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Abstract. The Galois/Counter Mode (GCM) of operation has been standardized by NIST to provide single-
pass authenticated encryption. The GHASH authentication component of GCM belongs to a class of Wegman-
Carter polynomial hashes that operate in the field GF(2128). We present message forgery attacks that are made
possible by its extremely smooth-order multiplicative group which splits into 512 subgroups. GCM uses the
same block cipher key K to both encrypt data and to derive the generator H of the authentication polynomial
for GHASH. In present literature, only the trivial weak key H = 0 has been considered. We show that GHASH
has much wider classes of weak keys in its 512 multiplicative subgroups, analyze some of their properties, and
give experimental results on AES-GCM weak key search. Our attacks can be used not only to bypass message
authentication with garbage but also to target specific plaintext bits if a polynomial MAC is used in conjunction
with a stream cipher. These attacks can also be applied with varying efficiency to other polynomial hashes
and MACs, depending on their field properties. Our findings show that especially the use of short polynomial-
evaluation MACs should be avoided if the underlying field has a smooth multiplicative order.
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1 Introduction

Authenticated encryption modes and algorithms provide confidentiality and integrity protection in a sin-
gle processing step. This results in performance and cost advantages as data paths can be shared.

The Galois/Counter Mode (GCM) has been standardized by NIST [14] to be used in conjunction
with a 128-bit block cipher for providing authenticated encryption functionality. When paired with the
AES [13] algorithm, the resulting AES-GCM combination has been used as a replacement to dedicated
hash-based HMAC [1] in popular cryptographic protocols such as SSH [9], IPSec [11] and TLS [16].

In AES-GCM, data is encrypted using the Counter Mode (CTR). A single AES key K is used to
both encrypt data and to derive authentication secrets. The component that is used by GCM to produce
a message authentication code is called GHASH. GCM also supports Additional Authenticated Data
(AAD) which is authenticated using GHASH but transmitted as plaintext.

The GHASH algorithm belongs to a widely studied class of Wegman-Carter [19, 20] polynomial
MACs. These were originally proposed in context of polynomial evaluation independently by three au-
thors [6, 18, 5]. A good overview of their genealogy and evolution is by Bernstein [3, 2]. The security
bounds known for these algorithms indicate that a n-bit tag will give 2−

n
2 security against forgery [3,

17].
In this paper we give further evidence that this is not only the security lower bound but an upper bound

as well. It can be argued that universal hashes sacrifice communication bandwidth for convenience as
traditional hash-based MACs are designed to reach the information theoretic 2−n bound against message
forgery and are therefore technically somewhat inferior, especially for short MACs. The security against
cycling attacks depends very sharply on the properties of the underlying field.

This paper is structured as follows. We give a description of GHASH in Section 2, followed by a key
observation regarding collisions derived from cycles in Section 3. Section 4 contains an analysis of cycle
lengths and group orders. In Section 5 we discuss the probability of successful forgery. Section 6 briefly
considers targeted attacks against underlying protocols. Section 7 contains a test and experimental results



related to cycle lengths. We discuss the security of other polynomial mac constructions in Section 8 and
conclude in Section 9.

2 Description of GHASH

Let X be a concatenation of unencrypted authenticated data, CTR-encrypted ciphertext, and padding.
This data is split into m 128-bit blocks Xi:

X = X1 || X2 || · · · || Xm.

AES is used to derive the root authentication key H = EK(0). The same AES key K is also used as
the data encryption key. In the present work we assume that H is unknown to the attacker as the scheme
would be otherwise trivially breakable.

GHASH is based on operations in the finite field GF(2128). Horner’s rule is used in this field to
evaluate the polynomial Y .

Ym =

m∑
i=1

Xi ×Hm−i+1. (1)

Figure 1 illustrates how this value is usually computed (together with the CTR mode). The authen-
tication tag is finalized with T = Ym + EK(IV || 031 || 1), assuming that a 96-bit Initialization Vector
(IV) is used. The IV value must never be reused as that would lead to the “forbidden attack” discussed
by Joux in [10].
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Fig. 1. Basic operation of first four rounds of GCM-CTR (without unencrypted authenticated data or padding). Here � denotes
regular modular addition, ⊕ bitwise XOR operation, and ⊗ multiplication in GF(2128). The counter is initialized with IV
and incremented by 1 for each block. This is used to to produce a keystream that is XORed over plaintext blocks Pi to
produce ciphertext blocks Ci (or vice versa). The lower half of the diagram shows how the authentication tag is processed; each
authenticated block is XORed over the state Y and multiplied with H = EK(0). The final processing of the authentication tag
Y is omitted from this picture.



3 Collisions from Weak Keys

It has been observed that if EK(0) = H = 0, the polynomial Y evaluates to zero and the security of
GHASH breaks down. In fact, some sources assume that this pathological case is the only weak key [8].
AES keys K that produce this fixed point are not known.1 However, It is easy to see why such keys
should exist for AES, especially when the size of K is more than 128 bits.

Our main observation is that sometimes the powers of H will repeat in a relatively short cycle. A
trivial example occurs when H is equal to the identity element 1, which will lead to all powers being
equal. Due to the commutativity of addition in Equation 1, a GHASH collision can be achieved by
swapping any two ciphertext blocks Xi and Xj . This amounts to message forgery.

More generally, if we know that Hm−i+1 = Hm−j+1 with i 6= j, we may simply swap ciphertext
blocks Xi and Xj and the resulting authentication tag stays unmodified which amounts to message
forgery. This can be easily observed from Equation 1. Elementary group theory tells us that the powers
of H will repeat in cycles which are determined by n = ord(H), the multiplicative order of H . Hence
we may produce collisions by swapping Xi and Xi+nm for arbitrary i and m.

4 Cycle Lengths and Group Orders

From Lagrange’s theorem in group theory we know that all subgroups divide the group of order 2128−1.
Numbers of this type factor into Fermat numbers

22
n − 1 =

n∏
i=1

22
i−1

+ 1. (2)

We can easily obtain the full factorization of 2128 − 1:

3 ∗ 5 ∗ 17 ∗ 257 ∗ 641 ∗ 65537 ∗ 274177 ∗ 6700417 ∗ 67280421310721. (3)

As this is a “smooth number”, we can see that there are classes of H and therefore K values that produce
cycles of length n = 1, 3, 5, 15, 17, 51, . . .; any one of the 29 = 512 subset products of the primes in
Equation 3 is a valid group order.2

4.1 Illustrating Multiplicative Subgroup Cycles

Due to the peculiar way finite field arithmetic is defined in the GCM standard [14], the identity element
with ord(H) = 1 is:

H = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Apparently this was considered as the “first bit” by those who originally implemented GCM. Otherwise
standard polynomial arithmetic is used with the field representation defined by the reducing polynomial
x128 + x7 + x2 + x+ 1.

The following two elements will produce a cycle of length ord(H) = 3 (the cycle obviously goes
through the identity as well):

H = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94
H = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

These four elements have ord(H) = 5:

1 Some block ciphers such as GOST allow such fixed-point keys to be very easily found.
2 The term smooth number comes from factorization theory and indicates that a number factors into a large number of small

primes.



H = 46 36 BD BD 1C 76 43 D3 4E E4 BB 1B F9 CA 08 4F
H = 92 17 8D 40 26 DA 1D CA 42 96 77 87 30 EB 9A 9E
H = 82 C7 C0 65 DF EF 4B 2C DD CE B9 A8 BD E8 C0 0A
H = D6 E6 F0 98 E5 43 15 35 D1 BC 75 34 74 C9 52 DB

We do not know which actual AES keys produce these H values, nor do we recommend testing against
these particular values as the probability of hitting them is exceedingly small.

Note that a cycle of length such as 15 = 3 ∗ 5 also contains the beforementioned component groups
of order 1, 3 and 5, in addition to the 8 unique elements that can act as a generator of the cycle of order
15. This is entirely analogous to arithmetic in the addition group of integers modulo 15; 0 will generate
a "cycle" of one element when repeatedly added to itself, 5 and 10 will generate a cycles of order 3, the
four elements { 3, 6, 9, 12 } cycles of order 5 and the rest of the numbers will have order 15. This is
illustrated in Figure 2.
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Fig. 2. The cycle of length 15 generated by the element H = C4 F1 7D D8 C3 99 08 FF 93 2A 02 B3 44 22 C8 45. This is one
of eight elements that generate a multiplicative subgroup in GCM’s GF(2128) which is isomorphic to the additive group Z15.
The identity element and subgroups of sizes 3 and 5 are also demonstrated. There are 512 multiplicative subgroups of different
sizes in this particular field.



5 Message Forgery

We know that the field GF(2128) offers a generous serving of 29 = 512 different multiplicative sub-
groups. Figure 3 shows that these are quite evenly distributed in the range due to the nearly log-uniform
progression of the factors.

In our attack the adversary does not know H but will simply attempt a blind forgery by swapping
two (or more) message blocks in transit as discussed in Section 3.

It is easy to show that it is sufficient that the group order divides the distance between swapped
elements. Since each subgroup of size n has exactly n elements, we arrive at the following observation:

Theorem 1. Let n be a number satisfying gcd(2128 − 1, n) = n. Blindly swapping blocks Xi and Xj ,
where i ≡ j ( mod n) will result in a successful forgery with probability of at least n+1

2128
for some random

H .

Proof. The distance congruence implies that the distance between Xi and Xj is a multiple of n. The
gcd(2128 − 1, n) = n condition implies that n is one of the 29 = 512 possible multiplicative subgroup
sizes in GF(2128). If indeed ord(H) | n then H i = Hj and the forgery is successful due to commutativity
of equation 1. We observe that the cycles are unique; there are n members in a subgroup of size n and
the set of n elements is unique to each subgroup size. Hence the probability of hitting one of these cycle
elements is n

2128
. In addition there is the pathological case H = 0 which completes the proof. ut

If the gcd condition given in Theorem 1 does not hold, we have no reason to expect that the forgery
is successful with a probability higher than 1

2128
.

Assuming that an oracle has indicated a successful message forgery, any number of consecutive
forgeries can be produced with probability 1 if the key remains unchanged (IV may change).
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Fig. 3. GCM / GHASH: probability of hitting a multiplicative subgroup (cycle) of given (or smaller) size with a random
authentication generator H in GF(2128). For comparison we also graph the security for GF(2127), which is entirely contained
in the lower and right borders of the graph due to the fact that its multiplicative group order 2127 − 1 is a prime.



6 Targeted Multiple Bit Forgeries

Our attacks enable elaborate message forgeries against authenticated encryption hybrids such as GCM
due to the fact that the CTR encryption mode behaves like a stream cipher; flipping a ciphertext bit will
result the corresponding plaintext bit to be flipped. This is especially true for lightweight protocols that
combine a short binary polynomial MAC with a stream cipher.

If ord(H)|(i− j) the authentication tag will remain valid as long as the equation

Xi ×Hm−i+1 +Xj ×Hm−j+1 = c (4)

holds for some (unknown) constant c related to the authentication tag. If we write Hm−i+1 = Hm−j+1 =
Hc, this can be simplified to

Xi +Xj = c×H−1
c . (5)

We see that the authentication tag will be valid if the sum of ciphertext blocks on the left side of Equa-
tion 5 remains constant. One may therefore flip individual bits in block Xi if the corresponding bit in
Xj is also flipped. Any number of such modifications can be done to a message without affecting the
probability of success (assuming that the same distance is used) indicated by Theorem 1.

7 Testing for AES-GCM Weak Keys

We know that finding weak H values is easy, so a natural question arises on how to determine weak AES
keys K that produce these weak H roots.

To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman
algorithm for discrete logarithms [15]. Our algorithm is based on the following elementary observation:

Theorem 2. Let p be one of the prime divisors given in Equation 3. If and only if p divides ord(H) we
have

H
2128−1

p 6= 1. (6)

Proof. Let g be a generator of the full multiplicative group; ord(g) = 2128 − 1. Then each element
H 6= 0 can be expressed as a power H = gh for some h, 0 ≤ h < 2128 − 1. Raising an element to
power q, where q | 2128 − 1, sets the index modulo q to zero: (gh)q = gqh. Since 2128−1

p is divisible with
all prime divisors qi of the group order except p, we see that the condition of Equation 6 only holds if
h 6= 0 (mod p), which is equivalent to the condition p | ord(H). ut

By performing the exponentiation test of Theorem 2 for each one of the nine prime divisors of 2128−1
in Equation 3, we may completely determine the multiplicative order of H .

7.1 An Efficient Algorithm for Subgroup Size

Raising a finite field element to a Fermat Fn = 22
n
+ 1 power can be done efficiently. It is well known

that squaring operation is “linear” in GF(2n) [7]. For GF(2128), a unique 128×128 bit matrix M0 exists
that satisfies

X2 = M0X (7)

for all X . In the following M0X denotes a matrix multiplication where X is interpreted as a vector of
128 bits and X × X = X2 is a multiplication where X is interpreted as a (polynomial) member of
GF(2128).

By squaring M0, we obtain M1 = M2
0 which satisfies X4 = M1X for all X . By repeating this

process we can rapidly compute M0,M1, . . . ,M6 that satisfy

X22
i

= MiX. (8)



Once the matrices (table lookups) Mi have been initialized, raising the authentication key H to a
Fermat number power can be achieved with:

HFn = MnH ×H. (9)

Therefore this operation can be made with a table lookup (multiplication with Mn) and a single Galois
Field multiplication. The matrices need to be computed only once as they are independent from particular
H .

Since 2128−1 =
∏6

i=0 Fi, checking whether the group order is of H is divisible with Fermat number
Fi involves raising H to all Fermat powers Fj except Fi. For example, to check whether or not group
order is divisible with F3 = 257, we may see if this equation holds:

M6(M5(M4(M2(M1(M0H ×H)×H)×H)×H)×H)×H = 1. (10)

The Fermat numbers F5 and F6 are not primes (unlike F0, F1, F2, F3 and F4 which are indeed the
only known Fermat primes). Here the technique involves first powering H to all Fermat powers except
F5 = 641 ∗ 6700417 or F6 = 274177 ∗ 67280421310721. Then then we use a conventional square-
multiply exponentiation method to individually check these two subfactors.

In practice the matrix Mi multiplication is implemented as byte-based table lookups with seven
16× 256× 128 - bit tables. The initialization of these tables is very fast as Mi+1 can be developed from
Mi with a loop of 16 ∗ 256 table lookups. Significant speedups are achieved by reusing partial results.

7.2 Experimental Results

Using the techniques outlined in the previous subsection, we have developed a reasonably efficient cycle
determination code specifically for GCM’s GF(2128), together with an AES-128 key setup and encryp-
tion function for deriving H values from K values.

Our implementation is currently able to fully determine the order of 25000 AES keys per second on
a low-end Linux laptop that has a single 1.7 gHz AMD V140 processor.

Over couple of days we tested 232 AES-128 keys and found progressively smaller subgroups:

n ≈ 2126.4 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02

n ≈ 2125.6 K = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03

· · ·
n ≈ 296.52 K = 00 00 00 00 00 00 00 00 00 00 00 00 24 3E 8B 40

n ≈ 296.00 K = 00 00 00 00 00 00 00 00 00 00 00 00 37 48 CF CE

n ≈ 293.93 K = 00 00 00 00 00 00 00 00 00 00 00 00 42 87 3C C8

n ≈ 293.41 K = 00 00 00 00 00 00 00 00 00 00 00 00 EC 69 7A A8

As indicated by Figure 3, a significantly smaller group than 2128−32 = 296 was found with 232 effort,
due to the large number of multiplicative subgroup sizes available in GF(2128).

There is clearly room for improvement. The search is fully parallelizable, and hence a massively
parallel FPGA or GPU-based search could be performed to find subgroups of magnitude n ≈ 264 or less.

8 Other Polynomial-Evaluation MACs

The security of Polynomial-evaluation MACs against attacks of this type can be determined from the fac-
torization of the group size in straightforward fashion. Trivial changes can introduce radical differences.

One may consider this difference by comparing the binary field GF (2127) and the prime field
GF(2127 − 1). Here the binary field is perfectly secure due to the fact that 2127 − 1 is indeed a prime



(if the message is processed in 127-bit blocks). However, the latter prime field has a multiplicative order
2127 − 2 which factors spectacularly into 15 pieces and is exceptionally weak against a cycling attack!
We note that the HASH127 MAC is based on the latter [4]. This is illustrated in Figure 3.

If a prime field is to be used, we recommend Sophie Germain primes where q = (p − 1)/2 is also
a prime. Such a field has well-understood cycle properties which may be easily determined using the
Legendre symbol from elementary number theory. A practical alternative to GCM would use a Sophie
Germain prime such as GF (2128+12451), which is slightly larger than the 2128 to deter trivial collisions.

It is clear that risks rise quadratically when GCM is used with a 64-bit block cipher as suggested in
Appendix A of [12]. There is a substantial risk of hitting a bad long-term key and therefore we recom-
mend against using the 64-bit GCM.

9 Conclusions and Future Work

We have shown that the GHASH algorithm has other weak key classes besides the trivial H = 0 case
considered in current literature [8]. This is a result of the multiplicative group of GF(2128) having a
particularly smooth order.

Our attacks allow specific plaintext bits to be targeted by modifying ciphertext bits, which can have
a devastating effect when a short polynomial MAC over a binary field is combined with a stream cipher
in a (lightweight) communication protocol. The probability of randomly hitting an exploitable weak key
with a AES-GCM cryptographic protocol such as SSH [9], IPSec [11] or TLS [16] is very small.

However, malicious players may exploit subtle weaknesses in cryptographic protocols in surprising
ways. One feature of cycle attacks is that an attacker may first test for short cycles and then force a
re-keying event if the test fails; once a long-term key with a short cycle is found, she may exploit it any
number of times.

We have also described a straightforward method of detecting GHASH weak keys. We performed an
exhaustive experiment that found many AES-128 keys that produce H with order below n ≈ 296.

We suggest that binary fields GF(2n) with prime 2n − 1 or Sophie Germain prime fields are used
in constructions of this type as this minimizes the total number of weak keys. This was illustrated with
the surprising observation that GF(2127) is perfectly secure against this type of attack while GCM’s
GF(2128) is not.

One interesting future research direction and open question is the feasibility of mapping the weak H
values to K symmetric keys with various block ciphers other than AES.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: CRYPTO ’96. LNCS, vol.
1109, pp. 1 – 55. Springer (1996)

2. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer
(2005)

3. Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup authenticators. In: EUROCRYPT 2005. LNCS, vol.
3494, pp. 164–180. Springer (2005)

4. Bernstein, D.J.: Floating-point arithmetic and message authentication. http://cr.yp.to/papers.html#
hash127 (1999)

5. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash functions via geometric codes and concate-
nation. In: CRYPTO ’93. LNCS, vol. 773, pp. 331–342. Springer (1994)

6. den Boer, B.: A simple and key-economical unconditional authentication scheme. Journal of Computer Security 2, 65–71
(1993)

7. Ferguson, N.: Authentication weaknesses in GCM. NIST Comment. (May 2005)
8. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based MAC algorithms. In: CRYPTO 2008.

LNCS, vol. 5157, pp. 144–161. Springer (2008)
9. Igoe, K., Solinas, J.: AES Galois counter mode for the secure shell transport layer protocol. IETF Request for Comments

5647 (2009)
10. Joux, A.: Authentication failures in NIST version of GCM. NIST Comment (2006)



11. Law, L., Solinas, J.: Suite B cryptographic suites for IPsec. IETF Request for Comments 4869 (2007)
12. McGrew, D.A., Viega, J.: The Galois/counter mode of operation (GCM). Submission to NIST. (2005)
13. NIST: The advanced encryption standard (AES). FIPS Publication 197 (2001)
14. NIST: Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC. NIST Special

Publication 800-38D (2007)
15. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF (p) and its cryptographic significance.

IEEE Transactions on Information Theory 24(1), 106–110 (1978)
16. Salter, M., Rescorla, E., Housley, R.: Suite B profile for transport layer security (TLS). IETF Request for Comments 5430

(2009)
17. Sarkar, P.: A trade-off between collision probability and key size in universal hashing using polynomials. Designs, Codes

and Cryptography 58(3), 271–278 (2011)
18. Taylor, R.: An integrity check value algorithm for stream ciphers. In: CRYPTO ’93. LNCS, vol. 773, pp. 40–48. Springer

(1994)
19. Wegman, M.N., Carter, J.L.: New classes and applications of hash functions. In: 20th annual symposium on foundations

of computer science. IEEE Computer Society, New York (1979)
20. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and

System Sciences 22, 265–279 (1981)

Document version 20120316120200.


