged to keep all possible quantum gates in their inventory, to allow their
customers to build all possible quantum circuits.

Luckily, Radio Shack need not fear. Researchers have shown the exis-
tence of a small set of “universal” 2-input quantum gates such that every
circuit composed of S arbitrary k-input quantum gates can be simulated
using a circuit of size 2poly(k) ·Spoly(logS) composed only of our universal
gates. The simulation is not exact and the distribution on outputs is only
approximately the same as the one of the original circuit. (All of this as-
sumes the absence of any outside noise; simulation in presence of noise is a
topic of research and currently seems possible under some noise models.)

In any case, we will not need any fancy quantum gates below; just the
Fredkin gate and the following 1-input gate called the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
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21.5 BQP

Definition 21.4
A language L ⊆ {0, 1}∗, is in BQP iff there is a family of quantum circuits
(Cn) of size nc s.t. ∀x ∈ {0, 1}∗:

x ∈ L⇒ Pr[C(x)1 = 1] ≥ 2
3

x /∈ L⇒ Pr[C(x)1 = 1] ≤ 1
3

Here C(x)1 is the first output bit of circuit C, and the probability refers to
the probability of observing that this bit is 1 when we “observe” the outputs
at the end of the computation.

The circuit has to be uniform, that is, a deterministic polynomial time
(classical) Turing machine must be able to write down its description.

At first the uniformity condition seems problematic because a classical
Turing machine cannot write complex numbers needed to describe quantum
gates. However, the machine can just express the circuit approximately
using universal quantum gates, which comprise a finite family. The approx-
imate circuit computes the same language because of the gap between the
probabilities 2/3 and 1/3 used in the above definition.

Theorem 21.5
P ⊆ BQP

Proof: Every language in P has a uniform circuit family of polynomial size.
We transform these circuits into reversible circuits using Fredkin gates, thus
obtaining a quantum circuit family for the language. �

Theorem 21.6
BPP ⊆ BQP

Proof: Every language in BPP has a uniform circuit family (Cn) of poly-
nomial size, where circuit Cn has n normal input bits and an additional
m = poly(n) input wires that have to be initialized with random bits.

We transform the circuit into a reversible circuit C ′n using Fredkin gates.
To produce “random” bits, we feed m zeros into an array of Hadamard gates
and plug their outputs into C ′n; see Figure 21.5.

A simple induction shows that for any N if we start with an N -bit
quantum register in the state |0〉 and apply the Hadamard gate one by one
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Figure 21.5: Turning a BPP circuit into an equivalent quantum circuit. An array of
Hadamard gates turns the all-0 string into a uniform superposition of all m-bit strings.

on all the bits, then we obtain the superposition∑
S∈{0,1}N

1
2N/2

|S 〉 (7)

(Note: the case N = 1 follows from the definition of the Hadamard gate.)
The correctness of the above transformation is now clear since the “ran-

dom” inputs of circuit C ′n receive the output from the array of Hadamard
gates, in other words, a uniform quantum superposition of all possible m-bit
strings. Thus the output bit of C ′n is a uniform superposition of the result on
each bit string. If we perform an observation on this output bit at the end,
then the the probability that it is observed to be 1 is exactly the probability
that Cn accepts when the random gates are fed a truly random string. �

21.6 Factoring integers using a quantum computer

This section proves the following famous result.

Theorem 21.7 (Shor [Sho97])
There is a polynomial size quantum circuit that factors integers.

We describe Kitaev’s proof of this result since it uses eigenvalues, a more
familiar and intuitive concept than the Fourier transforms used in Shor’s
algorithm.

Definition 21.8 (Eigenvalue)
λ is an eigenvalue of matrix M if there is a vector e (called the eigenvector)
, s.t.:

M · e = λe

Fact: If M is unitary, then |M · x|2 = 1 for each unit vector, so |λ| = 1.
In other words there is a θ ∈ [0, 1) such that

λ = e2πιθ = cos(2πθ) + ι sin(2πθ).
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Here ι =
√
−1.

Fact: If M · e = λe then Mk · e = λke. Hence e is still an eigenvector of
Mk and λk is the corresponding eigenvalue.

Now we are ready to describe Kitaev’s algorithm and prove Theorem 21.7.
Proof: Let N be the number to be factored. As usual, Z∗N is the set of
numbers mod N that are co-prime to N . Simple number theory shows that
for every a ∈ Z∗N there is a smallest integer r such that ar ≡ 1 (mod N);
this r is called the order of a. The algorithm will try to find the order of a
random element of Z∗N . It is well-known if we can do this then we can factor
N with high probability; here’s a sketch. First, note that with probability at
least 1/2, the element a has even order. Now if (ar − 1) ≡ 0 (mod N), then
(a

r
2 −1)(a

r
2 +1) ≡ 0 (mod N). If a is random, with probability ≥ 1

2 , a
r
2 6= 1

(mod N), a
r
2 6= −1 (mod N) (this is a simple exercise using the Chinese

remainder theorem). Thus hence gcd(N, a
r
2 − 1) 6= N, 1. Thus, knowing r

we can compute ar/2 and compute gcd(N, a
r
2 − 1). Thus with probability at

least 1/4 (over the choice of a) we obtain a factor of N .
The factoring algorithm is a mixture of a classical and a quantum al-

gorithm. Using classical random bits it generates a random a ∈ Z∗N and
then constructs a quantum circuit. Observing the output of this quantum
circuit a few times followed by some more classical computation allows it to
obtain r, the order of a, with reasonable probability. (Of course, we could
in principle describe the entire algorithm as a quantum algorithm instead
of as a mixture of a classical and a quantum algorithm, but our description
isolates exactly where quantum mechanics is crucial.)

Consider a classical reversible circuit of size poly(logN) that acts on
numbers in Z∗N , and computes U(x) = ax (mod N). Then we can view
this circuit as a quantum circuit operating on a quantum register. If the
quantum register is in the superposition1∑

x∈Z∗N

αx |x〉,

then applying U gives the superposition∑
x∈Z∗N

αx | ax (mod N)〉.

1Aside: This isn’t quite correct; the cardinality of Z∗
N is not a power of 2 so it is not

immediately obvious how to construct a quantum register whose only possible configura-
tions correspond to elements of Z∗

N . However, if we use the nearest power of 2, everything
we are about to do will still be approximately correct. There are also other fixes to this
problem.
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Figure 21.6: Conditional-U circuit

Interpret this quantum circuit as an N ×N matrix —also denoted U—
and consider its eigenvalues. Since U r = I, we can easily check that its
eigenvalues are e2πιθ where θ = j

r for some j = 0, 1, 2, . . . , r − 1. The
algorithm will try to obtain a random eigenvalue. It thus obtains —in binary
expansion— a number of form j

r where j is random. Chances are good that
this j is coprime to r, which means that j

r is an irreducible fraction. Even
knowing only the first 2 logN bits in the binary expansion of jr , the algorithm
can round off to the nearest fraction whose denominator is at most N (this
can be done; see Section ??) and then it reads off r from the denominator.

Next, we describe how to do this estimation of the eigenvalue. The
discussion assumes we know how to produce a quantum register whose state
corresponds to e, a random quantum vector of U ; see Section 21.6.3 for how
to do this (more precisely, something that is “just as good.”)

21.6.1 Phase estimation: the first few bits

Now we describe the basic primitive promised above. We have a reversible
classical circuit U with n inputs/outputs and poly(n) size (U is also thought
of as a quantum circuit). We have an n-bit quantum register whose (quan-
tum) state is given by e, which happens to be an eigenvector of U cor-
responding to an eigenvalue λ = e2πιθ. We wish to apply some quantum
circuit of size poly(n)—which as it turns out will incorporate many copies
of U—on this register, such that we can compute the first 2n bits of of θ.
In this section we only manage to compute the first O(log n) bits; the next
section shows how to finish the job.

First, we notice that applying U on the state e puts it in the state λe.
Thus the register’s state has undergone a phase shift —i.e., multiplication
by a scalar. The algorithm we describe measures this λ, and is therefore
called phase estimation.

Now define a conditional-U circuit (Figure 21.6), whose input is (b, x)
where b is a bit, and cond-U(b, x) = (b, x) if b = 0 and (b, Ux) if b = 1.
We leave it as an exercise how to implement this using U and some Fredkin
gates.

Using a cond-U circuit and two Hadamard gates, we can build a quantum
circuit —the “basic block”— shown in Figure 21.7. When this is applied
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Figure 21.7: Basic building block consists of a Conditional-U and two Hadamard gates.

to a quantum register whose first bit is 0 and the remaining bits are in the
state e, then we can measure the corresponding eigenvalue λ by repeated
measurement of the first output bit.

|0〉 |e〉 H1−→ 1√
2
|0〉 |e〉+ 1√

2
|1〉 |e〉

cond-U−→ 1√
2
|0〉 |e〉+ λ√

2
|1〉 |e〉

H2−→ 1
2
((1 + λ) |0〉 |e〉+ (1− λ) |1〉 |e〉) (8)

Let p(0) denote the probability of observing a 0 in the first bit. Then

p(0) =
∣∣∣∣1 + e2πιθ

2

∣∣∣∣2 =
|1 + cos(2πθ) + ι sin(2πθ)|2

2

=

∣∣1 + 2 cos(2πθ) + cos2(2πθ) + sin2(2πθ)
∣∣

4

=
1 + cos(2πθ)

2
. (9)

(The second line uses the fact that |a+ ιb|2 = a2 + b2).
We will refer to this bit as the phase bit, since repeatedly measuring it

allows us to compute better and better estimates to p(0) and hence θ and
hence λ. Actually, instead of measuring repeatedly we can just design a
quantum circuit to do the repetitions by noticing that the output is just a
scalar multiple of e, namely, λe. If we were to repeat the above calculation
with λe instead of e, we find that the probability of measuring 0 in the
first bit is again given by (9). So we can just feed the new state λe into
another basic block with a fresh phase bit initialized to 0, and so on (see
Figure 21.8). We measure phase bits for all the blocks all at once at the
end. Observing the number of phase bits that are 0 gives us an estimate for
λ.

Are we done? Unfortunately, no. Obtaining an estimate to the first
m bits of λ means approximating it within an additive error 2−m, which
involves about 22m trials (in general estimating the bias of an unknown coin
up to error ε with probability 1−δ requires tossing it O(log(1/δ)/ε2) times).
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Figure 21.8: Repeating the basic experiment to get better estimate of λ.

Thus the iterated construction needs 22m copies of the basic block and the
circuit size is poly(n) only when m = O(log n). Thus simple repetition is a
very inefficient way to obtain accurate information about λ.

21.6.2 Better phase estimation using structure of U

This section gives a more efficient phase estimation technique that works
only for U that have the following property: if U has size poly(n) then
for every k ≥ 1, computing U2k only requires a circuit of size poly(n + k).
Luckily, the U we are interested in does have this property: U2k(x) = a2kx

(mod N), and a2k is computable by circuits of size poly(logN +log k) using
fast exponentiation.

Using this property of U , we can implement a conditional-U2k circuit
using a quantum circuit of size poly(logN + k). The eigenvalues of U2k

are λ2k . If λ = e2πιθ where θ ∈ [0, 1) (see Figure 21.9) then λ2k = e2πιθ2
k
.

Since e2πιθ2
k

is the same complex number as e2πια where α = 2kθ (mod 1),
measuring λ2k actually gives us 2kθ (mod 1). The most significant bit of
2kθ (mod 1) is nothing but the kth bit of θ. Using k = 0, 1, 2, . . . 2 logN we
can obtain2 the first 2 logN bits of θ.

As in Figure 21.8, we can bundle these steps into a single cascading
circuit where the output of the conditional-U2k−1

circuit feeds into the
conditional-U2k circuit. Each circuit has its own set of O(logN) phase
bits; measuring the phase bits of the kth circuit gives an estimate of the kth
bit of θ that is correct with probability at least 1− 1/N . All phase bits are
measured in a single stroke at the end. The union bound implies that the
probability that all phase bits are correct is at least 1− 2 logN/N .

2There is a slight inaccuracy here, since we are blurring the distinction between mea-
suring λ and θ. For example, when θ is very close to 1/2, then e2πιθ ≈ −1. So the complex
number 1 + λ is close 0 and the phase bit almost always comes up 1. Now we cannot tell
whether the binary expansion of θ is more like 0.1000x or 0.0111x, both of which are
close to 1/2. But then the estimation of the 1st and 2nd bits allows us to infer which of
these two cases occurs, and hence the value of the first bit. Thus the correct estimation
procedure involves looking at estimated values of each pair of successive bits.
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Figure 21.9: Eigenvalue λ = e2πιθ in the complex plane.

21.6.3 Uniform superpositions of eigenvectors of U

To finish, we need to show how to put a quantum register into a state
corresponding to a random eigenvector. Actually, we only show how to put
the quantum register into a uniform superposition of eigenvectors of U . This
suffices for our cascading circuit, as we will argue shortly.

First we need to understand what the eigenvectors look like. Recall that{
1, a, a2, . . . , ar−1

}
is a subgroup of Z∗N . Let B be a set of representatives

of all cosets of this subgroup. In other words, for each x ∈ Z∗N there is a
unique b ∈ B and l ∈ {0, 1, . . . , r − 1} such that x = bal (mod N). It is
easily checked that the following is the complete set of eigenvectors, where

ω = e
2πι
r :

∀j ∈ {0, 1, . . . , r − 1} ,∀b ∈ B ej,b =
r−1∑
l=0

ωjl
∣∣∣ bal (mod N)〉 (10)

The eigenvalue associated with this eigenvector is ω−j = e−
2πιj
r .

Fix b and consider the uniform superposition:

1
r

r−1∑
j=0

ej,b =
1
r

r−1∑
j=0

r−1∑
l=0

ωjl
∣∣∣ bal (mod N)〉 (11)

=
1
r

r−1∑
l=0

r−1∑
j=0

ωjl
∣∣∣ bal (mod N)〉. (12)

Separating out the terms for l = 0 and using the formula for sums of geo-
metric series:

=
1
r
(
r−1∑
j=0

|b〉+
r−1∑
l=1

(ωl)r − 1
ωl

∣∣∣ bal (mod N)〉) (13)

since ωr = 1 we obtain

= |b〉 (14)
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�

Thus if we pick an arbitrary b and feed the state |b〉 into the quantum
register, then that can also be viewed as a uniform superposition 1

r

∑
j ej,b.

21.6.4 Uniform superposition suffices

Now we argue that in the above phase estimation based algorithm, a uniform
superposition of eigenvectors is just as good as a single eigenvector.

Fixing b, the initial state of the quantum register is

1
r

∑
j

|0〉 |ej,b 〉,

where 0 denotes the vector of phase bits that is initialized to 0. After
applying the quantum circuit, the final state is

1
r

∑
j

|cj 〉 |ej,b 〉,

where |cj 〉 is a state vector for the phase bits that, when observed, gives the
first 2 logN bits of j/r with probability at least 1 − 1/N . Thus observing
the phase bits gives us whp a random eigenvalue.

21.7 Quantum Computing: a Tour de horizon

Will give 1-para intros to quantum information, quantum crypto, the fact
that there is an oracle for which NP is not in BQP, grover’s algorithm,
models of quantum computation, decoherence and error correction,quantum
interactive proofs.

Exercises

§1 Implement an OR gate using the Fredkin gate.

§2 Verify that the Fredkin gate is a valid quantum gate.

§3 Given any classical circuit computing a function f from n bits to n bits,
describe how to compute the same function with a reversible circuit
that is a constant factor bigger and has no “junk” output bits.

Hint:Useourtransformation,thencopytheoutputtoasafe
place,andthenrunthecircuitinreversetoerasethejunkoutputs.
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§4 Suppose the description of a quantum circuit U is given to you. De-
scribe an implementation of the Conditional-U circuit.

§5 Let N be composite. For a ∈ Z∗N let r = ord(a) be the order of a,
i.e. r is the minimal number such that ar = 1 (mod N). Show that
if a ∈ Z∗N is randomly chosen then with probability at least 1/10 (1)
ord(a) is even and (2) aord(a)/2 6≡ ±1 (mod N).

Hint:usetheChineseremaindertheoremandthefactthatfora
primepthegroupZp∗iscyclic.

§6 Prove Lemma 21.9.

§7 Complete the proof of Lemma 21.10 for the case that r and M are
not coprime. That is, prove that also in this case there exist at least
Ω(r/ log r) values x’s such that 0 ≤ rx (mod M) ≤ r/2 and dM/x e
and r are coprime.

Hint:letd=gcd(r,M),r′=r/dandM′=M/d.Nowusethe
sameargumentasinthecasethatMandrarecoprimetoargue
thatthereexistΩ(

r
dlogr)valuesx∈ZM′satisfyingthiscondition,

andthatifxsatisfiesitthensodoesx+cMforeveryc.
§8 (Uses knowledge of continued fractions) Suppose j, r ≤ N are mutually

coprime and unknown to us. Show that if we know the first 2 logN
bits of j/r then we can recover j, r in polynomial time.

Chapter notes and history

The “meaning” of quantum theory has eluded (or certainly puzzled) most
scientists. (The physicist Penrose [Pen94] has even sought to link human
consciousness to the collapse of the quantum wave function, though this
is controversial.) No one doubts that quantum effects exist at microscopic
scales. The problem lies in explaining why they do not manifest themselves
at the macrosopic level (or at least not to human consciousness). A Scientific
American article by Yam [Yam97] describes various explanations that have
been advanced over the years. The leading theory is decoherence, which
tries to use quantum theory to explain the absence of macroscopic quantum
effects. Researchers are not completely comfortable with this explanation.

The issue is undoubtedly important to quantum computing, which re-
quires hundreds of thousands of particles to stay in quantum superposition
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for large-ish periods of time. Thus far it is an open question whether this is
practically achievable. One theoretical idea is to treat decoherence as a form
of noise, and to build noise-tolerance into the computation —a nontrivial
process. For details of this and many other topics, see the books by Kitaev,
Shen, and Vyalyi [AA02].

Feynman [Fey82] was the first to suggest the possibility that quantum
mechanics might allow Turing Machines more computational power than
classical TMs. In 1985 Deutsch [Deu85] defined a quantum turing ma-
chine, though in retrospect his definition is unsatisfactory. Better defini-
tions then appeared in Deutsch-Josza [DJ92], Bernstein-Vazirani [BV97] and
Yao [Yao93], at which point quantum computation was firmly established
as a field.

The book by Nielsen and Chuang [NC00] gives a comprehensive treat-
ment of quantum computation.

Alternative presentation of Shor’s algorithm.

21.8 Quantum Notations

21.9 Simon’s Algorithm

21.10 Integer factorization using quantum com-
puters.

21.10.1 Reduction to Order Finding

21.10.2 Quantum Fourier Transform over ZM .

The Fourier transform over an Abelian group G is a linear operation that
transforms a |G|-dimensional vector from representation in the standard ba-
sis to a representation in the Fourier basis, which is a different orthonormal
basis. For M = 2m the Fourier over the group ZM (numbers {0, . . . ,M − 1}
with addition modulo M) can be represented as a 2m × 2m unitary matrix.
We’ll now show this matrix can be implemented using O(m2) basic matri-
ces. This means that we can transform a quantum system whose register
is in state f to a system whose register is in the state corresponding to the
Fourier transform f̂ of f . This does not mean that we can compute in O(m2)
the Fourier transform over ZM - indeed this is not sufficient time to even
write the output! Nonetheless, this transformation still turns out to be very
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useful, and is crucial to Shor’s factoring algorithm in a way analogous to the
use of the Hadamard transformation (which is a Fourier transform over the
group {0, 1}n with the operation ⊕) was crucial to Simon’s algorithm.

Fourier transform over ZM . For M = 2m, let ω be a primitive M th root
of unity (e.g., ω = e2πi/M ). A function χ : ZM → C is called a character
of ZM if χ(y + z) = χ(y)χ(z) for every y, z ∈ ZM . ZM has M charac-
ters {χx}x∈ZM where χx(y) = 1√

M
ωxy (the 1√

M
factor is for normalization).

These characters define an orthonormal basis since (denoting by z the com-
plex conjugate of z)

〈χx, χy〉 = 1
M

M−1∑
z=0

ωxzωyz = 1
M

M−1∑
z=0

ω(x−y)z

which is equal to 1 if x = y and to 1
M

1−ω(x−y)M

1−ωx−y = 0 if x 6= y (the latter
equality follows by the formula for the sum of a geometric series and the
fact that ω`M = 1 for every `). The Fourier transform of f : ZM → C is the
representation of f in this basis. For convenience we’ll let f̂(x) denote the
coefficient of χ−x in this representation. Thus f =

∑M−1
x=0 f̂(x)χ−x and so

f̂(x) = 〈f, χ−x〉 = 1√
M

∑M−1
y=0 ωxyf(x). We let FTM (f) denote the vector

(f̂(0), . . . , f̂(M − 1)).
Note that

f̂(x) = 1√
M

∑
y∈ZM ,yeven

f(y)ω−2x(y/2) + ωx 1√
M

∑
y∈ZM ,yodd

f(y)ω2x(y−1)/2

Since ω2 is an M/2th root of unity and ωM/2 = −1 we get that if W is the
M/2 diagonal matrix with diagonal ω0, . . . , ωM/2−1 then

FTM (f)low = FTM/2(feven) +WFTM/2(fodd) (15)

FTM (f)high = FTM/2(feven)−WFTM/2(fodd) (16)

where for an M -dimensional vector v, we denote by veven (resp. vodd) the
M/2-dimensional vector obtained by restricting v to the coordinates whose
indices have least significant bit equal to 0 (resp. 1) and by vlow (resp.
vhigh) the restriction of v to coordinates with most significant bit 0 (resp.
1).

Equations (15) and (16) are the crux of the well known Fast Fourier
Transform (FFT) algorithm that computes the Fourier transform inO(M logM)
(as opposed to the Naive O(M2)) time. We’ll use them for the quantum
Fourier transform algorithm, obtaining the following lemma:
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Lemma 21.9
There’s an O(m2)-step quantum algorithm that transforms a state f =∑

x∈Zm f(x) |x〉 into the state f̂ =
∑

x∈Zm f̂(x) |x〉, where f̂(x) = 1√
M

∑
y∈Zm ω

xyf(x).

Proof: We’ll use the following algorithm:
Quantum Fourier Transform FTM
Initial state: f =

∑
x∈ZM f(x) |x〉

Final state: f̂ =
∑

x∈ZM f̂(x) |x〉.

State Operation
f =

∑
x∈ZM f(x) |x〉

Recursively run FTM/2 on m−1 most
significant bits

(FTM/2feven) |0〉+ (FTM/2fodd) |1〉
If LSB is 1 then compute W on m− 1
most significant bits (see below).

(FTM/2feven) |0〉+ (WFTM/2fodd) |1〉
Apply Hadmard gate H to least sig-
nificant bit.

(FTM/2feven)(|0〉 + |1〉) +
(WWFTM/2fodd)(|0〉 − |1〉) =
(FTM/2feven + FTM/2fodd) |0〉 +
(FTM/2feven −WFTM/2fodd) |1〉

Move LSB to the most significant po-
sition

|0〉(FTM/2feven + FTM/2fodd) +
|1〉(FTM/2feven −WFTM/2fodd) = f̂

The transformation W on m − 1 bits which is |x〉 7→ ωx = ω
∑m−2
i=0 2ixi

(where xi is the ith bit of x) is the composition of W0, . . . ,Wm−2 where Wi

is a one qubit gate mapping |0〉 to |0〉 and |1〉 to ω2i |1〉.
The final state is equal to f̂ by (15) and (16). (We leave verifying this

and the running time to Exercise 6.)
�

21.10.3 The Order-Finding Algorithm.

We’ll now present a quantum algorithm that on input a number A < N ,
finds the order of A modulo N . That is, we’ll find the smallest r such that
Ar = 1 (mod N). Note that using the repeated squaring algorithm, we
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can compute the map |x〉 |0n 〉 7→ |Ax (mod N)〉 |0n 〉 for some n polynomial
in logN . We choose M = 2m such that m is polynomial in logN and
M > 100N2.
Order Finding Algorithm:

Registers x is m bit register (which we think as a number in ZM ) and y
is an n. Initial state of the registers is |0m 〉 |0n 〉.

Step 1 Apply the Fourier transform to the first register to obtain the state
(ignoring normalization factors)

∑
x∈ZM |x〉) |0

n 〉. That is, we obtain
the uniform state in the first register. (Note that we can get essentially
the same result by applying the Hadamard gate to each bit.)

Step 2 Compute the transformation |x〉 |y 〉 7→ |x〉 |y ⊕ (Ax (mod N))〉.
The state will now be

∑
x∈ZM |x〉 |A

x (mod N)〉.

Step 3 Measure the second register to get a value y0. Let x0 be the smallest
number such that Ax0 = y0 (mod N). Then the state will now be∑dM/r e−1

`=0 |x0 + `r 〉 |y0 〉, where r denotes the order of A.

Step 4 Apply the Fourier transform to the first register. The state will be∑
x∈Zn

dM/r e−1∑
`=0

ω(x0+`r)x |x〉

 |y0 〉

Step 5 Measure the first register to obtain a number x ∈ ZM .

Step 6 Find the best rational approximation a/b with a, b coprime to the
fraction x

M such that b < 2M . Check that Ab = A - if so then output b.
(We sketch the classical algorithm to find such approximation below.)

Analysis: the case that r|M

We start by analyzing this algorithm in the (rather unrealistic) case that
M = rc for some integer c. In this case we claim that the value x obtained
in Step 5 will be equal to c′c for random c′ ∈ 0, . . . , r. In particular it will
satisfy xr = 0 (mod M). Since with non-negligible probability c′ and r will
be coprime and hence the reduced version of x/M would be c′/r. Indeed, if
x = c′c then (up to some normalization factor) the absolute value for |x〉’s
coefficient after Step 4 is∣∣∣∣∣

c−1∑
`=0

ω(x0+`r)x

∣∣∣∣∣ = ∣∣∣ωx0c′c
∣∣∣ ∣∣∣∣∣

c∑
`=0

ω(rc)c′`

∣∣∣∣∣ = 1` (17)
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since ωrc = ωM = 1. However, if x 6= 0 (mod c) then since ωr is a cth root
of unity we get that

∑c
`=0]w

r`x = 0 by the formula for sums of geometric
progressions. Thus, such x would be obtained in step 5 with zero probability.

The case that r 6 |M

We’ll now not be able to show that the value x obtained in Step 5 satisfies
xr = 0 (mod M). Indeed, there might not exist such a number. However,
we will show that with Ω(1/ log r) probability, this value will satisfy (1)
0 ≤ xr (mod M) < r/10 and (2) dxr/M e is coprime to r. Thus, we’ll have
that for some c |xr − cM | < r/10, which dividing by rM gives∣∣∣ x

M
− c

r

∣∣∣ < 1
10M

. Since it’s easy to see that for every 0 < α < 1 there’s only one fraction a/b
with a, b coprime and b < N such that |α − a/b| < 1

N2 we’ll get in Step 6
the fraction c/r. We do this by proving the following lemma:

Lemma 21.10
There exist Ω(r/ log r) values x such that:

1. 0 ≤ xr (mod M) < r/10

2. dxr/M e and r are coprime

3. The coefficient of |x〉 in the state of Step 4 is at least Ω( 1√
r
).

Proof: The intuition behind the proof is that we expect xr (mod M) to be
distributed roughly uniformly, and that if xr (mod M) is very small, then
as in (17) the coefficient of |x〉 will be relatively large.

For starters, assume that r is coprime to M . Then, the map x 7→ rx
(mod M) is a permutation of Z∗M and we have a set of at least r/(20 log r)
x’s such that xr (mod M) is a number p between 0 and r/10 that is coprime
to r. For every such x we have that xr + d r/M eM = p which means that
d r/M e can’t have a nontrivial shared factor with r, as otherwise this factor
would be shared with p as well. The case that gcd(r,M) = d for d > 1 is
handled similarly (Exercise 7).

We now prove that if 0 ≤ xr (mod M) < r/10 then the coefficient of |x〉
in the state of Step 4 is at least Ω( 1√

r
). For any such x, the absolute value

of |x〉’s coefficient is up to the normalization equal to:∣∣∣∣∣∣
dM/r e−1∑

`=0

ω`rx

∣∣∣∣∣∣
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Let β = ωrx. If β = 1 then this sum is equal to dM/r e and otherwise
it’s equal to

∣∣∣1−βdM/r e1−β

∣∣∣. This is equal to sin(dM/r eθ)
sin θ , where θ = rx (mod M)

M

is the angle such that β = eiθ (see Figure ?? ). Since 0 < θ < r
10M ,

we get that dM/r eθ ≤ 1/9 and in this range up to a constant we have
that this proportion is again equal to dM/r e. Since the measurement of
Step 3 restricted the space an almost uniform distribution over about M/x
of the x’s and the Fourier transform adds another 1√

M
normalization factor,

it can be shown that the normalization coefficient at this step is at least
1
2

√
r
M

1√
M

=
√
rM and so we’re done. �
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Chapter 22

Logic in complexity theory

Very sketchy

As mentioned in the book’s introduction, complexity theory (indeed, all
of computer science) arose from developments in mathematical logic in the
first half of the century. Mathematical logic continues to exert an influence
today, suggesting terminology and choice of problems (e.g., “boolean sat-
isfiability”) as well as approaches for attacking complexity’s central open
questions. This chapter is an introduction to the basic concepts.

Mathematical logic has also influenced many other areas of computer
science, such as programming languages, program verification, and model
checking. We will not touch upon them, except to note that they supply
interesting examples of hard computational problems —ranging from NP-
complete to EXPSPACE-complete to undecidable.

The rest of the chapter assumes only a nodding familiarity with logic
terminology, which we now recount informally; for details see a logic text.

A logic usually refers to a set of rules about constructing valid sentences.
Here are a few logics we will encounter. Propositional logic concerns sen-
tences such as (p∨¬q)∧ (¬p∨ r) where p, q, r are boolean variables. Recall
that the SAT problem consists of determining the satisfiability of such sen-
tences. In first order logic, we allow relation and function symbols as well
as quantification symbols ∃ and ∀. For instance, the statement ∀xS(x) 6= x
is a first order sentence in which x is quantified universally, S() is a unary
relation symbol and 6= is a binary relation. Such logics are used in well-
known axiomatizations of mathematics, such as Euclidean geometry, Peano
Arithmetic or Zermelo Frankel set theory. Finally, second order logic allows
sentences in which one is allowed quantification over structures, i.e., func-
tions and relations. An example of a second order sentence is ∃S∀xS(x) 6= x,
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where S is a unary relation symbol.
A sentence (or collection of sentences) in a logic has no intrinsic “mean-

ing.” The meaning —including truth or falsehood—can be discussed only
with reference to a structure, which gives a way of interpreting all symbols
in the sentence. To give an example, Peano arithmetic consists of five sen-
tences (“axioms”) in a logic that consists of symbols like S(x), =, + etc. The
standard structure of these sentences is the set of positive integers, with S()
given the intepretation of “successor function,” + given the interpretation
of addition, and so on. A structure is said to be a model for a sentence or a
group of sentences if those sentences are true in that structure.

Finally, a proof system consists of a set of sentences Σ called axioms and
one or more derivation rules for deriving new sentences from the axioms.
We say that sentence σ can be proved from Σ, denoted Σ ` σ, if it can be
derived from Σ using a finite number of applications of the derivation rules.
A proveable sentence is called a theorem.

Note that a theorem is a result of a mechanical (essentially, algorithmic)
process of applying derivation rules to the axioms. There is a related notion
of whether or not σ is logically implied by Σ, denoted Σ |= σ, which means
that every model of Σ is also a model of σ. In other words, there is no
“counterexample model” in which the axioms Σ are true but σ is not. The
two notions are in general different but Gödel in his completeness theorem
for first order theories exhibited a natural set of derivation rules such that
logically implied sentences are exactly the set of theorems. (This result was
a stepping stone to his even more famous incompleteness theorem.)

Later in this chapter we give a complexity-theoretic definition of a proof
system, and introduce the area of proof complexity that studies the size of
the smallest proof of a mathematical statement in a given proof system.

22.1 Logical definitions of complexity classes

Just as Church and others defined computation using logic without refer-
ring to any kind of computing machine, it is possible to give “machineless”
characterizations of many complexity classes using logic. We describe a few
examples below.

22.1.1 Fagin’s definition of NP

In 1974, just as the theory of NP-completeness was coming into its own,
Fagin showed how to define NP using second-order logic. We describe his
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idea using an example.

Example 22.1
(Representing 3-COLOR) We show how to represent the set of 3-colorable
graphs using second order logic.

Let E be a symbol for a binary relation, and C0, C1, C2 be symbols
for unary relations, and φ(E,C0, C1, C2) be a first order formula that is a
conjunction of the following formulae where i + 1, i + 2 are meant to be
understood modulo 3:

∀u, v E(u, v) = E(v, u) (1)
∀u ∧i=1,2,3 (Ci(u)⇒ ¬(Ci+1(u) ∨ Ci+2(u)) (2)
∀uCi(u) ∨ Ci+1(u) ∨ Ci+2(u) (3)
∀u, v E(u, v)⇒ ∧i=1,2,3(Ci(u)⇒ ¬Ci(v)) (4)

What set of E’s defined on a finite set satisfy ∃C0∃C1∃C2φ(E,C0, C1, C2)?
If E is defined on a universe of size n (i.e., u, v take values in this universe)
then (1) says that E is symmetric, i.e., it may be viewed as the edge set of an
undirected graph on n vertices. Conditions (2) and (3) say that C0, C1, C2

partition the vertices into three classes. Finally, condition (4) says that the
partition is a valid coloring.

Now we can sketch the general result. To represent a general NP prob-
lem, there is a unary relation symbol that represents the input (in the above
case, E). The witness is a tableau (see Chapter 2) of an accepting compu-
tation. If the tableau has size nk, the witness can be represented by a k-ary
relation (in the above case the witness is a 3-coloring, which has represen-
tation size 3n and hence was represented using 3 unary relations). The first
order formula uses the Cook-Levin observation that the tableau is correct
iff it is correct in all 2× 3 “windows”.

The formal statement of Fagin’s theorem is as follows; the proof is left
as an exercise.

Theorem 22.2 (Fagin)
To be written.
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22.1.2 MAX-SNP

22.2 Proof complexity as an approach to NP ver-
sus coNP

Proof complexity tries to study the size of the smallest proof of a statement
in a given proof system. First, we need a formal definition of what a proof
system is. The following definition due to Cook and Reckow focuses atten-
tion on the intuitive property that a mathematical proof is “easy to check.”

Definition 22.3
A proof system consists of a polynomial-time Turing machine M . A state-
ment T is said to be a theorem of this proof system iff there is a string
π ∈ {0, 1}∗ such that M accepts (T, π).

If T is a theorem of proof system M , then the proof complexity of T with
respect to M is the minimun k such that there is some π ∈ {0, 1}k for which
M accepts (T, π).

Note that the definition of theoremhood ignores the issue of the length
of the proof, and insists only that the M ’s running time is polynomial in the
input length |T |+ |π|. The following is an easy consequence of the definition
and the motivation for much of the field of proof complexity.

Theorem 22.4
A proof system M in which SAT has polynomial proof complexity exists iff
NP = coNP.

Many branches of mathematics, including logic, algebra, geometry, etc.
give rise to proof systems. Algorithms for SAT and automated theorem
provers (popular in some areas of computer science) also may be viewed as
proof systems.

22.2.1 Resolution

This concerns

22.2.2 Frege Systems

22.2.3 Polynomial calculus

22.3 Is P 6= NP unproveable?
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Why are circuit lowerbounds
so difficult?

Why have we not been able to prove strong lower bounds for circuits? In
1994 Razborov and Rudich formalized the notion of a “natural mathematical
proof,” for a circuit lowerbound. They pointed out that current lowerbound
arguments involve “natural” mathematical proofs, and show that obtaining
strong lowerbound with such techniques would violate a widely believed
cryptographic assumption (namely, that factoring integers requires time 2n

ε

for some fixed ε > 0). Thus presumably we need to develop mathematical
arguments that are not natural. This result may be viewed as a modern
analogue of the Baker, Gill, Solovay result from the 1970s (see Chapter ??)
that showed that diagonalization alone cannot resolve P versus NP and
other questions.

Basically, a natural technique is one that proves a lowerbound for a
random function and is “constructive.” We formalize “constructive” later
but first consider why lowerbound proofs may need to work for random
functions.

23.1 Formal Complexity Measures

Let us imagine at a high level how one might approach the project of prov-
ing circuit lower bounds. For concreteness, focus on formulas, which are
boolean circuits where gates have indegree 2 and outdegree 1. It is tempt-
ing to use some kind of induction. Suppose we have a function like the
one in Figure 23.1 that we believe to be “complicated.” Since the function
computed at the output is “complicated”, intuition says that at least one
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Figure unavailable in pdf file.

Figure 23.1: A formula for a hard function.

of the functions on the incoming edges to the output gate should also be
“pretty complicated” (after all those two functions can be combined with a
single gate to produce a “complicated” function). Now we try to formalize
this intuition, and point out why one ends up proving a lowerbound on the
formula complexity of random functions.

The most obvious way to formalize a “complicatedness” is as a function µ
that maps every boolean function on {0, 1}n to a nonnegative integer. (The
input to µ is the truth table of the function.) We say that µ is a formal
complexity measure if it satisfies the following properties: First, the measure
is low for trivial functions: µ(xi) ≤ 1 and µ(x̄i) ≤ 1 for all i. Second, we
require that

• µ(f ∧ g) ≤ µ(f) + µ(g) for all f, g; and

• µ(f ∨ g) ≤ µ(f) + µ(g) for all f, g.

For instance, the following function ρ is trivially a formal complexity mea-
sure

ρ(f) = 1 + the smallest formula size for f. (1)

In fact, it is easy to prove the following by induction.

Theorem 23.1
If µ is any formal complexity measure, then µ(f) is a lowerbound on the
formula complexity of f .

Thus to formalize the inductive approach outlined earlier, it suffices to de-
fine a measure µ such that µ(CLIQUE) is high (say superpolynomial). For
example, one could try “fraction of inputs for which the function agrees with
the CLIQUE function” or some suitably modified version of this. In general,
one imagines that defining a measure that lets us prove a good lowerbound
for CLIQUE would involve some deep observation about the CLIQUE func-
tion. The next lemma seems to show, however, that even though all we care
about is the CLIQUE function, our lowerbound necessarily must reason
about random functions.
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Lemma 23.2
Suppose µ is a formal complexity measure and there exists a function f :
{0, 1}n → {0, 1} such that µ(f) ≥ c for some large number c. Then for at
least 1/4 of all functions g : {0, 1}n → {0, 1} we must have µ(g) ≥ c/4.

Proof: Let g : {0, 1}n → {0, 1} be any function. Write f as f = h⊕g where
h = f ⊕ g. So f = (h̄ ∧ g) ∨ (h ∧ ḡ) and µ(f) ≤ µ(g) + µ(g) + µ(h) + µ(h).

Now suppose for contradiction’s sake that {g : µ(g) < c/4} contains
more than 3/4 of all boolean functions on n-bit inputs. If we pick the above
function g randomly, then g, h, h are also random (though not independent).
Using the trivial union bound we have Pr[All of h, h̄, g, ḡ have µ < c/4] > 0.
Hence µ(f) < c, which contradicts the assumption. Thus the lemma is
proved. �

In fact, the following stronger theorem holds:

Theorem 23.3
If µ(f) > c then for all ε > 0 and for at least 1− ε of all functions g we have
that,

µ(g) ≥ Ω
(

c

(n+ log(1/ε))2

)
.

The idea behind the proof of the theorem is to write f as the boolean
combination of a small number of functions and then proceed similarly as
in the proof of the lemma.

23.2 Natural Properties

Moving the above discussion forward, we think of a lowerbound proof as
identifying some property of “hard” functions that is not shared by “easy”
functions.
Definition 23.4
A property Φ is a map from boolean functions to {0, 1}. A P-natural property
useful against P/poly is a property Φ such that:

1. Φ(f) = 1 for at least a 1/2n fraction of all boolean functions on n bits
(recall that there are 22n functions on n bits);

2. Φ(f) = 1 implies that f 6∈ P/poly (or more concretely, that f has
circuit complexity at least nlogn, say); and

3. Φ is computable on n-bit functions in 2O(n) time (i.e., polynomial in
the length of the function’s truth table).
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The term P-natural refers to requirement (3). The property is useful against
P/poly because of requirement (2). (Note that this requirement also ensures
that Φ is not trivial, since it must be 0 for functions in P/poly.) Requirement
(1) corresponds to our above intuition that circuit lowerbounds should prove
the hardness of a random function.

By suitably modifying (2) and (3) we can analogously define, for any
complexity class C1 and circuit class C2, a C1-natural property that is useful
against circuit class C2. We emphasize that when the property is computed,
the input is the truth table of a function, whose size is 2n. Thus a P-
natural property is computed in time 2cn for some constant c > 1 and a
PSPACE-natural property is computed in space 2cn.

Example 23.5
The result that PARITY is not computable in AC0 (Section ??) involved
the following steps. (a) Show that every AC0 circuit can be simplified by
restricting at most n − nε input bits so that it then becomes a constant
function. (b) Show that the PARITY function does not have this property.

Thus the natural property lurking in this proof is the following: Φ(f) = 1
iff for every way of assigning values to at most n−nε input bits the function
does not become a constant function. Clearly, if Φ(f) = 1 then f 6∈ AC0, so
f is useful against AC0. Furthermore, Φ can be computed in 2O(n) time —
just enumerate all possible choices for the subsets of variables and all ways
of setting them to 0/1. This running time is polynomial in the length of
the truth-table, so Φ is P-natural. Finally, requirement (1) is also met since
almost all boolean functions satisfy Φ(f) = 1 (easy to check using a simple
probability calculation; left as exercise).

Thinking further, we see that Φ is a AC0-natural property that is useful
against AC0.

Example 23.6
The lowerbound for ACC0 circuits described in Section ?? is not natural
per se. Razborov and Rudich show how to naturalize the proof, in other
words change it —while retaining its essence—so that it does use a natural
property. Recall that every boolean function on n bits can be represented by
a multilinear polynomial over GF (3). The space of all n-variate multilinear
polynomials forms a vector space, whose dimension is N = 2n. Then all
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multilinear polynomials in n variables of total degree less than n/2 form
a subspace of dimension N/2 (this assumes n is even), and we denote this
space by L. For a boolean function f let f̂ be a multilinear polynomial over
GF (3) that represents f . Then define Φ(F ) = 1 iff the dimension of the
space {

f̂ l1 + l2 : l1, l2 ∈ L
}

is at least 3N/4. It can be checked that Φ is 1 for the parity function, as
well as for most random functions. Furthermore, rank computations can
be done in NC2 so it is NC2-natural. The technique of Section ?? can be
used to show that if Φ(f) = 1 then f 6∈ ACC0[3]; thus Φ is useful against
ACC0[3].

Example 23.7
The lowerbound for monotone circuits in Section ?? does use constructive
methods, but it is challenging to show that it applies to a random function
since a random function is not monotone. Nobody has formulated a good
definition of a random monotone function.

In the definition of natural proofs, requirement (3) is the most contro-
versial in that there is no inherent reason why mathematical proofs should
go hand in hand with efficient algorithms.

Remark 23.8
“Constructive mathematics” was a movement within mathematics that re-
jected any proofs of existence that did not yield an algorithm for construct-
ing the object. Today this viewpoint is considered quaint; nonconstructive
proofs are integral to mathematics.

In our context, “constructive” has a stricter meaning, namely the proof
has to yield a polynomial-time algorithm. Many proofs that would be “con-
structive” for a mathematician would be nonconstructive under our defini-
tion. Surprisingly, even with this stricter definition, proofs in combinatorial
mathematics are usually constructive, and —as Razborov and Rudich are
pointing out —the same is true of current circuit lowerbounds as well.

In a few cases, combinatorial results initially proved “nonconstructively”
later turned out to have constructive proofs: a famous example is the Lovàsz
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Local Lemma (discovered in 1974; algorithmic version is in Beck [Bec91]).
The same is true for several circuit lowerbounds—cf. the “naturalized” ver-
sion of the Razborov-Smolensky lowerbound for ACC0[q] mentioned earlier,
and Raz’s proof [Raz00] of the Babai-Nisan-Szegedy [BNS] lowerbound on
multiparty communication complexity.

23.3 Limitations of Natural Proofs

The following theorem by Razborov and Rudich explains why we have not
been able to use the same techniques to obtain an upper bound on P/poly:
constructing a P-natural property useful against P/poly violates widely be-
lieved cryptographic assumptions.

Theorem 23.9 (Razborov, Rudich [RR97])
Suppose a P-natural property Φ exists that is useful against P/poly. Then
there are no strong pseudorandom function generators. In particular, FAC-
TORING and DISCRETE LOG can be solved in less than 2n

ε
time for all

ε > 0.

Pseudorandom function generators were defined in Section ??. The def-
inition used a distinguisher polynomial-time machine that is given oracle
access to either a truly random function or a function from the pseudoran-
dom family. The family is termed pseudorandom if the distinguisher cannot
distinguish between the two oracles. Now we tailor that more general def-
inition for our narrow purposes in this section. We allow the distinguisher
2O(n) time and even allow it to examine the truth table of the function!
This is without loss of generality since in 2O(n) time the distinguisher could
construct the truth table using 2n queries to the oracle.

Definition 23.10
A pseudorandom function generator is a function f(k, x) computable in poly-
nomial time where the input x has n bits and the “key” k has nc bits, where
c > 2 is a fixed constant. Denoting by Fn the function obtained by uniformly
selecting k ∈ {0, 1}nc and setting Fn to f(k, ·), we have the property that
the function ensemble F = {Fn}∞n=1 is “pseudorandom,” namely, for each
Turing machine M running in time 2O(n), and for all sufficiently large n,

|Pr[M(Fn) = 1]− Pr[M(Hn) = 1]| < 1
2n2 ,

where Hn is a random function on {0, 1}n.
We will denote f(k, ·) by fk.
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Figure unavailable in pdf file.

Figure 23.2: Constructing a pseudorandom function generator from a pseudorandom
generator.

Intuitively, the above definition says that if f is a pseudorandom function
generator, then for a random k, the probability is high that fk “looks like a
random function” to all Turing machines running in time 2O(n). Note that
fk cannot look random to machines that run in 2O(nc) time since they can
just guess the key k. Thus restricting the running time to 2O(n) (or to some
other fixed exponential function such as 2O(n2)) is crucial.

Recall that Section ?? described the Goldreich-Goldwasser-Micali con-
struction of pseudorandom function generators f(k, x) using a pseudoran-
dom generator g that stretches nc random bits to 2nc pseudorandom (also
see Figure 23.2): Let g0(k) and g1(k) denote, respectively, the first and last
nc bits of g(k). Then the following function is a pseudorandom function
generator, where MSB(x) refers to the first bit of a string x:

f(k, x) = MSB(gxn ◦ gxn−1 ◦ · · · ◦ gx2 ◦ gx1(k)).

The exercises in Chapter 10 explored the security of this construction as
a function of the security parameter of g; basically, the two are essentially
the same. By the Goldreich-Levin theorem of Section ??, a pseudorandom
generator with such a high security parameter exists if a oneway permutation
exists and some ε > 0, such that every 2n

ε
time algorithm has inversion prob-

ability less than 2−n
ε
. The DISCRETE LOG function —a permutation— is

conjectured to satisfy this property. As mentioned in Chapter 10, researchers
believe that there is a small ε > 0 such that the worst-case complexity of
DISCRETE LOG is 2n

ε
, which by random self-reducibility also implies the

hardness of the average case. (One can also obtain pseudorandom generators
using FACTORING, versions of which are also believed to be just as hard
as DISCRETE LOG.) If this belief is correct, then pseudorandom function
generators exist as outlined above. (Exercise.)

Now we can prove the above theorem.

Theorem 23.9: Suppose the property Φ exists, and f is a pseudorandom
function generator. We show that a Turing machine can use Φ to distinguish
fk from a random function. First note that fk ∈ P/poly for every k (just
hardwire k into the circuit for fk) so the contrapositive of property (2)
implies that Φ(fk) = 0. In addition, property (1) implies that PrHn [Φ(Hn) =
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1] ≥ 1/2n. Hence,

Pr
Hn

[Φ(Hn)]− Pr
k∈{0,1}nc

[Φ(fk)] ≥ 1/2n,

and thus Φ is a distinguisher against f . �

23.4 My personal view

Discouraged by the Razborov-Rudich result, researchers (myself included)
hardly ever work on circuit lowerbounds. Lately, I have begun to think
this reaction was extreme. I still agree that a circuit lowerbound for say
CLIQUE, if and when we prove it, will very likely apply to random functions
as well. Thus the way to get around the Razborov-Rudich observation is to
define properties that are not P-natural; in other words, are nonconstructive.
I feel that this need not be such an insurmountable barrier since a host of
mathematical results are nonconstructive.

Concretely, consider the question of separating NEXP from ACC0, one
of the (admittedly not very ambitious) frontiers of circuit complexity out-
lined in Chapter 13. As observed there, NEXP 6= ACC0 will follow if we
can improve the Babai-Nisan-Szegedy lowerbound of Ω(n/2k) for k-party
communication complexity to Ω(n/poly(k)) for some function in NEXP.
One line of attack is to lowerbound the discrepancy of all large cylinder
intersections in the truth table, as we saw in Raz’s proof of the BNS lower-
bound1. (In other words, the “unnatural” property we are defining is Φ
where Φ(f) = 1 iff f has high discrepancy and thus high multiparty com-
munication complexity.) For a long time, I found this question intimidating
because the problem of computing the discrepancy given the truth table
of the function is coNP-hard (even for k = 2). This seemed to suggest
that a proof that the discrepancy is high for an explicit function (which
presumably will also show that it is high for random functions) must have
a nonconstructive nature, and hence will be very difficult. Lately, I have
begun to suspect this intuition.

A relevant example is Lovàsz’s lowerbound of the chromatic number of
the Kneser graph [Lov78]. Lowerbounding the chromatic number is coNP-
complete in general. Lovàsz gives a topological proof (using the famous
Borsuk-Ulam fixed point theorem) that determines the chromatic number

1Interestingly, Raz discovered this naturalization of the BNS proof after being briefly
hopeful that the original BNS proof—which is not natural— may allow a way around the
Razborov-Rudich result.
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of the Kneser graph exactly. From his proof one can indeed obtain an
algorithm for solving chromatic number on all graphs([MZ02]) —but it runs
in PSPACE for general graphs! So if this were a circuit lowerbound we
could call it PSPACE-natural, and thus “nonconstructive.” Nevertheless,
Lovàsz’s reasoning for the particular case of the Kneser graph is not overly
complicated because the graph is highly symmetrical. This suggests we
should not blindly trust the intuition that “nonconstructive ≡ difficult.”

I fervently hope that the next generation of researchers will view the
Razborov-Rudich theorem as a guide rather than as a big obstacle!

Exercises

§1 Prove Theorem 23.3.

§2 Prove that a random function satisfies Φ(f) = 1 with high probability,
where Φ is the property defined in Example 23.5.

§3 Show that if the hardness assumption for discrete log is true, then
pseudorandom function generators as defined in this chapter exist.

§4 Prove Wigderson’s observation: P-natural properties cannot prove
that DISCRETE LOG requires circuits of 2n

ε
size.

Hint:IfDISCRETELOGishardonworst-caseinputsthenitis
hardonmostinputs,andthenitcanbeusedtoconstructpseudo-
randomfunctions.

§5 (Razborov [Raz92]) A submodular complexity measure is a complexity
measure that satisfies µ(f∨g)+µ(f∧g) ≤ µ(f)+µ(g) for all functions
f, g. Show that for every n-bit function fn, such a measure satisfies
µ(fn) = O(n).

Hint:Itsufficestoprovethiswhenfnisarandomfunction.Use
inductiononthenumberofvariables,andthefactthatbothfn

andfnarerandomfunctions.

Chapter notes and history

The observation that circuit lowerbounds may unwittingly end up reasoning
about random functions first appears in Razborov [Raz89]’s result about the
limitations of the method of approximation.

Web draft 2006-09-28 18:09



DRAFT

514 23.4. MY PERSONAL VIEW

We did not cover the full spectrum of ideas in the Razborov-Rudich
paper [RR97], where it is observed that candidate pseudorandom function
generators exist even in the class TC0, which lies between ACC0 and NC1.
Thus natural proofs will probably not allow us to separate even TC0 from
P.

Razborov’s observation about submodular measures in Problem 5 is im-
portant because many existing approaches for formula complexity use sub-
modular measures; thus they will fail to even prove superlinear lowerbounds.

In contrast with my limited optimism, Razborov himself expresses (in the
introduction to [Raz03]) a view that the obstacle posed by the natural proofs
observation is very serious. He observes that existing lowerbound approaches
use weak theories of arithmetic such as Bounded Arithmetic. He conjectures
that any circuit lowerbound attempt in such a logical system must be natural
(and hence unlikely to work). But as I mentioned, several theorems even in
discrete mathematics use reasoning (e.g., fixed point theorems like Borsuk-
Ulam) that does not seem to be formalizable in Bounded Arithmetic. Thus
is my reason for optimism.

However, somen other researchers are far more pessimistic: they fear that
P versus NP may be independent of mathematics (say, of Zermelo-Fraenkel
set theory). Razborov says that he has no intuition about this.
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Appendix A

Mathematical Background.

This appendix reviews the mathematical notions used in this book. However,
most of these are only used in few places, and so the reader might want to
only quickly review the section on probability, and come back to the other
sections as needed. In particular, apart from probability, the first part of the
book essentially requires only comfort with mathematical proofs and some
very basic notions of discrete math. A gentle introduction to these notions
appears in Chapter 0 of Sipser’s book [SIP96].

The topics described in the appendix are covered in greater depth in
many places. The lecture notes by Lehman and Leighton [LL06] cover the
majority of the math topics needed for this book (and some more). The
books of Mitzenmacher and Upfal [MU05] and Prabhakar and Raghavan
[?] cover both algorithmic reasoning and probability. For more insight on
discrete probability, see the book by Alon and Spencer [AS00]. A fuller
coverage of algorithms appears in the recent book of Kleinberg and Tardos
[KT06] or the earlier text of Cormen at al [CLRS01]. This book does not
require prior knowledge of computability and automata theory, but some
basic familiarity with that theory could be useful: see Sipser’s book [SIP96]
for an excellent introduction.

A.1 Sets, Functions, Pairs, Strings, Graphs, Logic.

A set contains a finite or infinite number of elements, without repetition
or respect to order, for example {2, 17, 5}, N = {1, 2, 3, . . .} (the set of
natural numbers), [n] = {1, 2, . . . , n} (the set of natural numbers from 1 ro
n), R (the set of real numbers). For a finite set A, we denote by |A| the
number of elements in A. Some operations on sets are: (1) union: A∪B =
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{x : x ∈ A or x ∈ B}, (2) intersection : A ∩ B = {x : x ∈ A and x ∈ B},
and (3) substraction: A \B = {x : x ∈ A and x 6∈ B}.

We say that f is a function from a set A to B, denoted by f : A→ B, if
it maps any element of A into an element of B. If B and A are finite, then
the number of possible functions from A to B is |B||A|. We say that f is one
to one if for every x,w ∈ A with x 6= w, f(x) 6= f(w). If A,B are finite, the
existence of such a function implies that |A| ≤ |B|. We say that f is onto
if for every y ∈ B there exists x ∈ A such that f(x) = y. If A,B are finite,
the existence of such a function implies that |A| ≥ |B|. We say that f is a
permutation if it is both one-to-one and onto. For finite A,B, the existence
of a permutation from A to B implies that |A| = |B|.

If A,B are sets, then the A×B denotes the set of all ordered pairs 〈a, b〉
with a ∈ A, b ∈ B. Note that if A,B are finite then |A×B| = |A| · |B|. We
can define similarly A×B ×C to be the set of ordered triples 〈a, b, c〉 with
a ∈ A, b ∈ B, c ∈ C. For n ∈ N, we denote by An the set A×A× · · · ×A (n
times). We will often use the set {0, 1}n, consisting of all length-n sequences
of bits (i.e., length n strings), and the set {0, 1}∗ = ∪n≥0 {0, 1}n ({0, 1}0 has
a single element: a binary string of length zero, which we call the empty
word and denote by ε).

A graph G consists of a set V of vertices (which we often assume is
equal to the set [n] = {1, . . . , n} for some n ∈ N) and a set E of edges,
which consists of unordered pairs (i.e., size two subsets) of elements in V .
We denote the edge {u, v} of the graph by u v. For v ∈ V , the neighbors of
v are all the vertices u ∈ V such that u v ∈ E. In a directed graph, the edges
consist of ordered pairs of vertices, to stress this we sometimes denote the
edge 〈u, v〉 in a directed graph by −→u v. One can represent an n-vertex graph
G by its adjacency matrix which is an n×n matrix A such that Ai,j is equal
to 1 if the edge

−→
i j is present in G ith and is equal to 0 otherwise. One can

think of an undirected graph as a directed graph G that satisfies that for
every u, v, G contains the edge −→u v if and only if it contains the edge −→v u.
Hence, one can represent an undirected graph by an adjecancy matrix that
is symmetric (Ai,j = Aj,i for every i, j ∈ [n]).

A Boolean variable is a variable that can be either True or False
(we sometimes identify True with 1 and False with 0). We can com-
bine variables via the logical operations AND (∧), OR (∨) and NOT (¬,
sometimes also denoted by an overline), to obtain Boolean formulae. For
example, the following is a Boolean formulae on the variables u1, u2, u3:
(u1 ∧ u2) ∨ ¬(u3 ∧ u1). The definitions of the operations are the usual:
a ∧ b = True if a = True and b = True and is equal to False oth-
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erwise; a = ¬a = True if a = False and is equal to False otherwise;
a ∨ b = ¬(a ∨ b). If ϕ is a formulae in n variables u1, . . . , un, then for any
assignment of values u ∈ {False,True}n (or equivalently, {0, 1}n), we de-
note by ϕ(u) the value of ϕ when its variables are assigned the values in u.
We say that ϕ is satisfiable if there exists a u such that ϕ(u) = True.

We will often use the quantifiers ∀ (for all) and ∃ (exists). That is, if
ϕ is a condition that can be True or False depending on the value of a
variable x, then we write ∀xϕ(x) to denote the statement that ϕ is True for
every possible value that can be assigned to x. If A is a set then we write
∀x∈Aϕ(x) to denote the statement that ϕ is True for every assignment for
x from the set A. The quantifier ∃ is defined similarly. Formally, we say
that ∃xϕ(x) holds if and only if ¬(∀x¬ϕ(x)) holds.

A.2 Probability theory

A finite probability space is a finite set Ω = {ω1, . . . , ωN} along with a set
of numbers p1, . . . , pN ∈ [0, 1] such that

∑N
i=1 pi = 1. A random element is

selected from this space by choosing ωi with probability pi. If x is chosen
from the sample space Ω then we denote this by x ∈R Ω. If no distribution
is specified then we use the uniform distribution over the elements of Ω (i.e.,
pi = 1

N for every i).
An event over the space Ω is a subset A ⊆ Ω and the probability that A

occurs, denoted by Pr[A], is equal to
∑

i:ωi∈A pi. To give an example, the
probability space could be that of all 2n possible outcomes of n tosses of a
fair coin (i.e., Ω = {0, 1}n and pi = 2−n for every i ∈ [2n]) and the event
A can be that the number of coins that come up “heads” (or, equivalently,
1) is even. In this case, Pr[A] = 1/2 (exercise). The following simple bound
—called the union bound—is often used in the book. For every set of events
A1, A2, . . . , An,

Pr[∪ni=1Ai] ≤
n∑
i=1

Pr[Ai]. (1)

Inclusion exclusion principle. The union bound is a special case of a
more general principle. Indeed, note that if the sets A1, . . . , An are not dis-
joint then the probability of ∪iAi could be smaller than

∑
i Pr[Ai] since we

are overcounting elements that appear in more than one set. We can correct
this by substracting

∑
i<j Pr[Ai ∩Aj ] but then we might be undercounting,

since we subtracted elements that appear in at least 3 sets too many times.
Continuing this process we get
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Claim A.1 (Inclusion-Exclusion principle)
For every A1, . . . , An,

Pr[∪ni=1Ai] =
n∑
i=1

Pr[Ai]−
∑

1≤i<j≤n
Pr[Ai∩Aj ]+· · ·+(−1)n−1 Pr[A1∩· · ·∩An] .

Moreover, this is an alternating sum which means that if we take only the
first k summands of the right hand side, then this upperbounds the left-hand
side if k is odd, and lowerbounds it if k is even.

We sometimes use the following corollary of this claim:
Claim A.2
For every events A1, . . . , An,

Pr[∪ni=1Ai] ≥
n∑
i=1

Pr[Ai]−
∑

1≤i<j≤n
Pr[Ai ∩Aj ]

Random subsum principle. The following fact is used often in the book:

Claim A.3 (The random subsum principle)
For x, y ∈ {0, 1}n, denote x � y =

∑n
i=1 xiyi (mod 2) (that is, x � y is

equal to 1 if the number of i’s such that xi = yi = 1 is odd and equal to 0
otherwise). Then for every y 6= 0n,

Pr
x∈R{0,1}n

[x� y = 1] = 1
2

Proof: Suppose that yj is nonzero. We can think of choosing x as follows:
first choose all the coordinates of x other than the jth and only choose the
jth coordinate last. After we choose all the coordinates of x other than the
jth, the value

∑
i:i6=j xiyi (mod 2) is fixed to be some c ∈ {0, 1}. Regardless

of what c is, with probability 1/2 we choose xj = 0, in which case x� y = c
and with probability 1/2 we choose xj = 1, in which case x� y = 1− c. We
see that in any case x

∏
y will be equal to 1 with probability 1/2. �

A.2.1 Random variables and expectations.

A random variable is a mapping from a probability space to R. For example,
if Ω is as above, the set of all possible outcomes of n tosses of a fair coin,
then we can denote by X the number of coins that came up heads.

The expectation of a random variable X, denoted by E[X], is its weighted
average. That is, E[X] =

∑N
i=1 piX(ωi). The following simple claim follows

from the definition:
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Claim A.4 (Linearity of expectation)
For X,Y random variables over a space Ω, denote by X + Y the random
variable that maps ω to X(ω) + Y (ω). Then,

E[X + Y ] = E[X] + E[Y ]

This claims implies that the random variable X from the example above
has expectation n/2. Indeed X =

∑n
i=1Xi where Xi is equal to 1 if the ith

coins came up heads and is equal to 0 otherwise. But clearly, E[Xi] = 1/2
for every i.

For a real number α and a random variable X, we define αX to be the
random variable mapping ω to α ·X(ω). Note that E[αX] = αE[X].

A.2.2 The averaging argument

We list various versions of the “averaging argument.” Sometimes we give
two versions of the same result, one as a fact about numbers and one as a
fact about probability spaces.

Lemma A.5
If a1, a2, . . . , an are some numbers whose average is c then some ai ≥ c.

Lemma A.6 (“The Probabilistic Method”)
If X is a random variable which takes values from a finite set and E[X] = µ
then the event “X ≥ µ” has nonzero probability.

Lemma A.7
If a1, a2, . . . , an ≥ 0 are numbers whose average is c then the fraction of ai’s
that are greater than (resp., at least) kc is less than (resp, at most) 1/k.

Lemma A.8 (“Markov’s inequality”)
Any non-negative random variable X satisfies

Pr (X ≥ kE[X]) ≤ 1
k
.

Corollary A.9
If a1, a2, . . . , an ∈ [0, 1] are numbers whose average is 1 − γ then at least
1−√γ fraction of them are at least 1−√γ.

Can we give any meaningful upperbound on Pr[X < c · E[X]] where
c < 1? Yes, if X is bounded.
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Lemma A.10
If a1, a2, . . . , an are numbers in the interval [0, 1] whose average is ρ then at
least ρ/2 of the ai’s are at least as large as ρ/2.

Proof: Let γ be the fraction of i’s such that ai ≥ ρ/2. Then γ+(1−γ)ρ/2
must be at least ρ/2, so γ ≥ ρ/2. � More generally, we have

Lemma A.11
If X ∈ [0, 1] and E[X] = µ then for any c < 1 we have

Pr[X ≤ cµ] ≤ 1− µ
1− cµ

.

Example A.12
Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

A.2.3 Conditional probability and independence

If we already know that an event B happened, this reduces the space from
Ω to Ω∩B, where we need to scale the probabilities by 1/Pr[B] so they will
sum up to one. Thus, the probability of an event A conditioned on an event
B, denoted Pr[A|B], is equal to Pr[A ∩B]/Pr[B] (where we always assume
that B has positive probability).

We say that two events A,B are independent if Pr[A∩B] = Pr[A] Pr[B].
Note that this implies that Pr[A|B] = Pr[A] and Pr[B|A] = Pr[B]. We say
that a set of events A1, . . . , An are mutually independent if for every subset
S ⊂ [n],

Pr[∩i∈SAi] =
∏
i∈S

Pr[Ai] . (2)

We say that A1, . . . , An are k-wise independent if (2) holds for every S ⊆ [n]
with |S| ≤ k.

We say that two random variables X,Y are independent if for every
x, y ∈ R, the events {X = x} and {Y = y} are independent. We generalize
similarly the definition of mutual independence and k-wise independence to
sets of random variables X1, . . . , Xn. We have the following claim:
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Claim A.13
If X1, . . . , Xn are mutually independent then

E[X1 · · ·Xn] =
n∏
i=1

E[Xi]

Proof:

E[X1 · · ·Xn] =
∑
x

xPr[X1 · · ·Xn = x] =∑
x1,...,xn

x1 · · ·xn Pr[X1 = x1 and X2 = x2 · · · and Xn = xn] = (by independence)∑
x1,...,xn

x1 · · ·xn Pr[X1 = x1] · · ·Pr[Xn = xn] =

(
∑
x1

x1 Pr[X1 = x1])(
∑
x2

x2 Pr[X2 = x2]) · · · (
∑
xn

xn Pr[Xn = xn]) =
n∏
i=1

E[Xi]

where the sums above are over all the possible real numbers that can be
obtained by applying the random variables or their products to the finite
set Ω. �

A.2.4 Deviation upperbounds

Under various conditions, one can give upperbounds on the probability of a
random variable “straying too far” from its expectation. These upperbounds
are usually derived by clever use of Markov’s inequality.

The variance of a random variable X is defined to be Var[X] = E[(X −
E(X))2]. Note that since it is the expectation of a non-negative random
variable, Var[X] is always non-negative. Also, using linearity of expectation,
we can derive that Var[X] = E[X2] − (E[X])2. The standard deviation of a
variable X is defined to be

√
Var[X].

The first bound is Chebyshev’s inequality, useful when only the variance
is known.

Lemma A.14 (Chebyshev inequality)
If X is a random variable with standard deviation σ, then for every k > 0,

Pr[|X − E[X]| > kσ] ≤ 1/k2
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Proof: Apply Markov’s inequality to the random variable (X − E[X])2,
noting that by definition of variance, E[(X − E[X])2] = σ2. �

Chebyshev’s inequality is often useful in the case that X is equal to∑n
i=1Xi for pairwise independent random variables X1, . . . , Xn. This is

because of the following claim, that is left as an exercise:
Claim A.15
If X1, . . . , Xn are pairwise independent then

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi)

The next inequality has many names, and is widely known in theoretical
computer science as the Chernoff bound. It considers scenarios of the fol-
lowing type. Suppose we toss a fair coin n times. The expected number of
heads is n/2. How tightly is this number concentrated? Should we be very
surprised if after 1000 tosses we have 625 heads? The bound we present is
slightly more general, since it concerns n different coin tosses of possibly dif-
ferent expectations (the expectation of a coin is the probability of obtaining
“heads”; for a fair coin this is 1/2). These are sometimes known as Poisson
trials.
Theorem A.16 (“Chernoff” bounds)
Let X1, X2, . . . , Xn be mutually independent random variables over {0, 1}
(i.e., Xi can be either 0 or 1) and let µ =

∑n
i=1 E[Xi]. Then for every δ > 0,

Pr[
n∑
i=1

Xi ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
. (3)

Pr[
n∑
i=1

≤ (1− δ)µ] ≤
[

e−δ

(1− δ)(1−δ)

]µ
. (4)

Often, what we use need is only the corollary that under the above
conditions, for every c > 0

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ cµ
]
≤ 2−c

2n/2

Proof: Surprisingly, the Chernoff bound is also proved using the Markov
inequality. We only prove the first inequality; a similar proof exists for the
second. We introduce a positive dummy variable t, and observe that

E[exp(tX)] = E[exp(t
∑
i

Xi)] = E[
∏
i

exp(tXi)] =
∏
i

E[exp(tXi)], (5)
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where exp(z) denotes ez and the last equality holds because the Xi r.v.s are
independent. Now,

E[exp(tXi)] = (1− pi) + pie
t,

therefore,∏
i

E[exp(tXi)] =
∏
i

[1 + pi(et − 1)] ≤
∏
i

exp(pi(et − 1))

= exp(
∑
i

pi(et − 1)) = exp(µ(et − 1)),

(6)

as 1 + x ≤ ex. Finally, apply Markov’s inequality to the random variable
exp(tX), viz.

Pr[X ≥ (1+δ)µ] = Pr[exp(tX) ≥ exp(t(1+δ)µ)] ≤ E[exp(tX)]
exp(t(1 + δ)µ)

=
exp((et − 1)µ)
exp(t(1 + δ)µ)

,

using lines (5) and (6) and the fact that t is positive. Since t is a dummy
variable, we can choose any positive value we like for it. Simple calculus
shows that the right hand side is minimized for t = ln(1 + δ) and this leads
to the theorem statement. �

By the way, if all n coin tosses are fair (Heads has probability 1/2) then
the the probability of seeing N heads where |N − n/2| > a

√
n is at most

e−a
2/2. The chance of seeing at least 625 heads in 1000 tosses of an unbiased

coin is less than 5.3× 10−7.

A.2.5 Some other inequalities.

Jensen’s inequality.

The following inequality, generalizing the inequality E[X2] ≥ E[X]2, is also
often useful:

Claim A.17
We say that f : R → R is convex if for every p ∈ [0, 1] and x, y ∈ R,
f(px+ (1− p)y) ≤ p · f(x) + (1− p) · f(y). Then, for every random variable
X and convex function f , f(E[X]) ≤ E[f(X)].
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Approximating the binomial coefficient

Of special interest is the Binomial random variable Bn denoting the number
of coins that come up “heads” when tossing n fair coins. For every k,
Pr[Bn = k] = 2−n

(
n
k

)
where

(
n
k

)
= n!

k!(n−k)! denotes the number of size-
k subsets of [n]. Clearly,

(
n
k

)
≤ nk, but sometimes we will need a better

estimate for
(
n
k

)
and use the following approximation:

Claim A.18
For every n, k < n, (n

k

)k
≤
(
n

k

)
≤
(ne
k

)k
The best approximation can be obtained via Stirling’s formula:

Lemma A.19 (Stirling’s formula)
For every n,

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n

It can be proven by taking natural logarithms and approximating lnn! =
ln(1 ·2 · · ·n) =

∑n
i=1 ln i by the integral

∫ n
1 lnx dx = n lnn−n+1. It implies

the following corollary:
Corollary A.20
For every n ∈ N and α ∈ [0, 1],(

n

αn

)
= (1±O(n−1)) 1√

2πnα(1−α)
2H(α)n

where H(α) = α log(1/α) + (1−α) log(1/(1−α)) and the constants hidden
in the O notation are independent of both n and α.

More useful estimates.

The following inequalities can be obtained via elementary calculus:

• For every x ≥ 1,
(
1− 1

x

)x ≤ 1
e ≤

(
1− 1

x+1

)x
• For every k,

∑n
i=1 i

k = Θ
(
nk+1

k+1

)
• For every k > 1,

∑∞
i=1 n

−k < O(1).

• For every c, ε > 0,
∑∞

i=1
nc

(1+ε)n < O(1).

• For every n,
∑n

i=1 = lnn±O(1)
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A.3 Finite fields and groups

A field is a set F that has an addition (+) and multiplication (·) opera-
tions that behave in the expected way: satisfy associative, commutative and
distributive laws, have both additive and multiplicative inverses, and neu-
tral elements 0 and 1 for addition and multiplication respectively. Familiar
fields are the real numbers (R), the rational numbers (Q) and the complex
numbers (C), but there are also finite fields.

If q is a prime, then we denote by GF(q) the field consisting of the ele-
ments {0, . . . , q − 1} with addition and multiplication performed modulo q.
For example, the numbers {0, . . . , 6} yield a field if addition and multipli-
cation are performed modulo 7. We leave it to the reader to verify GF(q)
is indeed a field for every prime q. The simplest example for such a field
is the field GF(2) consisting of {0, 1} where multiplication is the AND (∧)
operation and addition is the XOR operation.

Every finite field F has a number ` such that for every x ∈ F , x+x+· · ·+x
(` times) is equal to the zero element of F (exercise). This number ` is called
the characteristic of F. For every prime q, the characteristic of GF(q) is equal
to q.

A.3.1 Non-prime fields.

One can see that if n is not prime, then the set {0, . . . , n− 1} with addition
and multiplication modulo n is not a field, as there exist two non-zero ele-
ments x, y in this set such that x · y = n = 0 (mod n). Nevertheless, there
are finite fields of size n for non-prime n. Specifically, for every prime q,
and k ≥ 1, there exists a field of qk elements, which we denote by GF(qk).
We will very rarely need to use such fields in this book, but still provide an
outline of their construction below.

For every prime q and k there exists an irreducible degree k polynomial P
over the field GF(q) (P is irreducible if it cannot be expressed as the product
of two polynomials P ′, P ′′ of lower degree). We then let GF(qk) be the set
of all k − 1-degree polynomials over GF(q). Each such polynomial can be
represented as a vector of its k coefficients. We perform both addition and
multiplication modulo the polynomial P . Note that addition corresponds
to standard vector addition of k-dimensional vectors over GF(q), and both
addition and multiplication can be easily done in poly(n, log q) time (we can
reduce a polynomial S modulo a polynomial P using a similar algorithm to
long division of numbers). It turns out that no matter how we choose the
irreducible polynomial P , we will get the same field, up to renaming of the
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elements. There is a deterministic poly(q, k)-time algorithm to obtain an
irreducible polynomial of degree k over GF(q). There are also probabilistic
algorithms (and deterministic algorithms whose analysis relies on unproven
assumptions) that obtain such a polynomial in poly(log q, k) time.

For us, the most important example of a finite field is GF(2k), which
consists of the set {0, 1}k, with addition being component-wise XOR, and
multiplication being polynomial multiplication via some irreducible polyno-
mial which we can fine in poly(k) time. In fact, we will mostly not even
be interested in the multiplicative structure of GF(2k) and only use the
addition operation (i.e., use it as the vector space GF(2)k, see below).

A.3.2 Groups.

A group is a set that only has a single operation, say ?, that is associative
and has an inverse. That is, (G, ?) is a group if

1. For every a, b, c ∈ G , (a ? b) ? c = a ? (b ? c)

2. There exists a special element id ∈ G such that a ? id = a for every
a ∈ G, and for every a ∈ G there exists b ∈ G such that a?b = b?a = id.

If G is a finite group, it is known that for every a ∈ G, a ? a ? · · · ? a (|G|
times) is equal to the element id. A group is called commutative or Abelian
if its operation satisfies a ? b = b ? a for every a, n ∈ G. For every number
n ≥ 2, the set {0, . . . , n− 1} with the operation being addition modulo n
is an Abelian group. Also, the set {k : k ∈ [n − 1], gcd(k, n) = 1} with the
operation being multiplication modulo n is an Abelian group.

If F is a field and k ≥ 1, then the set of k-dimensional vectors of F
(i.e., Fk) together with the operation of componentwise addition, yields an
Abelian group. As mentioned above, the most interesting special case for us
is the group GF(2)k for some k. Note that in this group the identity element
is the vector 0k and for every x ∈ GF(2)k, x + x = 0k. This group is often
referred to as the Boolean cube.

A.4 Vector spaces and Hilbert spaces

A.5 Polynomials

We list some basic facts about univariate polynomials.
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Theorem A.21
A nonzero polynomial of degree d has at most d distinct roots.

Proof: Suppose p(x) =
∑d

i=0 cix
i has d + 1 distinct roots α1, . . . , αd+1 in

some field F. Then
d∑
i=0

αij · ci = p(αj) = 0,

for j = 1, . . . , d+ 1. This means that the system Ay = 0 with

A =


1 α1 α2

1 . . . αd1
1 α2 α2

2 . . . αd2
. . . . . . . . . . . . . . . . . . .
1 αd+1 α2

d+1 . . . αdd+1


has a solution y = c. The matrix A is a Vandermonde matrix, and it can
be shown that

detA =
∏
i>j

(αi − αj),

which is nonzero for distinct αi. Hence rankA = d+1. The system Ay = 0
has therefore only a trivial solution — a contradiction to c 6= 0. �

Theorem A.22
For any set of pairs (a1, b1), . . . , (ad+1, bd+1) there exists a unique polynomial
g(x) of degree at most d such that g(ai) = bi for all i = 1, 2, . . . , d+ 1.

Proof: The requirements are satisfied by Lagrange Interpolating Polyno-
mial:

d+1∑
i=1

bi ·
∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

.

If two polynomials g1(x), g2(x) satisfy the requirements then their difference
p(x) = g1(x)− g2(x) is of degree at most d, and is zero for x = a1, . . . , ad+1.
Thus, from the previous theorem, polynomial p(x) must be zero and poly-
nomials g1(x), g2(x) identical. �

The following elementary result is usually attributed to Schwartz and
Zippel in the computer science community, though it was certainly known
earlier (see e.g. DeMillo and Lipton [?]).

Web draft 2006-09-28 18:09



DRAFT

530 A.5. POLYNOMIALS

Lemma A.23
If a polynomial p(x1, x2, . . . , xm) over F = GF (q) is nonzero and has total
degree at most d, then

Pr[p(a1..am) 6= 0] ≥ 1− d

q
,

where the probability is over all choices of a1..am ∈ F .

Proof: We use induction on m. If m = 1 the statement follows from
Theorem A.21. Suppose the statement is true when the number of variables
is at most m− 1. Then p can be written as

p(x1, x2, . . . , xm) =
d∑
i=0

xi1pi(x2, . . . , xm),

where pi has total degree at most d − i. Since p is nonzero, at least one of
pi is nonzero. Let k be the largest i such that pi is nonzero. Then by the
inductive hypothesis,

Pr
a2,a3,...,am

[pi(a2, a3, . . . , am) 6= 0] ≥ 1− d− k
q

.

Whenever pi(a2, a3, . . . , am) 6= 0, p(x1, a2, a3, . . . , am) is a nonzero uni-
variate polynomial of degree k, and hence becomes 0 only for at most k
values of x1. Hence

Pr[p(a1..am) 6= 0] ≥ (1− k

q
)(1− d− k

q
) ≥ 1− d

q
,

and the induction is completed. �
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