
Breaking and Repairing GCM Security Proofs⋆

Tetsu Iwata1, Keisuke Ohashi1, and Kazuhiko Minematsu2

1 Nagoya University, Japan
iwata@cse.nagoya-u.ac.jp, k oohasi@echo.nuee.nagoya-u.ac.jp

2 NEC Corporation, Japan
k-minematsu@ah.jp.nec.com

Abstract. In this paper, we study the security proofs of GCM (Galois/Counter Mode of Opera-
tion). We first point out that a lemma, which is related to the upper bound on the probability of a
counter collision, is invalid. Both the original privacy and authenticity proofs by the designers are
based on the lemma. We further show that the observation can be translated into a distinguishing
attack that invalidates the main part of the privacy proof. It turns out that the original security
proofs of GCM contain a flaw, and hence the claimed security bounds are not justified. A very
natural question is then whether the proofs can be repaired. We give an affirmative answer to the
question by presenting new security bounds, both for privacy and authenticity. As a result, although
the security bounds are larger than what were previously claimed, GCM maintains its provable se-
curity. We also show that, when the nonce length is restricted to 96 bits, GCM has better security
bounds than a general case of variable length nonces.

Keywords: GCM, counter-example, distinguishing attack, proof of security.

1 Introduction

GCM (Galois/Counter Mode of Operation) is the authenticated encryption mode of blockciphers
designed by McGrew and Viega [26,27]. The mode is based on the counter mode encryption and
the polynomial hash function, and the designers presented proofs of security both for privacy and
authenticity [26,27]. It was selected as the NIST recommended blockcipher mode in 2007 [15],
and is widely used in practice, e.g., in [1,2,4,5,6,7,8,14,17,19,20,25,33,34].

The security of GCM has been extensively evaluated. Ferguson pointed out that a forgery
is possible if the tag length is short [16]. Joux showed that a part of the secret key can be
obtained if the nonce is reused [21]. Handschuh and Preneel discussed weak keys of GCM and
presented generalizations of Joux’s attack [18]. Saarinen pointed out that GCM has more weak
keys than previously known, and used the weak keys for forgery attacks [32]. See also [31] for
comprehensive discussions on various aspects on GCM.

Despite aforementioned attacks, it is widely considered that the provable security results of
GCM are sound, in the sense that the previous attacks do not contradict the claimed security
bounds by the designers, and that no flaw in the proofs has been identified. Some of these attacks
show the tightness of the security bounds, and others are outside the security model (e.g., nonce
reuse). Therefore, there is no attack that undermines the security bounds or their proofs.

GCM uses the counter mode encryption, and the initial counter value is derived from a
nonce, where there are two different ways to generate the initial counter value depending on
the length of the nonce. When the nonce length is 96 bits, the initial counter value is the nonce
padded with a constant. When the nonce length is not 96 bits, the polynomial hash function is
applied to the nonce to obtain the initial counter value. In order to prove the security of GCM,
one has to show that the probability of a counter collision is small. McGrew and Viega presented
a lemma showing the upper bound on the probability in [27], which is the basis for both the
privacy and authenticity proofs.

⋆ A preliminary version of this paper appears in the proceedings of CRYPTO 2012. This is the full version.

In this paper, we first point out that the claimed lemma cannot be valid; the probability of
a counter collision is larger than claimed. We show concrete counter-examples of two distinct
nonces that invalidate the lemma. It turns out that the original security proofs (both for privacy
and authenticity) of GCM contain a flaw, and hence the claimed security bounds are not justified.

We next translate the above observation into a distinguishing attack. The attack is simple
and efficient. However, from the practical perspective, the success probability of the attack is
insignificantly small, and it does not contradict the security bounds by the designers. On the
other hand, the success probability is large enough to invalidate the main part of the privacy
proof. In more detail, there are three terms in the privacy bound of GCM. The first one comes
from the difference between a random permutation and a random function, the second one is the
main part of the privacy proof that bounds the distinguishing probability of ciphertexts of GCM
based on a random function from random strings (of the same lengths as the ciphertexts), and
the last one bounds the forgery probability. The success probability of our distinguishing attack
is larger than the second term, invalidating the main part of the privacy proof. Consequently,
the security of GCM is not supported by the proofs.

Then a very natural question is whether the proofs can be repaired, or more generally,
whether the security of GCM can ever be proved. In order to answer the question, we first
introduce a combinatorial problem of quantifying a cardinality of a certain set of bit strings.
The problem belongs to one of the problems of counting the number of output differences with
non-zero probability of S-functions [29], which presents tools to analyze ARX systems (e.g.,
see [23]). One possible approach to solve the problem is to follow [29] (or [22]). In this paper,
we take another approach and present a solution to the problem by giving a recursive formula
that quantifies the cardinality. Basing on the solution, we present new security bounds on GCM,
both for privacy and authenticity.

As a result, although the security bounds are larger than what were previously claimed, we
show that GCM maintains its provable security. We also present provable security results of
GCM when the nonce length is restricted to 96 bits, in which case GCM has better security
bounds than a general case.

2 Preliminaries

Let {0, 1}∗ be the set of all bit strings, and for an integer ℓ ≥ 0, let {0, 1}ℓ be a set of ℓ-bit strings.
For a bit string X ∈ {0, 1}∗, |X| is its length in bits, and |X|ℓ = ⌈|X|/ℓ⌉ is the length in ℓ-bit
blocks. The empty string is denoted as ε. Let 0ℓ and 1ℓ denote the bit strings of ℓ zeros and ones,
respectively. We use the prefix 0x for the hexadecimal notation, e.g., 0x63 is 01100011 ∈ {0, 1}8.
We also write (0x0)ℓ to mean 04ℓ. For a bit string X and an integer ℓ such that |X| ≥ ℓ, msbℓ(X)
is the most significant ℓ bits (the leftmost ℓ bits) of X, and lsbℓ(X) is the least significant ℓ bits
(the rightmost ℓ bits) of X. For X,Y ∈ {0, 1}∗, we write X ∥Y , (X,Y), or simply XY to denote
their concatenation. For a bit stringX whose length in bits is a multiple of ℓ, we write its partition
into ℓ-bit strings as (X[1], . . . , X[x])

ℓ← X, where X[1], . . . , X[x] ∈ {0, 1}ℓ are unique bit strings
such that X[1] ∥ . . . ∥X[x] = X. For non-negative integers a and ℓ with a ≤ 2ℓ−1, let strℓ(a) be
its ℓ-bit binary representation, i.e., if a = aℓ−12

ℓ−1 + · · ·+ a12 + a0 for aℓ−1, . . . , a1, a0 ∈ {0, 1},
then strℓ(a) = aℓ−1 . . . a1a0 ∈ {0, 1}ℓ. For a bit string X = Xℓ−1 . . . X1X0 ∈ {0, 1}ℓ, let int(X)
be the integer Xℓ−12

ℓ−1 + · · · +X12 +X0. For a finite set X , #X denotes its cardinality, and

X
$← X means the uniform sampling of an element from X and assigning it to X.

Throughout this paper, we fix a block length n and a blockcipher E : K×{0, 1}n → {0, 1}n,
where K is a non-empty set of keys. Unless otherwise specified, we let n = 128. We write EK

for the permutation specified by K ∈ K, and C = EK(M) for the ciphertext of a plaintext
M ∈ {0, 1}n under the key K ∈ K. The set of n-bit strings, {0, 1}n, is also regarded as GF(2n),

2

Algorithm GCM-EN,A
K (M)

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)
4. m← |M |n
5. S ← CTRK(I[0],m)
6. C ←M ⊕msb|M|(S)
7. T̄ ← EK(I[0])⊕ GHASHL(A,C)
8. T ← msbτ (T̄)
9. return (C, T)

Algorithm GCM-DN,A
K (C, T)

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)
4. T̄ ∗ ← EK(I[0])⊕ GHASHL(A,C)
5. T ∗ ← msbτ (T̄

∗)
6. if T ̸= T ∗ then return ⊥
7. m← |C|n
8. S ← CTRK(I[0],m)
9. M ← C ⊕msb|C|(S)

10. return M

Fig. 1. The encryption and decryption algorithms of GCM

the finite field with 2n elements. An n-bit string an−1 . . . a1a0 ∈ {0, 1}n corresponds to a formal
polynomial a(x) = an−1 + an−2x + · · · + a1x

n−2 + a0x
n−1 ∈ GF(2)[x]. When n = 128, the

irreducible polynomial used in GCM is p(x) = 1 + x+ x2 + x7 + x128.

3 Specification of GCM

We follow [27,28] with some notational changes. GCM is parameterized by a blockcipher E :
K × {0, 1}n → {0, 1}n and a tag length τ , where 64 ≤ τ ≤ n. We write GCM[E, τ] for GCM
that uses E and τ as parameters. Let GCM-E be the encryption algorithm and GCM-D be
the decryption algorithm, which are defined in Fig. 1. GCM uses the counter mode encryption
and the polynomial hash function over GF(2n) as its subroutines. They are denoted CTR and
GHASH and are defined in Fig. 2. Figure 3 illustrates the overall structure of GCM-E .

GCM-E takes a key K ∈ K, a nonce N ∈ {0, 1}∗, associated data A ∈ {0, 1}∗, and a plaintext
M ∈ {0, 1}∗ as inputs, and returns a pair of a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ as an
output, where 1 ≤ |N | ≤ 2n/2 − 1, 0 ≤ |A| ≤ 2n/2 − 1, 0 ≤ |M | ≤ n(232 − 2), and |C| = |M |. We
write (C, T) ← GCM-EN,A

K (M). GCM-D takes a key K ∈ K, a nonce N ∈ {0, 1}∗, associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ as inputs, and returns
either a plaintext M ∈ {0, 1}∗ or the symbol ⊥ indicating that the inputs are invalid. We write
M ← GCM-DN,A

K (C, T) or ⊥ ← GCM-DN,A
K (C, T).

In the definition of CTR, for a bit string X ∈ {0, 1}n, inc(X) treats the least significant 32
bits (the rightmost 32 bits) of X as a non-negative integer, and increments this value modulo
232, i.e.,

inc(X) = msbn−32(X) ∥ str32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, we write incr(X) to denote the r times iterative applications of inc on X, and
inc−r(X) to denote the r times iterative applications of the inverse function of inc on X. We
use the convention that inc0(X) = X. In the definition of GHASH, the multiplication in line 7 is
over GF(2n). We remark that, if |N | ≠ 96, we have GHASHL(ε,N) = X[1] · Lx ⊕ · · · ⊕X[x] · L,
where X = (X[1], . . . , X[x]) = N ∥ 0n|N |n−|N | ∥ strn(|N |).

4 Security Definitions

An adversary is a probabilistic algorithm that has access to one or more oracles. Let AO1,O2,...

denote an adversary A interacting with oracles O1,O2, . . . , and AO1,O2,... ⇒ 1 denote the event
that A, after interacting with O1,O2, . . . , outputs 1. The resources of A are measured in terms
of time and query complexities. The time complexity includes the description size of A, and

3

Algorithm CTRK(I[0],m)

1. for j ← 1 to m do
2. I[j]← inc(I[j − 1])
3. S[j]← EK(I[j])
4. S ← (S[1], S[2], . . . , S[m])
5. return S

Algorithm GHASHL(A,C)

1. a← n|A|n − |A|
2. c← n|C|n − |C|
3. X ← A ∥ 0a ∥C ∥ 0c ∥ strn/2(|A|) ∥ strn/2(|C|)
4. (X[1], . . . , X[x])

n← X
5. Y ← 0n

6. for j ← 1 to x do
7. Y ← L · (Y ⊕X[j])
8. return Y

Fig. 2. Subroutines used in the encryption and decryption algorithms

inc inc inc

EK EK EK

GHASHL

msb|M|

msbτ

EK

GHASHL

N 0311 Nε

I[1] I[2] I[m]
I[0] CTRK

S

S[1] S[2] S[m]

M

C

T

A

if |N | = 96 if |N = 96

Fig. 3. The encryption algorithm of GCM

we fix a model of computation and a method of encoding. The query complexity includes the
number of queries, the total length of queries, and the maximum length of queries, and a more
precise definition is given in each theorem statement.

Following [10,30], we consider two security notions for GCM: privacy and authenticity. For
privacy, we consider an adversary A that has access to a GCM encryption oracle or a random-
bits oracle. The GCM encryption oracle takes (N,A,M) and returns (C, T)← GCM-EN,A

K (M).

The random-bits oracle, $, takes (N,A,M) and returns (C, T)
$← {0, 1}|M |+τ . We define

Advpriv
GCM[E,τ](A)

def
= Pr[K

$← K : AGCM-EK ⇒ 1]− Pr[A$ ⇒ 1],

where the first probability is defined over the randomness of A and the choice of K, and the last
is over the randomness of A and the random-bits oracle. We assume that A is nonce-respecting:
A does not make two queries with the same nonce.

For authenticity, we consider an adversary A that has access to GCM encryption and decryp-
tion oracles. The GCM decryption oracle takes (N,A,C, T) and returns M ← GCM-DN,A

K (C, T)

or ⊥ ← GCM-DN,A
K (C, T). We define

Advauth
GCM[E,τ](A)

def
= Pr[K

$← K : AGCM-EK ,GCM-DK forges],

4

where the probability is defined over the randomness of A and the choice of K, and the adversary
forges if the GCM decryption oracle returns a bit string (other than ⊥) for a query (N,A,C, T),
but (C, T) was not previously returned to A from the encryption oracle for a query (N,A,M). As
in the privacy notion, we assume that A is nonce-respecting: A does not make two queries to the
encryption oracle with the same nonce. We remark that nonces used for the encryption queries
can be used for decryption queries and vice-versa, and that the same nonce can be repeated for
decryption queries. Without loss of generality, we assume that A does not make trivial queries:
if the encryption oracle returns (C, T) for a query (N,A,M), then A does not make a query
(N,A,C, T) to the decryption oracle, and A does not repeat a query to the decryption oracle.

In [27], McGrew and Viega analyzed the security of GCM, and there are differences between
the above security notions. In [27], for privacy, the adversary has access to both the encryption
and decryption oracles, while we chose to follow a more standard notion [10,30] where the privacy
adversary has access to the encryption oracle only. Another difference is the assumption about
the nonce reuse. In [27], the adversary is not allowed to reuse a nonce within decryption queries
(but nonces used in encryption queries can be used in decryption queries and vice-versa), while
our adversary can reuse nonces within decryption queries.

For the blockcipher E : K×{0, 1}n → {0, 1}n, we consider the PRP notion [24]. Let Perm(n)

be the set of all permutations on {0, 1}n. We say that P is a random permutation if P
$← Perm(n).

We define

Advprp
E (A) def

= Pr[K
$← K : AEK ⇒ 1]− Pr[P

$← Perm(n) : AP ⇒ 1],

where the probabilities are defined over the randomness of A, and the choices ofK and P , respec-
tively. We write GCM[Perm(n), τ] for GCM that uses a random permutation P as a blockcipher
EK , and we write the corresponding encryption and decryption algorithms as GCM-EP and
GCM-DP , respectively.

We also consider GCM that uses a random function as EK , which is naturally defined as
the invertibility of EK is irrelevant in the definition of GCM. Let Rand(n) be the set of all

functions from {0, 1}n to {0, 1}n. We say that F is a random function if F
$← Rand(n), and

write GCM[Rand(n), τ] for GCM that uses F as EK . We write the corresponding encryption
and decryption algorithms as GCM-EF and GCM-DF , respectively.

5 Breaking GCM Security Proofs

5.1 Review of [27, Lemma 3], [27, Theorem 1], and [27, Theorem 2]

In this section, we first review a lemma in [27] that was used to derive the provable security
results on GCM. Consider GCM[Rand(n), τ], GCM with EK being a random function F , and
the privacy notion for it. Let (N1, A1,M1) and (N2, A2,M2) be two encryption queries, where
N1 ̸= N2 and |N1|, |N2| ̸= 96. Let I1[0] ← GHASHL(ε,N1), and I1[j] ← inc(I1[j − 1]) for
1 ≤ j ≤ m1, where m1 = |M1|n. Similarly, let I2[0]← GHASHL(ε,N2), and I2[j]← inc(I2[j−1])
for 1 ≤ j ≤ m2, where m2 = |M2|n. If we have

{I1[0], I1[1], . . . , I1[m1]} ∩ {I2[0], I2[1], . . . , I2[m2]} = ∅

and Ii[j] ̸= 0n for i = 1, 2 and 0 ≤ j ≤ mi, then the two masks S1 = (S1[1], . . . , S1[m1]) and
S2 = (S2[1], . . . , S2[m2]), produced from the counter mode encryption based on F , are uniformly
distributed over ({0, 1}n)m1 and ({0, 1}n)m2 , respectively. Furthermore, F (I1[0]) and F (I2[0])
are uniform random n-bit strings, and hence the probability distribution of strings returned
from the encryption oracle is identical to that from the random-bits oracle.

5

Therefore, in order to prove the security of GCM, one has to show that the probability of a
counter collision, I1[j1] = I2[j2] for some 0 ≤ j1 ≤ m1 and 0 ≤ j2 ≤ m2, is small. We see that
the event is equivalent to incj1(GHASHL(ε,N1)) = incj2(GHASHL(ε,N2)). Let CollL(r,N1, N2)
denote the event

incr(GHASHL(ε,N1))⊕ GHASHL(ε,N2) = 0n.

We need to bound Pr[L
$← {0, 1}n : CollL(r,N1, N2)], where r = j1 − j2, which we write

PrL[CollL(r,N1, N2)] for simplicity. Since −m2 ≤ r ≤ m1 and 0 ≤ m1,m2 ≤ 232 − 2, the
range of r is −(232 − 2) ≤ r ≤ 232 − 2.

In [27, Lemma 3], McGrew and Viega showed the following lemma (notation has been adapted
to this paper).

Lemma 1 ([27]). For any −(232−2) ≤ r ≤ 232−2, N1, and N2 such that N1 ̸= N2, |N1|, |N2| ≠
96, and |N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ (ℓN + 1)/2n.

Based on the lemma, [27, Theorem 1] states that the privacy advantage of GCM[Perm(n), τ],
GCM with EK being a random permutation P , is at most

0.5(σ/n+ 2q)2

2n
+

2q(σ/n+ 2q)⌈ℓN/n+ 1⌉
2n

+
q⌈ℓ/n+ 1⌉

2τ
, (1)

and [27, Theorem 2] states that the authenticity advantage is at most

0.5(σ/n+ 2q)2

2n
+

2q(σ/n+ 2q + 1)⌈ℓN/n+ 1⌉
2n

+
q⌈ℓ/n+ 1⌉

2τ
, (2)

where q is the maximum number of queries (either encryption or decryption queries), σ is the
total length in bits of the plaintexts (either in encryption queries or returned from the decryption
oracle), ℓN is the maximum length in bits of nonces in queries (either encryption or decryption
queries), and ℓ is the maximum value of |Aj | + |Cj |, where Aj and Cj are the associated data
and ciphertext, respectively, in the j-th query (either in decryption queries or returned from the
encryption oracle). Note that the definitions of privacy and authenticity advantages are slightly
different from ours, as explained in Sect. 4.

It is easy to see that the lemma is correct when r = 0: CollL(0, N1, N2) is the event
inc0(GHASHL(ε,N1))⊕GHASHL(ε,N2) = 0n, and we see that the left hand side is a non-trivial
polynomial in L of degree at most ℓN +1 over GF(2n), and hence there are at most ℓN +1 values
of L that satisfy the equality.

However, for r ̸= 0, it is not clear if incr(GHASHL(ε,N1)) is a polynomial of degree at most
ℓN +1 even if this is the case for GHASHL(ε,N1), and the analysis for this case is missing in the
proof of [27, Lemma 3]. The lemma is crucial in that it is used in the proofs for both privacy
and authenticity.

5.2 Invalidating [27, Lemma 3]

Let r = 1, N1 = (0x0)17 ∥ 0x2 = 068 ∥ 0010, and N2 = (0x0)17 ∥ 0x6 = 068 ∥ 0110, where |N1| =
|N2| = 72. Then CollL(r,N1, N2) is equivalent to

inc1(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (3)

where U1 = (0x0)17 ∥ 0x2 ∥ (0x0)14, U2 = (0x0)17 ∥ 0x6 ∥ (0x0)14, and V = (0x0)30 ∥ 0x48. In
binary, U1 = 068 ∥ 0010 ∥ 056, U2 = 068 ∥ 0110 ∥ 056, and V = 0120 ∥ 01001000. Now [27, Lemma
3] states that PrL[CollL(r,N1, N2)] ≤ 2/2n, i.e., (3) has at most two solutions. However, one
can verify (with the help of some software, e.g., [3]) that (3) has 32 solutions, which are listed

6

in Appendix A. In other words, PrL[CollL(r,N1, N2)] ≥ 32/2n holds, and hence [27, Lemma 3]
cannot be valid.

We present one more observation regarding the counter-example. Consider

inc2(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (4)

inc4(U1 · L2 ⊕ V · L)⊕ (U2 · L2 ⊕ V · L) = 0n, (5)

where the values of U1, U2, and V are as above. Then one can verify that (4) has 31 solutions, and
that (5) has 30 solutions, which are also listed in Appendix A. The 93 values of L are all distinct,
and are also different from 0n, which is a solution for inc0(U1 ·L2⊕V ·L)⊕ (U2 ·L2⊕V ·L) = 0n.
Therefore we have

Pr
L

 ∨
r=0,1,2,4

CollL(r,N1, N2)

 ≥ 94

2n
. (6)

We remark that we exclude the case r = 3 since CollL(3, N1, N2) has no solution. In Appendix A,
we present other examples of (N1, N2) that satisfy (6) and also invalidate [27, Lemma 3].

We next show that the above observation is not merely spotting of a subtle error in the
proofs of GCM. The observation can actually be translated into a distinguishing attack.

5.3 Distinguishing Attack

Consider GCM with EK being a random function F , and the privacy notion for it. We remark
that the analysis of this idealized version of GCM is essential since the main part of the privacy
proof is the analysis of this case. Let N1 and N2 be as in Sect. 5.2, A1 = ε, M1 = 05n, A2 = ε,
and M2 = 0n.

Let A be an adversary that has access to an oracle O which is either the GCM encryption
oracle or the random-bits oracle. A works as follows.

1. First, A makes two queries, (Ni, Ai,Mi) for i = 1, 2, and obtains (Ci, Ti)← O(Ni, Ai,Mi).
2. Let (C1[1], . . . , C1[5])

n← C1 and output 1 if

C1[1] = C2 or C1[2] = C2 or C1[3] = C2 or C1[5] = C2. (7)

First, suppose that O is the GCM encryption oracle. If CollL(0, N1, N2) ∨ CollL(1, N1, N2) ∨
CollL(2, N1, N2) ∨ CollL(4, N1, N2), then we see that A outputs 1. Otherwise the probability
distributions of C1[1], C1[2], C1[3], C1[5], and C2 are exactly the same as those of returned by
the random-bits oracle. In particular, (7) is satisfied with the same probability for the GCM
encryption oracle and for the random-bits oracle. Therefore, we have

Advpriv
GCM[Rand(n),τ](A) = Pr[AGCM-EF ⇒ 1]− Pr[A$ ⇒ 1] ≥ 94

2n
. (8)

Now using the notation of (1) and (2), our adversary has the following query complexity:
q = 2, σ = 6n, ℓN = 72, and ℓ = 5n. Then (1) is 50/2n + 80/2n + 12/2τ = 130/2n + 12/2τ .
Therefore, the attack does not contradict the claimed privacy bound (1).

However, (1) allows the use of the GCM decryption oracle, and rounding up the details
makes it sufficiently large so that our attack is tolerated in appearance. Now if we take a
closer look at (1), the second term, 80/2n, is the main part of the privacy proof that bounds
Advpriv

GCM[Rand(n),τ](A), while the first term is from the application of the PRP/PRF switching

lemma [11] and the last term bounds the forgery probability due to the use of the decryption

7

oracle. Therefore, the above attack does invalidate the main part of the privacy proof, and we
also see that it invalidates the second term of (2), which is 88/2n.

We have already shown that the claimed bound on PrL[CollL(r,N1, N2)] is invalid, which
implies that the claimed security bounds, (1) and (2), are not justified. Furthermore, the above
attack invalidates the main part of the privacy proof. Therefore, at this point, it is fair to
conclude that the security of GCM is not supported by the proofs. We note that, although our
attack does not work with 96-bit nonces, this statement holds even in this case since (1) and (2)
cover a general case including the case that the nonce length is restricted to 96 bits.

5.4 Remarks

Our attack is efficient. It uses two oracle calls, and the lengths of the queries are short. However,
the success probability, although large enough to invalidate the second terms in (1) and (2), is
insignificantly small in practice and it has a limited practical implication. We also note that
many standards require or recommend using GCM with 96-bit nonces, in which case the attack
does not work. Indeed, in many RFCs, such as RFC 4106 (IPsec) [34], 5647 (SSH) [20], 5288
(SSL) [33], the nonce length is fixed to 96 bits, and RFC 5084 [19] and 5116 [25] recommend
96-bit nonces. For IEEE standards, some strictly require 96-bit nonces (e.g. IEEE 802.1AE [5])
and some do not (e.g. IEEE P1619.1 [6]). There are cases where non-96-bit nonces are allowed,
including NIST SP 800-38D [15], ISO/IEC 19772 [7], PKCS #11 [4], and most software libraries
(e.g., Gladman’s code [17], CRYPTO++ [14], Java SE [2], and BouncyCastle [1]). Finally, NSA
Suite B Cryptography includes GCM with a strong recommendation (but not mandatory; see
e.g. [8]) of using it with 96-bit nonces.

We emphasize that, even when non-96-bit nonces are allowed, our attack has a limited
practical implication. However, it does undermine the provable security of GCM, making its
provable security open. A very natural question is then whether the security of GCM can ever
be proved. In the following sections, we present an affirmative answer to this question.

6 Towards Repairing the Proofs

6.1 Combinatorial Problem

To prove the security of GCM, the first step is to derive the upper bound on PrL[CollL(r,N1, N2)].
The obvious bound is PrL[CollL(r,N1, N2)] ≤ (ℓN+1)/2n−32, which can be shown by ignoring the
least significant 32 bits. In this section, we derive a better upper bound on PrL[CollL(r,N1, N2)],
and we first introduce a combinatorial problem for this goal.

For 0 ≤ r ≤ 232 − 1, let

Yr
def
=

{
str32(int(Y) + r mod 232)⊕ Y | Y ∈ {0, 1}32

}
. (9)

We also let αr
def
= #Yr and αmax

def
= max{αr | 0 ≤ r ≤ 232 − 1}. For given r, it is not hard to

experimentally derive the value of αr by exhaustively evaluating str32(int(Y) + r mod 232)⊕ Y
for all Y ∈ {0, 1}32. For example, we have

α0 = 1, α1 = 32, α2 = 31, α3 = 61, α4 = 30, α5 = 89, . . .

and the problem is to identify αmax.

8

6.2 Relation to the Security of GCM

We show that identifying αr gives the upper bound on PrL[CollL(r,N1, N2)].

Lemma 2. For any 0 ≤ r ≤ 232 − 1, N1, and N2 such that N1 ̸= N2, |N1|, |N2| ̸= 96, and
|N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ αr(ℓN + 1)/2n.

Proof. Let Y1, . . . , Yαr ∈ {0, 1}32 be the αr elements of Yr. Let Y1, . . . ,Yαr ⊆ {0, 1}32 be the αr

disjoint subsets of {0, 1}32 such that

Yj =
{
Y ∈ {0, 1}32 | str32(int(Y) + r mod 232)⊕ Y = Yj

}
for 1 ≤ j ≤ αr, Y1 ∪ · · · ∪ Yαr = {0, 1}32, and Yj ∩ Yj′ = ∅ for 1 ≤ j < j′ ≤ αr. Observe that if
Y ∈ Yj , then str32(int(Y) + r mod 232) can be replaced with Y ⊕ Yj .

For 1 ≤ j ≤ αr, let Dj be the event CollL(r,N1, N2) ∧ lsb32(GHASHL(ε,N1)) ∈ Yj . Since
D1, . . . ,Dαr are disjoint events, we have

Pr
L
[CollL(r,N1, N2)] =

∑
1≤j≤αr

Pr
L
[Dj]. (10)

Recall that CollL(r,N1, N2) is the event incr(GHASHL(ε,N1)) ⊕ GHASHL(ε,N2) = 0n, and
since lsb32(GHASHL(ε,N1)) ∈ Yj , incr(GHASHL(ε,N1)) can be replaced with GHASHL(ε,N1)⊕
(0n−32 ∥Yj), implying that the event Dj is equivalent to

GHASHL(ε,N1)⊕ GHASHL(ε,N2)⊕ (0n−32 ∥Yj) = 0n (11)

and lsb32(GHASHL(ε,N1)) ∈ Yj . We see that (11) is a non-trivial equation in L of degree at
most ℓN + 1 over GF(2n), and hence it has at most ℓN + 1 solutions. From (10), we obtain the
lemma. ⊓⊔

6.3 Deriving αr and αmax

The problem introduced in Sect. 6.1 can be solved by exhaustively evaluating (9) for all 0 ≤ r ≤
232 − 1, which is computationally costly. Another possible approach is to follow the framework
in [29] (or to use tools in [22]).

Instead of following these approaches, in this section, we present a recursive formula to
efficiently compute αr. Let r ≥ 0 be a given integer, ℓ be the number of runs of ones in the
binary representation of r (e.g., if r is 00110101 in binary, then ℓ = 3), and vℓ be an integer
with r ≤ 2vℓ − 1. Suppose strvℓ(r) = 0sℓ1tℓ . . . 0s11t10s0 , where sℓ−1, . . . , s1 ≥ 1, sℓ, s0 ≥ 0,
tℓ, . . . , t1 ≥ 1, and vℓ = (sℓ + · · ·+ s1 + s0) + (tℓ + · · ·+ t1).

Define
Aℓ

def
= # {strvℓ(int(Y) + r mod 2vℓ)⊕ Y | Y ∈ {0, 1}vℓ} .

Note that, when vℓ = 32, αr is equal to Aℓ. The next proposition gives an efficient recursive
formula to compute Aℓ.

Proposition 1. For any ℓ ≥ 1,

Aℓ =

{
tℓAℓ−1 +Bℓ−1 if sℓ = 0,

sℓBℓ +Aℓ−1 if sℓ ≥ 1,
(12)

where Bj = tjAj−1 + Bj−1 for 1 ≤ j ≤ ℓ, Aj = sjBj + Aj−1 for 1 ≤ j ≤ ℓ − 1, A0 = 1, and
B0 = 0.

9

Table 1. List of (r, αr) (left) and the relation between rmax and β(rmax) (right)

r αr

0x00000001 32
0x00000003 61
0x00000005 89
0x0000000b 143
0x00000025 294
0x00000055 538
0x0000012b 1115
0x00000455 2113
0x00000955 4124
0x000024ab 8579
0x00005555 17389
0x00012aab 34702
0x00049555 69742
0x000aaaab 138117
0x00255555 262471
0x00955555 559000
0x02555555 1127959
0x0a555555 2116814

Range of rmax β(rmax)

0x00000001–0x00000002 25

0x00000003–0x00000004 26

0x00000005–0x0000000a 27

0x0000000b–0x00000024 28

0x00000025–0x00000054 29

0x00000055–0x0000012a 210

0x0000012b–0x00000454 211

0x00000455–0x00000954 212

0x00000955–0x000024aa 213

0x000024ab–0x00005554 214

0x00005555–0x00012aaa 215

0x00012aab–0x00049554 216

0x00049555–0x000aaaaa 217

0x000aaaab–0x00255554 218

0x00255555–0x00955554 219

0x00955555–0x02555554 220

0x02555555–0x0a555554 221

0x0a555555–0xffffffff 222

In Appendix B, we present an elementary proof of the proposition. Given Proposition 1, it is
not hard to experimentally derive αmax by directly evaluating (12). We have αmax = 3524578,
where αr = αmax holds when r = 0x2aaaaaab, 0xaaaaaaab, 0x55555555, and 0xd5555555.

From Lemma 2 and since 3524578 ≤ 222, we obtain the following corollary.

Corollary 1. For any 0 ≤ r ≤ 232 − 1, N1, and N2 such that N1 ̸= N2, |N1|, |N2| ̸= 96, and
|N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ 222(ℓN + 1)/2n.

If the upper bound of r is smaller than 232 − 1, then depending on the value, the constant,
222, in Corollary 1 can be replaced by a smaller constant. Specifically, there are 303 values of
1 ≤ r ≤ 232 − 1 that satisfy max{α0, . . . , αr−1} < αr, and a list of the 303 values of (r, αr) can
be used to obtain a smaller constant. The list can be found in Appendix C. Table 1 (left) is the
excerpt from the list for better readability and usability. For each i = 5, 6, . . . , 22, Table 1 (left)
lists the minimum value of r, among the 303 values, such that 2i−1 < αr ≤ 2i.

Table 1 (right) is obtained from Table 1 (left) and shows the relation between the range of
rmax and the corresponding constant β(rmax), where rmax is the upper bound of r and β(rmax)
is the upper bound of αr. For example, if rmax = 210 = 0x400, then it is within the range
of 0x0000012b–0x00000454 and hence β(rmax) = 211. See also Fig. 4 for a graph showing the
relation between rmax and β(rmax).

We have the following corollary.

Corollary 2. For any 0 ≤ r ≤ rmax, N1, and N2 such that N1 ̸= N2, |N1|, |N2| ̸= 96, and
|N1|n, |N2|n ≤ ℓN , PrL[CollL(r,N1, N2)] ≤ β(rmax)(ℓN + 1)/2n.

We note that for rmax = 0, from α0 = 1, β(rmax) is defined to be 1.
In Appendix C, we discuss that a more precise value of β(rmax) can be obtained with the

complete list of the 303 values of (r, αr).

7 Repairing GCM Security Proofs

In this section, basing on the results of the previous section, we present new security bounds on
GCM. We also present overviews of the proofs.

10

20 25 210 215 220 225 230
20

25

210

215

220

225

rmax

β(rmax)

Fig. 4. Relation between rmax and β(rmax)

7.1 Privacy Result

In the privacy result, ifAmakes q queries (N1, A1,M1), . . . , (Nq, Aq,Mq), then the total plaintext
length is m1 + · · · +mq, and the maximum nonce length is max{n1, . . . , nq}, where |Ni|n = ni

and |Mi|n = mi. We have the following information theoretic result.

Theorem 1. Let Perm(n) and τ be the parameters of GCM. Then for any A that makes at
most q queries, where the total plaintext length is at most σ blocks and the maximum nonce
length is at most ℓN blocks,

Advpriv
GCM[Perm(n),τ](A) ≤

0.5(σ + q + 1)2

2n
+

222q(σ + q)(ℓN + 1)

2n
.

Observe that the security bound is essentially the same as the original one (1), except that we
have a constant, 222, in the second term, and we do not have a term that corresponds to the
forgery probability.

We next present a corollary showing that GCM has a better security bound if the nonce
length is restricted to 96 bits.

Corollary 3. Assume that the nonce length is restricted to 96 bits. Then,

Advpriv
GCM[Perm(n),τ](A) ≤

0.5(σ + q + 1)2

2n
.

Let E be a blockcipher secure in the sense of the PRP notion. Then the corresponding complexity
theoretic results, where E is used in place of Perm(n), can be obtained by a standard argument
(see e.g. [9]).

In the next section, we present an intuitive proof overview of Theorem 1. A complete proof
is presented in Appendix D. A proof of Corollary 3 is obtained by modifying the proof of
Theorem 1, and is omitted.

11

7.2 Proof Overview of Theorem 1

Suppose that A has access to the GCM encryption oracle. We first replace the random permu-
tation P by a random function F . The difference between the two advantage functions is at
most (σ + q + 1)2/2n+1 from the PRP/PRF switching lemma [11]. Next, suppose that A has
made i− 1 queries (N1, A1,M1), . . . , (Ni−1, Ai−1,Mi−1), obtained (C1, T1), . . . , (Ci−1, Ti−1), and
is now making the i-th query (Ni, Ai,Mi). For 1 ≤ j ≤ i, let Ij = {Ij [0], Ij [1], . . . , Ij [mj]} be
a set of n-bit strings used as the inputs of F during the computation of (Cj , Tj) for the query
(Nj , Aj ,Mj) (other than 0n used to generate L). Observe that, if Ii[0], Ii[1], . . . , Ii[mi] are not
previously used, then (Ci, Ti) is a random string of |Mi|+ τ bits. That is, unless

Ii ∩ ({0n} ∪ I1 ∪ · · · ∪ Ii−1) ̸= ∅ (13)

holds for some 1 ≤ i ≤ q, the distribution of the output of the GCM encryption oracle (based
on the random function F) is identical to that of the random-bits oracle, and hence A is unable
to distinguish between the two oracles. It can be shown that the probability of (13) is at most
222q(σ + q)(ℓN + 1)/2n by using Corollary 1. The result is obtained by summing up the two
above-mentioned probabilities.

7.3 Authenticity Result

IfAmakes q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq) and q′ decryption queries (N ′
1, A

′
1,

C ′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′), then the total plaintext length is m1 + · · · + mq, the maxi-

mum nonce length is max{n1, . . . , nq, n
′
1, . . . , n

′
q′}, and the maximum input length is max{a1 +

m1, . . . , aq +mq, a
′
1 +m′

1, . . . , a
′
q′ +m′

q′}, where |Ni|n = ni, |Ai|n = ai, |Mi|n = mi, |N ′
i |n = n′

i,
|A′

i|n = a′i, and |C ′
i|n = m′

i. We have the following information theoretic result.

Theorem 2. Let Perm(n) and τ be the parameters of GCM. Then for any A that makes at
most q encryption queries and q′ decryption queries, where the total plaintext length is at most
σ blocks, the maximum nonce length is at most ℓN blocks, and the maximum input length is at
most ℓA blocks,

Advauth
GCM[Perm(n),τ](A) ≤

0.5(σ + q + q′ + 1)2

2n

+
222(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
. (14)

As in the privacy result, the bound is essentially the same as the original one (2), except that
we have a constant, 222, in the second term. The next corollary shows that we have a better
security bound if the nonce length is restricted to 96 bits.

Corollary 4. Assume that the nonce length is restricted to 96 bits. Then,

Advauth
GCM[Perm(n),τ](A) ≤

0.5(σ + q + q′ + 1)2

2n
+

q′(ℓA + 1)

2τ
. (15)

The corresponding complexity theoretic results can be obtained based on the PRP notion of a
blockcipher E by a standard argument (see e.g. [9]).

We present an intuitive proof overview of Theorem 2 in the next section, and a complete
proof is presented in Appendix E. A proof of Corollary 4 can be obtained from the proof of
Theorem 2, and is omitted.

12

7.4 Proof Overview of Theorem 2

We replace the random permutation P by a random function F . From the PRP/PRF switching
lemma [11], we have a term (σ+ q+ q′+1)2/2n+1. We then consider the probability of a counter
collision as in the privacy proof, but this time, we consider the counter values used for decryption
queries as well. The probability can be shown to be at most 222(q + q′ + 1)(σ + q)(ℓN + 1)/2n

by using Corollary 1. Under the condition that there is no counter collision, the adversary is
essentially asked to forge a message authentication code (N,A,C)→ F (g(N))⊕GHASHL(A,C),
where g(N) = N ∥ 0311 if |N | = 96, and g(N) = GHASHL(ε,N) if |N | ≠ 96. The probability
can be shown to be at most q′(ℓA +1)/2τ , and we obtain the theorem by summing up the three
probabilities.

7.5 Better Security Bounds

Use of Corollary 2. Suppose that, either in privacy or authenticity notions, A makes q encryp-
tion queries (N1, A1,M1), . . . , (Nq, Aq,Mq). Let ℓM be the maximum plaintext length, which is
max{m1, . . . ,mq}, where |Mi|n = mi. Theorem 1 and Theorem 2 assume ℓM = 232 − 2 and use
Corollary 1 to obtain the results. However, if ℓM is known to be smaller, then Corollary 2 can
be used to obtain better bounds. Specifically, in Theorem 1 and Theorem 2, if ℓM ≤ rmax, then
the constant becomes β(rmax) instead of 222. For example, if ℓM is 210, then from Table 1 and
by following the argument in Sect. 6.3, the constant becomes 211.

Use of [12, Theorem 2.3]. Using Bernstein’s result [12, Theorem 2.3], we can further improve
the authenticity bound (but not the privacy bound). For positive integer a, let δn(a) = (1 −
(a − 1)/2n)−a/2. With the same notation as in Theorem 2, the right hand side of (14) can be
improved to the following bound.[

222(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ

]
· δn(σ + q + q′ + 1)

Note that when a ≪ 2n we have δn(a) ≈ (1 + a2/2n+1). It was shown that δn(a) ≤ 1.7 when
a ≤ 264 and n ≥ 128 [13]. Hence, for example, if 1 < q′ ≤ q ≤ σ, n = τ = 128, and σ+q+q′ < 264,
we obtain the bound (17 · 222qσℓN + 4q′ℓA)/2

128.

See Appendix C for more discussions on the better security bounds.

8 Conclusion

In this paper, we studied the security proofs of GCM. We first pointed out that the proofs contain
a flaw, and translated the observation into a distinguishing attack that invalidates the main part
of the privacy proof. We then showed that the proofs can be repaired by presenting new privacy
and authenticity bounds. The bounds are larger than what were previously claimed in a general
case of variable length nonces, but they are smaller when the nonce length is restricted to 96
bits. Many standards require or recommend using GCM with 96-bit nonces for efficiency reasons.
Our results suggest that restricting GCM to 96-bit nonces is recommended from the provable
security perspective as well. This follows [31], where GCM with 96-bit nonces is recommended as
the use of variable length nonces increases the proof complexity and the proofs are infrequently
verified.

We remark that since our attack only invalidates the second terms of (1) and (2), it does
not exclude a possibility that the original security bounds, (1) and (2), can still be proved, and
it would be interesting to see if our security bounds can be improved.

13

Acknowledgments. The authors would like to thank Masato Aikawa for discussions at the
initial phase of this work, Yasushi Osaki and Xiangyu Quan for helping searching the counter-
examples given in Sect. 5.1 and in Appendix A, Nicky Mouha for verifying the values of r that
give αr = αmax presented in Sect. 6.3, and participants of Dagstuhl Seminar 12031, Symmetric
Cryptography, and the anonymous CRYPTO 2012 reviewers for helpful comments. The work
by Tetsu Iwata was supported in part by MEXT KAKENHI, Grant-in-Aid for Young Scientists
(A), 22680001.

References

1. Bouncy Castle, http://www.bouncycastle.org/ (accessed on May 26, 2012)
2. Java Platform, Standard Edition 7, http://docs.oracle.com/javase/7/docs/ (accessed on May 26, 2012)
3. Risa/Asir, http://www.math.kobe-u.ac.jp/Asir/asir.html (accessed on May 26, 2012)
4. PKCS #11 v2.20: Cryptographic Token Interface Standard. PKCS #11 v2.20 (2004), http://www.rsa.com/

rsalabs/node.asp?id=2133 (accessed on May 31, 2012)
5. IEEE Standard for Local and Metropolitan Area Networks Media Access Control (MAC) Security. IEEE Std

802.1AE-2006 (2006)
6. IEEE Standard for Authenticated Encryption with Length Expansion for Storage Devices. IEEE Std 1619.1-

2007 (2007)
7. Information Technology — Security Techniques — Authenticated Encryption, ISO/IEC 19772:2009. Interna-

tional Standard ISO/IEC 19772 (2009)
8. National Security Agency, Internet Protocol Security (IPsec) Minimum Essential Interoperability Require-

ments, IPMEIR Version 1.0.0 Core (2010), http://www.nsa.gov/ia/programs/suiteb cryptography/index.

shtml

9. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining Message Authentication
Code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

10. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions and Analysis of the
Generic Composition Paradigm. In: Okamoto, T. (ed.) ASIACRYPT. Lecture Notes in Computer Science,
vol. 1976, pp. 531–545. Springer (2000)

11. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing
Proofs. In: Vaudenay, S. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer (2006)

12. Bernstein, D.J.: Stronger Security Bounds for Permutations (2005), http://cr.yp.to/papers.html (accessed
on May 31, 2012)

13. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC Security Bound from PRP-Advantage
(2005), http://fastcrypto.org/umac/umac security.pdf (accessed on May 31, 2012)

14. Dai, W.: Crypto++ Library, http://www.cryptopp.com/ (accessed on May 26, 2012)
15. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and

GMAC. NIST Special Publication 800-38D (2007)
16. Ferguson, N.: Authentication Weaknesses in GCM. Public Comments to NIST (2005), http://csrc.nist.

gov/groups/ST/toolkit/BCM/comments.html

17. Gladman, B.: http://www.gladman.me.uk/ (accessed on May 26, 2012)
18. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function Based MAC Algorithms. In:

Wagner, D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 5157, pp. 144–161. Springer (2008)
19. Housley, R.: Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message Syn-

tax (CMS). IETF RFC 5084 (2007)
20. Igoe, K.M., Solinas, J.A.: AES Galois Counter Mode for the Secure Shell Transport Layer Protocol. IETF

RFC 5647 (2009)
21. Joux, A.: Authentication Failures in NIST version of GCM. Public Comments to NIST (2006), http://csrc.

nist.gov/groups/ST/toolkit/BCM/comments.html

22. Leurent, G.: ARXtools: A Toolkit for ARX Analysis. In: The Third SHA-3 Candidate Conference (2012),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/index.html

23. Leurent, G., Thomsen, S.S.: Practical Near-Collisions on the Compression Function of BMW. In: Joux, A.
(ed.) FSE. Lecture Notes in Computer Science, vol. 6733, pp. 238–251. Springer (2011)

24. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM
J. Comput. 17(2), 373–386 (1988)

25. McGrew, D.A.: An Interface and Algorithms for Authenticated Encryption. IETF RFC 5116 (2008)
26. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode (GCM) of Operation.

In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT. Lecture Notes in Computer Science, vol. 3348, pp.
343–355. Springer (2004)

14

http://www.bouncycastle.org/
http://docs.oracle.com/javase/7/docs/
http://www.math.kobe-u.ac.jp/Asir/asir.html
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://cr.yp.to/papers.html
http://fastcrypto.org/umac/umac_security.pdf
http://www.cryptopp.com/
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://www.gladman.me.uk/
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/index.html

Table 2. List of solutions of (3)

0x7f6db6d2db6db6db6db6db6492492492 0x7f6db6dadb6db6db6db6db6492492492

0x81b6db776db6db6db6db6dadb6db6db6 0x81b6db676db6db6db6db6dadb6db6db6

0xbe00003c000000000000003fffffffff 0xbe00001c000000000000003fffffffff

0xc16db6aadb6db6db6db6db1b6db6db6d 0xc16db6eadb6db6db6db6db1b6db6db6d

0x3fb6db876db6db6db6db6d5249249249 0x3fb6db076db6db6db6db6d5249249249

0x000001dc00000000000001c000000000 0x000000dc00000000000001c000000000

0x7f6db56adb6db6db6db6d8e492492492 0x7f6db76adb6db6db6db6d8e492492492

0x81b6dc076db6db6db6db6aadb6db6db6 0x81b6d8076db6db6db6db6aadb6db6db6

0xbe000edc0000000000000e3fffffffff 0xbe0006dc0000000000000e3fffffffff

0xc16dab6adb6db6db6db6c71b6db6db6d 0xc16dbb6adb6db6db6db6c71b6db6db6d

0x3fb6e0076db6db6db6db555249249249 0x3fb6c0076db6db6db6db555249249249

0x000076dc00000000000071c000000000 0x000036dc00000000000071c000000000

0x7f6d5b6adb6db6db6db638e492492492 0x7f6ddb6adb6db6db6db638e492492492

0x81b700076db6db6db6daaaadb6db6db6 0x81b600076db6db6db6daaaadb6db6db6

0xbe03b6dc0000000000038e3fffffffff 0xbe01b6dc0000000000038e3fffffffff

0xc16adb6adb6db6db6db1c71b6db6db6d 0x00000004000000000000000000000000

27. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter Mode of Operation (Full
Version). Cryptology ePrint Archive, Report 2004/193 (2004), http://eprint.iacr.org/

28. McGrew, D.A., Viega, J.: The Galois/Counter Mode of Operation (GCM). Submission to NIST (2005),
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes development.html

29. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis of S-Functions. In: Biryukov,
A., Gong, G., Stinson, D.R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol.
6544, pp. 36–56. Springer (2011)

30. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: Atluri, V. (ed.) ACM Conference on Com-
puter and Communications Security. pp. 98–107. ACM (2002)

31. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. Investigation Reports on Cryptographic
Techniques in FY 2010 (2011), http://www.cryptrec.go.jp/english/ (accessed on May 31, 2012)

32. Saarinen, M.J.O.: Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes. Pre-
proceedings of FSE 2012 (2012), http://fse2012.inria.fr/ (accessed on March 17, 2012)

33. Salowey, J., Choudhury, A., McGrew, D.A.: AES Galois Counter Mode (GCM) Cipher Suites for TLS. IETF
RFC 5288 (2008)

34. Viega, J., McGrew, D.A.: The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload
(ESP). IETF RFC 4106 (2005)

A Solutions of (3), (4), and (5), and Examples of (N1, N2) Satisfying (6)

In Table 2, Table 3, and Table 4, we show a list of values of L that satisfy (3), (4), and (5),
respectively. We see that the 93 values from these lists are all distinct, and are different from
0n.

The counter-example presented in Sect. 5.2 was found by experimentally searching over the
values of U1, U2, and V . We started by searching over random U1, U2, and V , and found that
the values of the form U1 = 08i ∥X ∥ 0n−8−8i, U2 = 08i ∥Y ∥ 0n−8−8i, and V ∈ {0, 1}n have
many examples that satisfy (6), where X,Y ∈ {0, 1}8, 0 ≤ i ≤ 15, and int(V) = 8j for some
i+ 1 ≤ j ≤ 16 but j ̸= 12. The examples include the following values:

(U1, U2, V) =

((0x0)15 ∥ 0x2 ∥ (0x0)16, (0x0)15 ∥ 0x6 ∥ (0x0)16, (0x0)30 ∥ 0x70)
((0x0)17 ∥ 0x2 ∥ (0x0)14, (0x0)17 ∥ 0x6 ∥ (0x0)14, (0x0)30 ∥ 0x70)
((0x0)17 ∥ 0x4 ∥ (0x0)14, (0x0)17 ∥ 0xc ∥ (0x0)14, (0x0)30 ∥ 0x48)

These values are equivalent to (060 ∥ 0010 ∥ 064, 060 ∥ 0110 ∥ 064, 0120 ∥ 01110000), (068 ∥ 0010 ∥ 056,
068 ∥ 0110 ∥ 056, 0120 ∥ 01110000), and (068 ∥ 0100 ∥ 056, 068 ∥ 1100 ∥ 056, 0120 ∥ 01001000) in binary.
N1 and N2 are the most significant int(V) bits of U1 and U2, respectively.

15

http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://www.cryptrec.go.jp/english/
http://fse2012.inria.fr/

Table 3. List of solutions of (4)

0x7f6db6d6db6db6db6db6db6492492492 0x7f6db6dedb6db6db6db6db6492492492

0x81b6db736db6db6db6db6dadb6db6db6 0x81b6db636db6db6db6db6dadb6db6db6

0xbe000038000000000000003fffffffff 0xbe000018000000000000003fffffffff

0xc16db6aedb6db6db6db6db1b6db6db6d 0xc16db6eedb6db6db6db6db1b6db6db6d

0x3fb6db836db6db6db6db6d5249249249 0x3fb6db036db6db6db6db6d5249249249

0x000001d800000000000001c000000000 0x000000d800000000000001c000000000

0x7f6db56edb6db6db6db6d8e492492492 0x7f6db76edb6db6db6db6d8e492492492

0x81b6dc036db6db6db6db6aadb6db6db6 0x81b6d8036db6db6db6db6aadb6db6db6

0xbe000ed80000000000000e3fffffffff 0xbe0006d80000000000000e3fffffffff

0xc16dab6edb6db6db6db6c71b6db6db6d 0xc16dbb6edb6db6db6db6c71b6db6db6d

0x3fb6e0036db6db6db6db555249249249 0x3fb6c0036db6db6db6db555249249249

0x000076d800000000000071c000000000 0x000036d800000000000071c000000000

0x7f6d5b6edb6db6db6db638e492492492 0x7f6ddb6edb6db6db6db638e492492492

0x81b700036db6db6db6daaaadb6db6db6 0x81b600036db6db6db6daaaadb6db6db6

0xbe03b6d80000000000038e3fffffffff 0xbe01b6d80000000000038e3fffffffff

0xc16adb6edb6db6db6db1c71b6db6db6d

Table 4. List of solutions of (5)

0xbe076db80000000000071c7fffffffff 0xc16c000edb6db6db6db5555b6db6db6d

0xc16e000edb6db6db6db5555b6db6db6d 0xfedbb6d5b6db6db6db6c71c924924924

0xfedab6d5b6db6db6db6c71c924924924 0x00006db8000000000000e38000000000

0x0000edb8000000000000e38000000000 0x7f6d800edb6db6db6db6aaa492492492

0x7f6dc00edb6db6db6db6aaa492492492 0x40db76d5b6db6db6db6d8e36db6db6db

0x40db56d5b6db6db6db6d8e36db6db6db 0xbe000db80000000000001c7fffffffff

0xbe001db80000000000001c7fffffffff 0xc16db00edb6db6db6db6d55b6db6db6d

0xc16db80edb6db6db6db6d55b6db6db6d 0xfedb6ed5b6db6db6db6db1c924924924

0xfedb6ad5b6db6db6db6db1c924924924 0x000001b8000000000000038000000000

0x000003b8000000000000038000000000 0x7f6db60edb6db6db6db6daa492492492

0x7f6db70edb6db6db6db6daa492492492 0x40db6dd5b6db6db6db6db636db6db6db

0x40db6d55b6db6db6db6db636db6db6db 0xbe000038000000000000007fffffffff

0xbe000078000000000000007fffffffff 0xc16db6cedb6db6db6db6db5b6db6db6d

0xc16db6eedb6db6db6db6db5b6db6db6d 0xfedb6db5b6db6db6db6db6c924924924

0xfedb6da5b6db6db6db6db6c924924924 0x00000008000000000000000000000000

B Proof of Proposition 1

With the same notation in Sect. 6, let uℓ = (sℓ + · · ·+ s1) + (tℓ + · · ·+ t1), and r′ be an integer
satisfying struℓ

(r′) = 0sℓ1tℓ . . . 0s11t1 , i.e., r′ is the integer defined by taking the most significant
uℓ bits of r. Then we see that Aℓ = # {struℓ

(int(Y) + r′ mod 2uℓ)⊕ Y | Y ∈ {0, 1}uℓ} since the
least significant s0 bits of r does not affect Aℓ. In what follows, without loss of generality, we
make the assumption that s0 = 0 (and hence uℓ = vℓ).

We first show the following lemma.

Lemma 3. If ℓ = 1, s1 = 0, and strv1(r) = 1t1, then A1 = t1.

Proof. If Y = 0t1 , then strt1(int(Y) + r mod 2t1) ⊕ Y = 1t1 . If Y = (Y ′ ∥ 10j−1) for some
1 ≤ j ≤ t1 and Y ′ ∈ {0, 1}t1−j , then strt1(int(Y) + r mod 2t1) ⊕ Y = 0t1−j1j . Therefore,
strt1(int(Y) + r mod 2t1)⊕ Y takes t1 values when Y ranges over Y ∈ {0, 1}t1 . ⊓⊔

By a similar argument, we obtain the following lemma.

Lemma 4. If strj+t1(r) = (r′ ∥ 1t1) for some j ≥ 1 and r′ ∈ {0, 1}j, then for any fixed Y ′ ∈
{0, 1}j, strj+t1(int(Y) + r mod 2j+t1) ⊕ Y takes t1 values when Y ranges over Y ∈ {0, 1}j+t1,
where Y = (Y ′ ∥Y ′′), Y ′′ ∈ {0, 1}t1, and int(0t1−11) ≤ int(Y ′′) ≤ int(1t1).

16

Proof. We see that the least significant t1 bits of strj+t1(int(Y) + r mod 2j+t1) ⊕ Y is of the
form strt1(int(Y

′′)+ int(1t1) mod 2t1)⊕Y ′′. It takes t1 values when Y ′′ ranges over int(0t1−11) ≤
int(Y ′′) ≤ int(1t1), while the remaining bits are fixed to a constant. ⊓⊔

We next show the following lemma.

Lemma 5. If ℓ = 1, s1 ≥ 1, and strv1(r) = 0s11t1, then A1 = s1t1 + 1.

Proof. If Y = (Y ′ ∥ 0t1) for some Y ′ ∈ {0, 1}s1 , then strv1(int(Y) + r mod 2v1)⊕ Y = 0s11t1 .
If Y = (Y ′ ∥ 01j−1 ∥Y ′′) for some 1 ≤ j ≤ s1, Y

′ ∈ {0, 1}s1−j , and Y ′′ ∈ {0, 1}t1 such that
int(0t1−11) ≤ int(Y ′′) ≤ int(1t1), then strv1(int(Y) + r mod 2v1)⊕ Y can be written as

0s1−j1j ∥ strt1(int(Y ′′) + int(1t1) mod 2t1)⊕ Y ′′. (16)

From Lemma 4, (16) takes s1t1 different values when j and Y ′′ ranges over 1 ≤ j ≤ s1 and
int(0t1−11) ≤ int(Y ′′) ≤ int(1t1). Furthermore, the s1t1 values are different from 0s11t1 .

If Y = (1s1 ∥Y ′′) for some Y ′′ ∈ {0, 1}t1 such that int(0t1−11) ≤ int(Y ′′) ≤ int(1t1), then
strv1(int(Y) + r mod 2v1)⊕ Y is

1s1 ∥ strt1(int(Y ′′) + int(1t1) mod 2t1)⊕ Y ′′.

It takes t1 values from Lemma 4 if Y ′′ ranges over int(0t1−11) ≤ int(Y ′′) ≤ int(1t1), however,
all these values are contained in the values appeared in the analysis of the second case of
Y = (01s1−1 ∥Y ′′).

We have covered all the values of Y ∈ {0, 1}v1 , and this completes the proof of the lemma. ⊓⊔

Lemma 6. If ℓ = 2, s2 ≥ 1, and strv2(r) = 0s21t20s11t1, then A2 = s2(t2+t2s1t1+t1)+s1t1+1.

Proof. We write Y = (Y ′ ∥Y ′′) for Y ′ ∈ {0, 1}s2+t2 and Y ′′ ∈ {0, 1}s1+t1 . First, by a similar
analysis to Lemma 5, strv1(int(Y

′′) + r mod 2v1) ⊕ Y ′′ takes (s1t1 + 1) values when Y ′′ ranges
over int(0s1+t1) ≤ int(Y ′′) ≤ int(1s10t1). We next fix any Y ′′ that satisfies int(0s1+t1) ≤ int(Y ′′) ≤
int(1s10t1). Then, again by a similar analysis to Lemma 5, strv2(int(Y) + r mod 2v2) ⊕ Y takes
(s2t2+1) values when Y ′ ranges over Y ′ ∈ {0, 1}s2+t2 . Overall, strv2(int(Y)+r mod 2v2)⊕Y takes
(s2t2 +1)(s1t1 + 1) values when Y ranges over Y = (Y ′ ∥Y ′′) ∈ {0, 1}v2 , where Y ′ ∈ {0, 1}s2+t2 ,
Y ′′ ∈ {0, 1}s1+t1 , and int(0s1+t1) ≤ int(Y ′′) ≤ int(1s10t1).

We next consider the case where Y ranges over Y = (Y ′ ∥Y ′′) ∈ {0, 1}v2 , Y ′ ∈ {0, 1}s2+t2 ,
Y ′′ ∈ {0, 1}s1+t1 , and int(1s10t1−11) ≤ int(Y ′′) ≤ int(1s1+t1). Observe that

strv1(int(Y
′′) + r mod 2v1)⊕ Y ′′ = (0s1 ∥Y ′′′),

where Y ′′′ ∈ {0, 1}t1 , and from Lemma 4, Y ′′′ takes t1 values when Y ′ is fixed and Y ′′ ranges
over int(1s10t1−11) ≤ int(Y ′′) ≤ int(1s1+t1). As for the most significant s2 + t2 bits, we have a
carry coming from the least significant s1 + t1 bits, and hence we need to consider

strs2+t2(int(Y
′) + int(0s21t2) + int(0s2+t2−11) mod 2s2+t2)⊕ Y ′. (17)

Since int(0s21t2) + int(0s2+t2−11) = int(0s2−110t2), (17) is

strs2+t2(int(Y
′) + int(0s2−110t2) mod 2s2+t2)⊕ Y ′. (18)

We see that the least significant t2 bits of (18) is fixed to 0t2 . If s2 = 1, then we use Lemma 3
to see that (18) takes 1 = s2 value. If s2 ≥ 2, then we use Lemma 5 with (s1, t1) = (s2 − 1, 1)
and we see that (18) takes (s2 − 1)× 1 + 1 = s2 different values.

Overall, we have s2t2 different values, and hence we have the lemma by simplifying (s2t2 +
1)(s1t1 + 1) + s2t2. ⊓⊔

17

If we consider v2 + 1 bits instead of v2 bits by replacing s2 with s2 + 1, then by following a
similar argument to the proof of Lemma 6, we see that

#
{
strv2+1(int(Y) + r mod 2v2+1)⊕ Y | Y = (0 ∥Y ′), Y ′ ∈ {0, 1}v2

}
,

for strv2+1(r) = 0s2+11t20s11t1 , is (s2+1)(t2 + t2s1t1 + t1)+ s1t1 +1. The difference to the value
of A2 in Lemma 6, t2 + t2s1t1 + t1, represents the number of Y ∈ {0, 1}v2 such that the most
significant bit of strv2+1(int(Y) + r mod 2v2+1) ⊕ (0 ∥Y) is 1 and hence such Y has a carry to
the (v2 + 1)-st bit.

Lemma 7. If ℓ = 2, s2 = 0, and strv2(r) = 1t20s11t1, then A2 = t2(s1t1 + 1) + t1.

Proof. As in the proof of Lemma 6, we write Y = (Y ′ ∥Y ′′) for Y ′ ∈ {0, 1}t2 and Y ′′ ∈ {0, 1}s1+t1 .
First, strv1(int(Y

′′) + r mod 2v1)⊕ Y ′′ takes (s1t1 +1) values when Y ′′ ranges over int(0s1+t1) ≤
int(Y ′′) ≤ int(1s10t1), and for any fixed Y ′′ within the range, from Lemma 3, strv2(int(Y)+r mod
2v2)⊕Y takes t2 values when Y ′ ranges over Y ′ ∈ {0, 1}t2 . Overall, strv2(int(Y)+r mod 2v2)⊕Y
takes t2(s1t1 + 1) values when Y ranges over Y = (Y ′ ∥Y ′′) ∈ {0, 1}v2 , where Y ′ ∈ {0, 1}t2 ,
Y ′′ ∈ {0, 1}s1+t1 , and int(0s1+t1) ≤ int(Y ′′) ≤ int(1s10t1).

We next consider the case where Y ranges over Y = (Y ′ ∥Y ′′) ∈ {0, 1}v2 , Y ′ ∈ {0, 1}t2 ,
Y ′′ ∈ {0, 1}s1+t1 , and int(1s10t1−11) ≤ int(Y ′′) ≤ int(1s1+t1). Then we see that strv1(int(Y

′′) +
r mod 2v1) ⊕ Y ′′ = (0s1 ∥Y ′′′), where Y ′′′ ∈ {0, 1}t1 , and from Lemma 4, Y ′′′ takes t1 values
when Y ′ is fixed and Y ′′ ranges over int(1s10t1−11) ≤ int(Y ′′) ≤ int(1s1+t1). As for the most
significant t2 bits, we have a carry coming from the least significant s1 + t1 bits. This fixes
strt2(int(Y

′) + int(1t2) + int(0t2−11) mod 2t2) ⊕ Y ′ to 0t2 , implying that we have t1 different
values in this case, and hence we have the lemma. ⊓⊔

We are now ready to present the proof of Proposition 1.

Proof (of Proposition 1). The proof is based on an induction on ℓ. First, if ℓ = 1, then we obtain
Proposition 1 from Lemma 3 and Lemma 4.

Suppose that Proposition 1 holds for ℓ = j ≥ 1. If sj ≥ 1, the number of Y ∈ {0, 1}vj such
that the most significant bit of strvj+1(int(Y) + r mod 2vj+1) ⊕ (0 ∥Y) equals 1 is obtained by
the difference between Aj with sj being replaced with sj + 1 and Aj , which is

(sj + 1)Bj +Aj−1 −Aj = Bj . (19)

Now we show that Proposition 1 holds for ℓ = j+1. We divide Y ∈ {0, 1}vj+1 into Y = (Y ′ ∥Y ′′),
where Y ′ ∈ {0, 1}sj+1+tj+1 and Y ′′ ∈ {0, 1}vj .

Suppose sj+1 ≥ 1. Then from the induction hypothesis and by following the same argument to
the proof of Lemma 6, Aj+1 is the sum of (sj+1tj+1+1)Aj (for Y ranges over Y ′ ∈ {0, 1}sj+1+tj+1

and int(0vj) ≤ int(Y ′′) ≤ int(1sj0tj . . . 1s10t1)) and sj+1Bj (for Y ranges over Y ′ ∈ {0, 1}sj+1+tj+1

and int(1sj0tj . . . 1s10t1−11) ≤ int(Y ′′) ≤ int(1vj)), where the latter value is obtained using (19).
Therefore,

Aj+1 = (sj+1tj+1 + 1)Aj + sj+1Bj = sj+1(tj+1Aj +Bj) +Aj = sj+1Bj+1 +Aj

as desired.
On the other hand, if sj+1 = 0, then by following the same argument to the proof of

Lemma 7, we see that Aj+1 is the sum of tj+1Aj (for Y ranges over Y ′ ∈ {0, 1}sj+1+tj+1 and
int(0vj) ≤ int(Y ′′) ≤ int(1sj0tj . . . 1s10t1)) and Bj (for Y ranges over Y ′ ∈ {0, 1}sj+1+tj+1 and
int(1sj0tj . . . 1s10t1−11) ≤ int(Y ′′) ≤ int(1vj)). Therefore,

Aj+1 = tj+1Aj +Bj ,

and we thus obtain the proposition. ⊓⊔

18

Table 5. List of (r, αr) that satisfies max{α0, . . . , αr−1} < αr

r αr

0x00000001 32
0x00000003 61
0x00000005 89
0x00000009 115
0x0000000b 143
0x00000013 194
0x00000015 221
0x00000023 241
0x00000025 294
0x0000002b 346
0x00000045 361
0x00000049 386
0x0000004b 463
0x00000053 487
0x00000055 538
0x0000008b 570
0x00000093 643
0x00000095 717
0x000000a5 739
0x000000ab 837
0x00000115 880
0x00000125 973
0x0000012b 1115
0x0000014b 1158
0x00000153 1181
0x00000155 1299
0x0000022b 1367
0x0000024b 1523
0x00000253 1568
0x00000255 1727
0x00000295 1788
0x000002ab 2013
0x00000455 2113
0x00000495 2347
0x000004a5 2368
0x000004ab 2672
0x0000052b 2769
0x0000054b 2789
0x00000553 2832
0x00000555 3113

r αr

0x000008ab 3263
0x0000092b 3628
0x0000094b 3689
0x00000953 3751
0x00000955 4124
0x00000a55 4271
0x00000a95 4289
0x00000aab 4804
0x00001155 5025
0x00001253 5071
0x00001255 5584
0x00001295 5661
0x000012ab 6351
0x000014ab 6577
0x0000152b 6612
0x0000154b 6631
0x00001553 6729
0x00001555 7396
0x000022ab 7720
0x000024ab 8579
0x0000252b 8707
0x0000254b 8744
0x00002553 8875
0x00002555 9755
0x00002955 10099
0x00002a55 10148
0x00002aab 11357
0x00004555 11826
0x00004953 11951
0x00004955 13139
0x00004a55 13329
0x00004a95 13346
0x00004aab 14941
0x000052ab 15464
0x000054ab 15541
0x0000552b 15557
0x0000554b 15592
0x00005553 15821
0x00005555 17389
0x00008aab 18059

r αr

0x000092ab 20061
0x000094ab 20354
0x0000952b 20403
0x0000954b 20453
0x00009553 20754
0x00009555 22811
0x0000a555 23602
0x0000a955 23717
0x0000aa55 23731
0x0000aaab 26539
0x00011555 27479
0x00012553 27766
0x00012555 30519
0x00012955 30962
0x00012a55 31023
0x00012aab 34702
0x00014aab 35893
0x000152ab 36067
0x000154ab 36094
0x0001552b 36109
0x0001554b 36187
0x00015553 36718
0x00015555 40357
0x00022aab 41645
0x00024aab 46242
0x000252ab 46913
0x000254ab 47013
0x0002552b 47042
0x0002554b 47145
0x00025553 47837
0x00025555 52578
0x00029555 54361
0x0002a555 54621
0x0002a955 54658
0x0002aaab 61118
0x00045555 62825
0x00049553 63453
0x00049555 69742
0x0004a555 70751
0x0004a955 70897

r αr

0x0004aa55 70910
0x0004aaab 79295
0x00052aab 81947
0x00054aab 82334
0x000552ab 82391
0x000554ab 82403
0x0005552b 82430
0x0005554b 82607
0x00055553 83819
0x00055555 92126
0x0008aaab 94278
0x00092aab 104627
0x00094aab 106137
0x000952ab 106358
0x000954ab 106395
0x0009552b 106433
0x0009554b 106662
0x00095553 108227
0x00095555 118953
0x000a5555 122867
0x000a9555 123438
0x000aa555 123521
0x000aa955 123531
0x000aaaab 138117
0x00115555 140612
0x00125553 141927
0x00125555 155993
0x00129555 158237
0x0012a555 158564
0x0012a955 158609
0x0012aaab 177343
0x0014aaab 183066
0x00152aab 183901
0x00154aab 184023
0x001552ab 184042
0x001554ab 184053
0x0015552b 184111
0x0015554b 184506
0x00155553 187213
0x00155555 205767

C List of (r, αr) and Applications

We present a list of (r, αr) that satisfies max{α0, . . . , αr−1} < αr in Table 5 and in Table 6. The
list has 303 values, and it corresponds to Table 1 (left). The list of the 303 values can be used
to obtain a more precise value of β(rmax) appears in Corollary 2.

Let rmax be the upper bound of r as in Corollary 2, and let r1 and r2 be two consecutive
values of r in the list. If r1 ≤ rmax < r2, then we have β(rmax) = αr1 , i.e., for any 0 ≤ r ≤ rmax,
we have PrL[CollL(r,N1, N2)] ≤ β(rmax)(ℓN + 1)/2n = αr1(ℓN + 1)/2n.

As noted in Sect. 6.3, for rmax = 0, we have β(rmax) = 1 from α0 = 1, and we also note that
for rmax ≥ 0x2aaaaaab, we have β(rmax) = 3524578. We present a graph in Fig. 5 showing the
relation between rmax and β(rmax) obtained from Table 5 and Table 6.

19

Table 6. List of (r, αr) that satisfies max{α0, . . . , αr−1} < αr (Cont’d)

r αr

0x0022aaab 208207
0x0024aaab 230887
0x00252aab 234196
0x00254aab 234679
0x002552ab 234751
0x002554ab 234772
0x0025552b 234847
0x0025554b 235351
0x00255553 238804
0x00255555 262471
0x00295555 270744
0x002a5555 271951
0x002a9555 272127
0x002aa555 272152
0x002aaaab 304281
0x00455555 305645
0x00495553 308224
0x00495555 338771
0x004a5555 343604
0x004a9555 344309
0x004aa555 344411
0x004aa955 344420
0x004aaaab 385084
0x0052aaab 396873
0x0054aaab 398593
0x00552aab 398844
0x00554aab 398881
0x005552ab 398889
0x005554ab 398908
0x0055552b 399033
0x0055554b 399889
0x00555553 405756
0x00555555 445969
0x0092aaab 491816
0x0094aaab 498793
0x00952aab 499811
0x00954aab 499960
0x009552ab 499985
0x009554ab 500011
0x0095552b 500168

r αr

0x0095554b 501241
0x00955553 508595
0x00955555 559000
0x00a55555 575491
0x00a95555 577897
0x00aa5555 578248
0x00aa9555 578299
0x00aaa555 578305
0x00aaaaab 646568
0x01255555 704636
0x01295555 714561
0x012a5555 716009
0x012a9555 716220
0x012aa555 716249
0x012aaaab 800799
0x014aaaab 823301
0x0152aaab 826584
0x0154aaab 827063
0x01552aab 827133
0x01554aab 827144
0x015552ab 827151
0x015554ab 827189
0x0155552b 827448
0x0155554b 829223
0x01555553 841389
0x01555555 924776
0x024aaaab 992659
0x0252aaab 1006511
0x0254aaab 1008532
0x02552aab 1008827
0x02554aab 1008871
0x025552ab 1008884
0x025554ab 1008931
0x0255552b 1009247
0x0255554b 1011412
0x02555553 1026251
0x02555555 1127959
0x02955555 1157603
0x02a55555 1161928
0x02a95555 1162559

r αr

0x02aa5555 1162651
0x02aa9555 1162664
0x02aaaaab 1299901
0x04955555 1367551
0x04a55555 1386393
0x04a95555 1389142
0x04aa5555 1389543
0x04aa9555 1389601
0x04aaa555 1389606
0x04aaaaab 1553633
0x052aaaab 1590652
0x054aaaab 1596053
0x0552aaab 1596841
0x0554aaab 1596956
0x05552aab 1596973
0x05554aab 1596977
0x055552ab 1596988
0x055554ab 1597061
0x0555552b 1597561
0x0555554b 1600988
0x05555553 1624477
0x05555555 1785473
0x092aaaab 1826673
0x094aaaab 1851382
0x0952aaab 1854987
0x0954aaab 1855513
0x09552aab 1855590
0x09554aab 1855603
0x095552ab 1855617
0x095554ab 1855702
0x0955552b 1856283
0x0955554b 1860265
0x09555553 1887558
0x09555555 2074627
0x0a555555 2116814
0x0a955555 2122969
0x0aa55555 2123867
0x0aa95555 2123998
0x0aaa5555 2124017
0x0aaa9555 2124019

r αr

0x0aaaaaab 2374727
0x12aaaaab 2646170
0x14aaaaab 2685773
0x152aaaab 2691551
0x154aaaab 2692394
0x1552aaab 2692517
0x1554aaab 2692535
0x15552aab 2692538
0x15554aab 2692541
0x155552ab 2692559
0x155554ab 2692682
0x1555552b 2693525
0x1555554b 2699303
0x15555553 2738906
0x15555555 3010349
0x25555555 3131742
0x29555555 3149453
0x2a555555 3152037
0x2a955555 3152414
0x2aa55555 3152469
0x2aa95555 3152477
0x2aaa5555 3152478
0x2aaaaaab 3524578

Better Privacy Result. As discussed in Sect. 7.5, Theorem 1 can be improved by using Corol-
lary 2, and Table 5 and Table 6 give a more precise value of β(rmax) than the value obtained
from Table 1.

We summarize our privacy result by using the following notation. Suppose that A makes q
queries (N1, A1,M1), . . . , (Nq, Aq,Mq), where |Ni|n = ni, |Ai|n = ai, and |Mi|n = mi. Then the
total plaintext length is m1 + · · ·+mq, the maximum plaintext length is max{m1, . . . ,mq}, the
maximum nonce length is max{n1, . . . , nq}, and the total input length is (a1+m1)+· · ·+(aq+mq).

We state our result in the complexity theoretic form.

Corollary 5. Let E : K× {0, 1}n → {0, 1}n and τ be the parameters of GCM. Then for any A
that makes at most q queries, where the total plaintext length is at most σ blocks, the maximum
plaintext length is at most ℓM blocks, the maximum nonce length is at most ℓN blocks, and the

20

20 25 210 215 220 225 230
20

25

210

215

220

225

rmax

β(rmax)

Fig. 5. Relation between rmax and β(rmax) based on Table 5 and Table 6

total input length is at most σA blocks, there exists an adversary A′ such that

Advpriv
GCM[E,τ](A) ≤ Advprp

E (A′) +
0.5(σ + q + 1)2

2n
+

β(rmax)q(σ + q)(ℓN + 1)

2n
,

where A′ makes at most σ+q+1 queries, rmax is any value satisfying ℓM ≤ rmax, and β(rmax) is
obtained from Table 5 and Table 6. Furthermore, the time complexity of A′ is Time(A) + cnσA,
where Time(A) is the time complexity of A and c is a constant that depends only on the model
of computation and the method of encoding.

The corresponding information theoretic result of Corollary 5 improves Theorem 1, but we
remark that the observation cannot be used to improve Corollary 3.

Better Authenticity Result. Theorem 2 can be improved by using Corollary 2, and [12, Theorem
2.3] can be used for Theorem 2 and Corollary 4.

Suppose that A makes q encryption queries (N1, A1,M1), . . . , (Nq, Aq,Mq) and q′ decryption
queries (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′), where |Ni|n = ni, |Ai|n = ai, |Mi|n = mi, |N ′

i |n =
n′
i, |A′

i|n = a′i, and |C ′
i|n = m′

i. Then the total plaintext length is m1 + · · ·+mq, the maximum
plaintext length is max{m1, . . . ,mq}, the maximum nonce length is max{n1, . . . , nq, n

′
1, . . . , n

′
q′},

the total input length is (a1 + m1) + · · · + (aq + mq) + (a′1 + m′
1) + · · · + (a′q′ + m′

q′), and the
maximum input length is max{a1 +m1, . . . , aq +mq, a

′
1 +m′

1, . . . , a
′
q′ +m′

q′}.
We first apply Corollary 2 to Theorem 2. We have the following complexity theoretic result.

Corollary 6. Let E : K × {0, 1}n → {0, 1}n and τ be the parameters of GCM. Then for any
A that makes at most q encryption queries and q′ decryption queries, where the total plaintext
length is at most σ blocks, the maximum plaintext length is at most ℓM blocks, the maximum
nonce length is at most ℓN blocks, the total input length is at most σA blocks, and the maximum

21

input length is at most ℓA blocks, there exists an adversary A′ such that

Advauth
GCM[Perm(n),τ](A) ≤ Advprp

E (A′) +
0.5(σ + q + q′ + 1)2

2n

+
β(rmax)(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
, (20)

where A′ makes at most σ+q+q′+1 queries, rmax is any value satisfying ℓM ≤ rmax, and β(rmax)
is obtained from Table 5 and Table 6. Furthermore, the time complexity of A′ is Time(A)+cnσA,
where Time(A) is the time complexity of A and c is a constant that depends only on the model
of computation and the method of encoding.

The corresponding information theoretic result of Corollary 6 improves Theorem 2.
Next, if we use [12, Theorem 2.3], then instead of (20), we obtain

Advauth
GCM[E,τ](A) ≤ Advprp

E (A′)

+

[
β(rmax)(q + q′ + 1)(σ + q)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ

]
· δn(σ + q + q′ + 1). (21)

Recall that δn(a) = (1 − (a − 1)/2n)−a/2. Furthermore, if the nonce length is restricted to 96
bits, then (20) becomes

Advauth
GCM[E,τ](A) ≤ Advprp

E (A′) +

[
q′(ℓA + 1)

2τ

]
· δn(σ + q + q′ + 1). (22)

The right hand side of (21) is generally smaller than that of (20) for most parameters. However,
we do not know if this holds for all parameters. We also note that the last term of (22) is, for
most parameters, smaller than the right hand side of (15).

D Proof of Theorem 1

Without loss of generality, we assume that A is deterministic and makes exactly q queries.

Recall that GCM[Perm(n), τ] is GCM that is based on a random permutation P
$← Perm(n)

and GCM[Rand(n), τ] is GCM based on a random function F
$← Rand(n). We follow the game

playing proof technique in [11]. From the PRP/PRF switching lemma [11], have

Advpriv
GCM[Perm(n),τ](A) ≤ Advpriv

GCM[Rand(n),τ](A) +
(σ + q + 1)2

2n+1
(23)

as we need one call to P or F for L, and at most mi + 1 calls for the i-th query (Ni, Ai,Mi),
and we have

∑
1≤i≤q(mi + 1) ≤ σ + q.

We next define two games, Game G0 and Game G1, in Fig. 6 to derive the upper bound on
Advpriv

GCM[Rand(n),τ](A). In Fig. 6, Game G1 includes the boxed statements and Game G0 does
not. Observe that Game G0 simulates the random-bits oracle, and that Game G1 simulates the
GCM encryption oracle using the lazy sampling of F , where F is regarded as an array, and the
array F (X) is initially undefined for all X ∈ {0, 1}n. We maintain a set IF in order to keep the
record of domain points that have already been used. The set is updated when F (X) ← Y is
executed for some X and Y . We also maintain a flag, bad, which is initialized to false. We see that
Game G0 and Game G1 are identical until the flag gets set, and hence, from the fundamental
lemma of game playing [11], we have

Advpriv
GCM[Rand(n),τ](A) ≤ Pr[AG0 sets bad]. (24)

22

Game G0 Game G1

initialization

1. L
$← {0, 1}n, F (0n)← L

if A makes a query (Ni, Ai,Mi)

2. if |Ni| = 96 then Ii[0]← Ni ∥ 0311
3. else Ii[0]← GHASHL(ε,Ni)

4. Si[0]
$← {0, 1}n

5. if Ii[0] ∈ IF then bad← true, Si[0]← F (Ii[0])

6. F (Ii[0])← Si[0]
7. for j ← 1 to mi do
8. Ii[j]← inc(Ii[j − 1])

9. Si[j]
$← {0, 1}n

10. if Ii[j] ∈ IF then bad← true, Si[j]← F (Ii[j])

11. F (Ii[j])← Si[j]
12. Ci ←Mi ⊕msb|Mi|(Si[1], . . . , Si[mi])
13. Ti ← msbτ (Si[0]⊕ GHASHL(Ai, Ci))
14. return (Ci, Ti)

Fig. 6. Game G0 and Game G1 for the proof of Theorem 1

We next evaluate Pr[AG0 sets bad]. Since Game G0 always returns a random string of |Mi|+τ

bits for the i-the query (Ni, Ai,Mi), we can modify it to directly choose (Ci, Ti)
$← {0, 1}|Mi|+τ

and return it to A, which fixes the q queries made by A, and then consider the probability that
the bad flag gets set based on the randomness of L. Let (N1, A1,M1), . . . , (Nq, Aq,Mq) be the q
queries. The bad flag gets set in the following two cases.

Case (A). Ii[j] = 0n holds for some (i, j) such that 1 ≤ i ≤ q and 0 ≤ j ≤ mi.
Case (B). Ii[j] = Ii′ [j

′] holds for some (i, j, i′, j′) such that 1 ≤ i′ < i ≤ q, 0 ≤ j′ ≤ mi′ , and
0 ≤ j ≤ mi.

We see that the event in Case (A) is equivalent to incj(Ii[0]) = 0n, and it is easy to see that the
probability of this event is at most (σ+ q)(ℓN +1)/2n, since if |Ni| ≠ 96, then incj(Ii[0]) = 0n is
a non-trivial equation in L of degree at most ℓN +1 over GF(2n), and otherwise the probability
is obviously zero. We therefore have

Pr[AG0 sets bad with Case (A)] ≤ (σ + q)(ℓN + 1)

2n
. (25)

For the event in Case (B), which is equivalent to incj(Ii[0]) = incj
′
(Ii′ [0]), we see that for

each 1 ≤ i ≤ q, we have at most (m1 + 1) + (m2 + 1) + · · ·+ (mi−1 + 1) + (i− 1)(mi + 1) values
of (j, i′, j′) to consider. We next evaluate Pr[incj(Ii[0]) = incj

′
(Ii′ [0])] for each (i, j, i′, j′).

– If |Ni| = |Ni′ | = 96, then Pr[incj(Ii[0]) = incj
′
(Ii′ [0])] = 0.

– If |Ni| ̸= 96 and |Ni′ | = 96, then Pr[incj(Ii[0]) = incj
′
(Ii′ [0])] ≤ (ℓN+1)/2n since incj(Ii[0]) =

incj
′
(Ii′ [0]) is a non-trivial equation in L of degree at most ℓN + 1 over GF(2n). The same

observation holds for the case |Ni| = 96 and |Ni′ | ̸= 96.
– If |Ni|, |Ni′ | ̸= 96, then Pr[incj(Ii[0]) = incj

′
(Ii′ [0])] ≤ 222(ℓN +1)/2n by applying Corollary 1

with (r,N1, N2) = (j − j′, Ni, Ni′) if j − j′ ≥ 0, and (r,N1, N2) = (j′ − j,Ni′ , Ni) otherwise.

From these analyses, we have Pr[incj(Ii[0]) = incj
′
(Ii′ [0])] ≤ 222(ℓN +1)/2n for any case. Now it

is easy to verify∑
1≤i≤q

(m1 + 1) + (m2 + 1) + · · ·+ (mi−1 + 1) + (i− 1)(mi + 1) = (q − 1)
∑

1≤i≤q

(mi + 1),

23

which is at most (q − 1)(σ + q). We therefore have

Pr[AG0 sets bad with Case (B)] ≤ 222(q − 1)(σ + q)(ℓN + 1)

2n
, (26)

and we obtain the claimed bound from (23), (24), (25), and (26). ⊓⊔

We remark that the proof of Corollary 3 is obtained from Pr[AG0 sets bad] = 0.

E Proof of Theorem 2

We evaluate Advauth
GCM[Perm(n),τ](A) following the game playing proof technique in [11]. Without

loss of generality, we assume that A is deterministic and makes exactly q encryption queries
and q′ decryption queries. We also assume that the decryption oracle, if A succeeds in forgery,
returns a bit 0 instead of the plaintext since the returned value has no effect on the success
probability of A. Then from the PRP/PRF switching lemma [11], we have

Advauth
GCM[Perm(n),τ](A) ≤ Advauth

GCM[Rand(n),τ](A) +
(σ + q + q′ + 1)2

2n+1
, (27)

as we need one call to P or F for L, at mostmi+1 calls for the i-th encryption query (Ni, Ai,Mi),
and at most one call for the i-th decryption query (N ′

i , A
′
i, C

′
i, T

′
i), and we have

∑
1≤i≤q(mi+1) ≤

σ + q.
In order to evaluate Advauth

GCM[Rand(n),τ](A), we define two games, Game G0 and Game G1,
in Fig. 7, where Game G1 includes the boxed statements and G0 does not. Game G1 simulates
the GCM encryption oracle in lines 2–22 and the decryption oracle in lines 23–34 using the lazy
sampling of F . In Fig. 7, we maintain a set N to keep the record of nonces that have already
been used. The set is initially empty, and is updated when A makes a query. Observe that if
the nonce Ni of the i-th encryption query satisfies Ni ∈ N (lines 15–22), then the corresponding
Ii[0] (used in line 16) and Si[0] (used in line 21) are already defined. Similarly, if the nonce N ′

i of
the i-th decryption query satisfies N ′

i ∈ N (lines 32–34), then the corresponding S′
i[0] (used in

line 32) is already defined. In Fig. 7, we also maintain a set I ′F which keeps the domain points
of F that have been used only for decryption queries. That is, for the i-th decryption query
(N ′

i , A
′
i, C

′
i, T

′
i), the set I ′F is defined to be

{I ′1[0], . . . , I ′i−1[0]} \ {0n, I1[0], . . . , I1[m1], . . . , Ij [0], . . . , Ij [mj]}

assuming that A has made j encryption queries before making the i-th decryption query. The set
I ′F is used in line 26. Intuitively, for the j-th and i-th nonces N ′

j and N ′
i used only for decryption

queries, where j < i and N ′
j ̸= N ′

i , the set is maintained to reuse the previous S′
j [0] as S′

i[0] if
I ′j [0] = I ′i[0] holds. We also maintain bad1 and bad2 flags.

Game G0 is obtained from Game G1 by removing the boxed statements, and we see that
Game G0 and Game G1 are identical until one of the flags gets set. Therefore, from the funda-
mental lemma of game playing [11], we have

Advauth
GCM[Rand(n),τ](A) ≤ Pr[AG0 sets bad1 or bad2]. (28)

We next evaluate Pr[AG0 sets bad1 or bad2]. Observe that Game G0 always returns a random
string of |Mi| + τ bits for the i-th encryption query (Ni, Ai,Mi), or the symbol ⊥ for the i-th

decryption query (N ′
i , A

′
i, C

′
i, T

′
i). We then modify Game G0 to choose (Ci, Ti)

$← {0, 1}|Mi|+τ

and return it to A for the i-th encryption query, and return ⊥ for the i-th decryption query.
This fixes all queries, and we let the q encryption queries be (N1, A1,M1), . . . , (Nq, Aq,Mq), and
the q′ decryption queries be (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′).

24

Game G0 Game G1

initialization

1. L
$← {0, 1}n, F (0n)← L

if A makes a query (Ni, Ai,Mi) such that Ni ̸∈ N

2. if |Ni| = 96 then Ii[0]← Ni ∥ 0311
3. else Ii[0]← GHASHL(ε,Ni)

4. Si[0]
$← {0, 1}n

5. if Ii[0] ∈ IF then bad1 ← true, Si[0]← F (Ii[0])

6. F (Ii[0])← Si[0]
7. for j ← 1 to mi do
8. Ii[j]← inc(Ii[j − 1])

9. Si[j]
$← {0, 1}n

10. if Ii[j] ∈ IF then bad1 ← true, Si[j]← F (Ii[j])

11. F (Ii[j])← Si[j]
12. Ci ←Mi ⊕msb|Mi|(Si[1], . . . , Si[mi])
13. Ti ← msbτ (Si[0]⊕ GHASHL(Ai, Ci))
14. return (Ci, Ti)

if A makes a query (Ni, Ai,Mi) such that Ni ∈ N

15. for j ← 1 to mi do
16. Ii[j]← inc(Ii[j − 1])

17. Si[j]
$← {0, 1}n

18. if Ii[j] ∈ IF then bad1 ← true, Si[j]← F (Ii[j])

19. F (Ii[j])← Si[j]
20. Ci ←Mi ⊕msb|Mi|(Si[1], . . . , Si[mi])
21. Ti ← msbτ (Si[0]⊕ GHASHL(Ai, Ci))
22. return (Ci, Ti)

if A makes a query (N ′
i , A

′
i, C

′
i, T

′
i) such that N ′

i ̸∈ N

23. if |N ′
i | = 96 then I ′i[0]← N ′

i ∥ 0311
24. else I ′i[0]← GHASHL(ε,N

′
i)

25. S′
i[0]

$← {0, 1}n
26. if I ′i[0] ∈ I′F then S′

i[0]← F (I ′i[0])

27. else if I ′i[0] ∈ IF then bad1 ← true, S′
i[0]← F (I ′i[0])

28. F (I ′i[0])← S′
i[0]

29. T ∗
i ← msbτ (S

′
i[0]⊕ GHASHL(A

′
i, C

′
i))

30. if T ′
i = T ∗

i then bad2 ← true, return 0
31. return ⊥

if A makes a query (N ′
i , A

′
i, C

′
i, T

′
i) such that N ′

i ∈ N

32. T ∗
i ← msbτ (S

′
i[0]⊕ GHASHL(A

′
i, C

′
i))

33. if T ′
i = T ∗

i then bad2 ← true, return 0
34. return ⊥

Fig. 7. Game G0 and Game G1 for the proof of Theorem 2

We evaluate Pr[AG0 sets bad1]. The q
′ decryption queries can be divided into two sets. Q1 is

a set of decryption queries where the corresponding nonces are also used in encryption queries,
and Q2 is a set of decryption queries where the nonces are used only for decryption queries. To
evaluate Pr[AG0 sets bad1], we consider the encryption queries first (which effectively include the
decryption queries in Q1), followed by the decryption queries in Q2. Then we have the following
four cases to consider.

25

Case (A). Ii[j] = 0n holds for some (i, j) such that 1 ≤ i ≤ q and 0 ≤ j ≤ mi.
Case (B). Ii[j] = Ii′ [j

′] holds for some (i, j, i′, j′) such that 1 ≤ i′ < i ≤ q, 0 ≤ j′ ≤ mi′ , and
0 ≤ j ≤ mi.

Case (C). I ′i[0] = 0n holds for some i such that 1 ≤ i ≤ q′ and (N ′
i , A

′
i, C

′
i, T

′
i) ∈ Q2.

Case (D). I ′i[0] = Ii′ [j
′] holds for some (i, i′, j′) such that 1 ≤ i ≤ q′, (N ′

i , A
′
i, C

′
i, T

′
i) ∈ Q2,

1 ≤ i′ ≤ q, and 0 ≤ j′ ≤ mi′ .

The analyses for Case (A) and Case (B) are the same as those for (25) and (26), respectively,
and we have

Pr[AG0 sets bad1 with Case (A)] ≤ (σ + q)(ℓN + 1)

2n
(29)

and

Pr[AG0 sets bad1 with Case (B)] ≤ 222(q − 1)(σ + q)(ℓN + 1)

2n
. (30)

For Case (C), it is easy to verify that

Pr[AG0 sets bad1 with Case (C)] ≤ q′(ℓN + 1)

2n
, (31)

since for each 1 ≤ i ≤ q′ with (N ′
i , A

′
i, C

′
i, T

′
i) ∈ Q2, we have Pr[I ′i[0] = 0n] ≤ (ℓN + 1)/2n.

It remains to evaluate the event in Case (D), which is equivalent to I ′i[0] = incj
′
(Ii′ [0]). Then

by a similar argument to the analysis of (26), for each (i, i′, j′) with (N ′
i , A

′
i, C

′
i, T

′
i) ∈ Q2,

we have Pr[I ′i[0] = incj
′
(Ii′ [0])] ≤ 222(ℓN + 1)/2n. For each 1 ≤ i ≤ q′, we have at most∑

1≤j≤q(mj + 1) ≤ σ + q values of (i′, j′) to consider. We therefore have

Pr[AG0 sets bad1 with Case (D)] ≤ 222q′(σ + q)(ℓN + 1)

2n
, (32)

and obtain

Pr[AG0 sets bad1] ≤
222(q + q′ + 1)(σ + q)(ℓN + 1)

2n
(33)

from (29), (30), (31), and (32).
We next evaluate Pr[AG0 sets bad2] by following the order of encryption/decryption queries

made by A. For each 1 ≤ i ≤ q′, we consider two cases. If N ′
i ̸∈ {N1, . . . , Nj}, where N1, . . . , Nj

denote nonces used in encryption queries before making the i-th decryption query, then the event
T ′
i = T ∗

i is equivalent to T ′
i = msbτ (S

′
i[0] ⊕ GHASHL(A

′
i, C

′
i)), and since S′

i[0] can be treated
as a uniform random n-bit string (which might have been chosen for the previous decryption
query), we have Pr[T ′

i = T ∗
i] = 1/2τ in this case. On the other hand, if N ′

i ∈ {N1, . . . , Nj}, then
there exists an encryption query, (Nj′ , Aj′ ,Mj′), satisfying N ′

i = Nj′ . Let Tj′ and Cj′ be the
corresponding tag and ciphertext. Then the event T ′

i = T ∗
i is equivalent to

T ′
i ⊕ Tj′ = msbτ (GHASHL(A

′
i, C

′
i)⊕ GHASHL(Aj′ , Cj′)). (34)

Now if (A′
i, C

′
i) = (Aj′ , Cj′), then we necessary have T ′

i ̸= Tj′ , and hence (34) cannot hold. If
(A′

i, C
′
i) ̸= (Aj′ , Cj′), then for any Y ∈ {0, 1}n, Y = GHASHL(A

′
i, C

′
i) ⊕ GHASHL(Aj′ , Cj′) has

at most ℓA +1 solutions, which implies that (34) has at most 2n−τ (ℓA +1) solutions. Therefore,
we have Pr[T ′

i = T ∗
i] ≤ (ℓA + 1)/2τ in this case.

From the analyses above, for each 1 ≤ i ≤ q′, we have Pr[T ′
i = T ∗

i] ≤ (ℓA +1)/2τ , and hence
we obtain

Pr[AG0 sets bad2] ≤
q′(ℓA + 1)

2τ
. (35)

The claimed bound is obtained from (27), (28), (33), and (35). ⊓⊔

Finally, we remark that the proof of Corollary 4 is obtained from Pr[AG0 sets bad1] = 0.

26

