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Abstract. Universal hash functions are commonly used primitives for fast and secure message
authentication in the form of Message Authentication Codes (MACs) or Authenticated Encryption
with Associated Data (AEAD) schemes. These schemes are widely used and standardised, the most
well known being McGrew and Viega’s Galois/Counter Mode (GCM). In this paper we identify some
properties of hash functions based on polynomial evaluation that arise from the underlying algebraic
structure. As a result we are able to describe a general forgery attack, of which Saarinen’s cycling
attack from FSE 2012 is a special case. Our attack removes the requirement for long messages and
applies regardless of the field in which the hash function is evaluated. Furthermore we provide a
common description of all published attacks against GCM, by showing that the existing attacks
are the result of these algebraic properties of the polynomial-based hash function. We also greatly
expand the number of known weak GCM keys and show that almost every subset of the keyspace is
a weak key class. Finally, we demonstrate that these algebraic properties and corresponding attacks
are highly relevant to GCM/2+, a variant of GCM designed to increase the efficiency in software.
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1 Introduction

The study of information-theoretic message authentication codes and universal hashing was ini-
tiated by Gilbert et al. [18] and Carter and Wegman [12,13,44,45]. Universal hash functions
can be used to construct message authentication codes in both the information-theoretically
secure and computationally secure settings (see [10,45]). Simmons [39] provides a general sum-
mary of the theory of unconditionally secure message authentication. Bernstein [3,5] provides
a thorough description of the genealogy and more recent literature of unconditionally secure
message authentication, including a description of the contributions of Bierbrauer et al. [6], den
Boer [14], and Taylor [42] to polynomial-based hashing. Bernstein [4] also gives an interesting
overview of the security of universal hash function based MACs in the computationally secure
setting. Shoup [38] describes several methods for realising universal hash function families that
are related to polynomials including the evaluation hash [6,14,42] which is a variant of the di-
vision hash or cryptographic CRC of Krawczyk [25] (itself a variant of Rabin’s fingerprinting
codes [33]).

In this paper, we focus on message authentication codes constructed from universal hash
functions that are realised by polynomial evaluation. These are widely used and standardised;
for examples see [5,15,21,24,26,37]. McGrew and Viega’s Galois/Counter Mode (GCM) [30] is the
most widely deployed polynomial-based scheme. The algorithm is generally assumed to be secure,
with a small number of papers containing attacks against the authentication component via the
universal hash function: Ferguson’s attack against truncated GCM tags [17], demonstrating
that the security of short tags is significantly lower than would be expected; Joux’s ‘forbidden
attack’ [23], illustrating the brittleness of GCM under nonce reuse; Handschuh and Preneel’s
extension to Joux’s attack [20]; and Saarinen’s cycling attacks [36], which highlight a weakness
due to the underlying algebraic structure of a hash function based on polynomial evaluation.



Both Handschuh and Preneel [20] and Saarinen [36] have described classes of weak keys for
polynomial evaluation based universal hash functions, with Saarinen particularly focusing on
GCM.

Contributions. A motivation of this work was the observation that all existing attacks against
GCM are algebraic in nature, and in fact seem to exploit a fundamental underlying algebraic
structure of the polynomial-based hash function. The contributions of this paper are to identify
and study some of the properties of hash functions based on polynomial evaluation that are the
result of this underlying algebraic structure. As a result, we are able to describe a general forgery
attack, of which Saarinen’s cycling attack is a special case; our attack can, however, be used
with short messages, applies regardless of the field in which the hash is evaluated, and facilitates
length extension attacks against GCM. Furthermore, we provide a common description of all
published attacks against GCM by showing that the existing attacks are the result of these
algebraic properties of the polynomial-based hash function. We also greatly expand the number
of known weak GCM keys, and show that almost every subset of the keyspace is a weak key
class. Finally, we demonstrate that these algebraic properties and corresponding attacks are
highly relevant to GCM/2+, a variant of GCM designed to increase the efficiency in software.
We note that the attacks presented in this paper do not in any way contradict the security
bounds for GCM given by McGrew and Viega [31]. However, the algebraic properties (and
related attacks) discussed in this paper appear to be an inherent feature of polynomial-based
authentication schemes and therefore should be considered in the security assessment of new
schemes and extensions of existing ones. Additionally, we consider the consequences of a related
property on another polynomial based scheme in Section 9.

A preliminary version of this paper was presented at Fast Software Encryption 2013. This
paper includes additional explanation of our results and further details on their relationship to
the previously known results; Section 9 has been added and we extend our results on weak keys
to include all two element subsets of the keyspace in a specific case.

Structure. This paper is structured as follows. In Section 2 we introduce the notation that
will be used throughout this paper and provide a brief description of the syntax and security
of message authentication codes. In Section 3 we give a basic overview of four schemes that use
hash functions based on polynomial evaluation for message authentication, including GCM and
SGCM. In Section 4, we briefly describe the existing results on the security of polynomial-based
MACs. In Section 5 we describe the main technique used in this paper for the cryptanalysis of
polynomial-based authentication schemes and discuss some features of the resulting attack that
make it more interesting than cycling attacks. Section 6 explains the relationship between the
properties described in this paper and the known results on the security of polynomial-based
MACs. In Section 7 we show that there are many more weak key classes for hash functions based
on polynomial evaluation than have previously been described and suggest a method to realise
a key recovery attack against polynomial-based hash function schemes. In Section 8 we apply
the attacks described in this paper to GCM/2+. In 9 we identify similar techniques that can
be applied to Square Hash, another universal hash function family based on a different form of
polynomial evaluation. Section 10 contains a discussion of the consequences of this paper.

2 Preliminaries

2.1 Notation

We consider a message M parsed as M1|| . . . ||Mm, where each Mi is n bits long and || represents
concatenation of strings. In the syntax of authenticated encryption with associated data [34],



this message consists of associated data A ∈ A that is authenticated but not encrypted and
plaintext P ∈ P that will be encrypted and authenticated.

A family of hash functions will be denoted H = {hH : {0, 1}? → {0, 1}n | H ∈ KH} with each
hash function hH indexed by a key H ∈ KH. A block cipher E is a family of permutations on
{0, 1}n, with each permutation indexed by a key k ∈ KE . The application of a block cipher to
input x ∈ {0, 1}n using key k will be denoted by Ek(x). A nonce will be denoted by N.

A finite field will be denoted by K unless the order of the field has particular relevance, in
which case it will be denoted by Fpr with |Fpr | = pr. The multiplicative group of a field K will
be denoted by K?.

2.2 Universal hash functions

A family of hash functions is said to be ε–almost XOR universal if for every M,M ′ ∈ {0, 1}?
with M 6= M ′ and for every c ∈ {0, 1}n, PrH∈KH [hH(M)⊕ hH(M ′) = c] < ε. Throughout this
paper ε–almost XOR universal will be abbreviated to ε–AXU. This condition was introduced
by Krawczyk [25] under the name ε–OTP–Secure as it is a necessary and sufficient condition
for unconditional MAC security when the output of the hash function is encrypted with the
one time pad in a field of characteristic 2. In this paper we will generally refer to ε–AXU hash
function families; however any remark made that requires an ε–AXU hash function family in
characteristic 2 will also hold for an ε–almost strongly universal [41] or ε–almost ∆ universal
[40] hash function family in any finite field.

A polynomial based hash function family is a common way to realise an ε–AXU hash function
family. Shoup [38] describes several examples of this type of construction; the main example of
interest to this paper is the evaluation hash. In the case of the evaluation hash the message M
determines a polynomial gM =

∑m
i=1Mix

i ∈ K[x], where M = M1|| . . . ||Mm with each Mi ∈ K.
The hash key is an element H ∈ K and we define the hash function by hH(M) = gM(H).

There are several methods for turning a universal hash function into a message authentication
code (see [10,45] for early examples). The two most common methods are Ek(N) + hH(M) and
Ek(hH(M)).

2.3 Syntax

We will follow Black et al. [7] for a description of the syntax of nonce-based message authenti-
cation schemes. A message authentication scheme is a pair of algorithms, Gen and MAC, with
four associated sets: K, the set of possible keys;M, the message space; N , the set of nonces and
T , the set of possible authentication tags.

The key generation algorithm Gen takes as input the security parameter and probabilistically
outputs the shared key k ∈ K. The algorithm MAC takes as input a key k ∈ K, a nonce N ∈ N ,
and a message M ∈M and outputs a tag T ∈ T . The authenticity of a tuple (N,M, T) is verified
by computing MAC(k,N,M): if T = MAC(k,N,M) then the tag is valid, otherwise it is invalid.

2.4 Security

An adversary attacking a message authentication scheme is given access to two oracles: a tag
generation oracle S and a verification oracle V. At the beginning of the experiment Gen is run to
obtain k, then S takes queries (N,M) and returns MAC(k,N,M). The verification oracle takes
queries (N,M, T) and returns 1 if T = MAC(k,N,M) or 0 otherwise. An adversary is said to
successfully forge an authentication tag if they can produce a verification query (N,M, T) so
that V returns 1 when (N,M) was not previously queried to S.



A common restriction of this security notion is to nonce-respecting adversaries where, al-
though the adversary can control the nonce, they never query S for (N,M ′) if they have previ-
ously queried S for (N,M).

For polynomial-based MACs, McGrew and Viega [31], Ferguson [17], and Handschuh and
Preneel [20] all assert that the probability of creating a valid (non-truncated) tag having seen a
single valid (message, tag) pair is approximately m/|K| where the polynomial is evaluated in K
and m is the length of message that the construction operates on. It is worth emphasising that
in this context, m is the maximum permissible message length. This is included in the original
paper [31] but is not made explicitly clear in the later papers [17,20]. In this paper we will
demonstrate the importance of this distinction via a method of forging GCM tags using a longer
message than the one that was given in the valid (message, tag) pair from the tag generation
oracle.

Throughout this paper we will focus on GCM for concreteness however the majority of the
comments apply equally to any other hash function based on polynomial evaluation. Most of the
results in this paper apply equally to both common constructions of MACs from universal hash
functions, either T = Ek(N) + hH(M) or T = Ek(hH(M)), as our results are based on collisions
in the hash function. Where necessary it will be made clear that a remark is dependent on one
of these general constructions or the specific structure of GCM.

2.5 Weak Keys

For any cryptographic algorithm, a relevant question for its security assessment is whether it
contains weak keys. Handschuh and Preneel [20, Sect. 3.1] give the following definition of weak
keys:

In symmetric cryptology, a class of keys [D] is called a weak key class if for the members of
that class the algorithm behaves in an unexpected way and if it is easy to detect whether
a particular unknown key belongs to this class. For a MAC algorithm, the unexpected
behavior can be that the forgery probability for this key is substantially larger than
average. Moreover, if a weak key class [D] is of size C, one requires that identifying that
a key belongs to this class requires testing fewer than C keys by exhaustive search and
fewer than C verification queries.

Handschuh and Preneel [20] and Saarinen [36] have identified weak key classes for GCM and
other polynomial-based hashes; we discuss and extend these classes in Section 7.

3 Polynomial-based Authentication Schemes

We present below a brief description of some of the main authentication schemes based on
polynomial evaluation hash functions that are of relevance to our work. We will also discuss
Square Hash in Section 9; Square Hash is another family of universal hash functions also based
on polynomials.

3.1 Galois/Counter Mode

Galois/Counter Mode (GCM) is an AEAD scheme submitted to NIST by McGrew and Viega
in 2004, with the specification slightly revised in 2005 [30] (although the revision contained ‘no
normative changes [from the 2004 specification]’ ). GCM combines counter mode encryption with
a polynomial evaluation based MAC following the Encrypt–then–MAC paradigm, although the
authentication key is derived from the block cipher key.



AES–GCM encryption takes as input: a key k, an initialisation vector IV (the nonce), plain-
text P = P1|| . . . ||Pp and additional data A = A1|| . . . ||Aa. The key is 128, 192 or 256 bits long,
the IV should preferably be 96 bits long although any length is supported (see [22]), and for each
i, |Pi| = |Ai| = 128 except for perhaps a partial final block. With this input, AES–GCM returns
a ciphertext C = C1|| . . . ||Cp (the same length as the plaintext) and an authentication tag T.

The plaintext is encrypted using AES in counter mode, under key k with counter value
starting at CTR1. If the IV is 96 bits long the initial counter value (CTR0) is IV||0311, otherwise
it is a polynomial evaluation based hash of IV after zero padding (using the hash key described
below). For each i, CTRi = inc(CTRi−1), where inc(·) increments the last 32 bits of its argument
(modulo 232).

The authentication tag is computed from a polynomial evaluation hash (in F2128). The mes-
sage M is parsed as 128-bit blocks (with partial final blocks zero padded) and each block is
interpreted as an element of F2128 . The first block M1 encodes the length of the (unpadded)
plaintext and additional data and will be referred to as the ‘length field’ throughout this pa-
per. This is followed by blocks of additional data M2, . . . ,Ma+1 = Aa, . . . ,A1 and then the
encrypted plaintext Ma+2, . . . ,Ma+p+1 = Cp, . . . ,C1. Note that in this description the labelling
of the blocks Mi are reversed from those given in the original GCM specification as this gives
a neater description of the polynomial used in evaluating the hash function. The hash key H
is derived from the block cipher key: H = Ek(0128). The hash function is then computed as
hH(M) =

∑a+p+1
i=1 MiH

i (where all operations are in F2128). The authentication tag is given by:

TM = Ek(CTR0)⊕ hH(M).

3.2 Sophie Germain Counter Mode

In 2012, Saarinen [36] observed cycling attacks against GCM and other polynomial MACs and
hashes. Following this Saarinen proposed SGCM [35] as a variant of GCM; SGCM differs from
GCM only by the choice of field in which the hash is computed. SGCM uses Fq, where q =
2128+12451, rather than F2128 , as F?q has significantly fewer subgroups than F?2128 . It was claimed
that SGCM offers increased resistance to cycling attacks as a result of this change.

3.3 GCM with Short Multiplications

In 2012 Aoki and Yasuda [1] proposed GCM/2+, a variant of GCM that evaluates the hash
function using ‘short’ multiplications in F264 rather than multiplications in F2128 . The motiva-
tion for this change is to increase the efficiency in software, where multiplications in F2128 are
significantly more expensive than those in F264 . This change has significant implications for the
security of the scheme, which we will discuss in Section 8.

3.4 Poly1305–AES

Bernstein proposed Poly1305–AES in 2005 [5]1. Poly1305–AES takes as input two 128-bit keys,
one for AES and one for the hash (with some specific bits set to zero); a 128-bit nonce; and a
message (a byte string). The output of Poly1305–AES is a 128-bit authentication tag.

The hash of a message is computed by evaluating a polynomial at the secret key (in F2130−5)
and encrypting this by adding (also in F2130−5) the output of AESk(N) before reducing modulo
2128.

1 There is a preliminary version from 2004 on his website: http://cr.yp.to/mac.html

http://cr.yp.to/mac.html


4 The Security of Polynomial-based Authentication Schemes

In this section, we briefly describe the main existing results on the security of polynomial-based
MACs. Because GCM is the most prominent example of a message authentication scheme based
on polynomial evaluation, most of these results were originally described in terms of GCM,
however they can also be applied to more general polynomial-based schemes.

We will show in Section 6 that these results can be described as special cases of the properties
discussed in Section 5.

4.1 Ferguson’s Short Tag Attack

Ferguson’s attack against GCM when short tags are used [17] begins by observing that, because
the output of the hash function is encrypted additively, if the authentication tag is less than 128
bits long then a full collision in the hash function is not required as a collision in the leading bits
of the hash function will still cause a collision in the authentication tag. The second observation
is that, because the polynomial hash is evaluated in a field of characteristic 2, squaring is a
linear operation. So, if message blocks M2i (for some i) are altered by an adversary, the effect
on the authentication tag is a linear function of H. In particular, it is possible for the adversary
to alter these message blocks in a way that guarantees particular bits of the authentication tag
will not change. This means that the effective length of the authentication tag is reduced and
forgeries become more likely.

Ferguson also notes that once a forgery has been observed, the adversary gains information
about H. With each successive forgery, more information about H is derived and the adversary
is able to use this information when manipulating the M2i and increase the number of bits of
the authentication tag that are guaranteed not to change. Eventually the adversary will recover
the entire hash key.

4.2 Joux’s Forbidden Attack

Joux’s ‘forbidden attack’ against GCM [23] requires two messages, M and M ′, that are authen-
ticated with the same (key, IV) pair. Reusing the (key, IV) pair in GCM has the effect of reusing
H, k and N. This allows the adversary to conclude that the XOR of the authentication tags is
the hash of the XOR of the messages:

TM ⊕ TM ′ = (hH(M)⊕ Ek(N))⊕ (hH(M ′)⊕ Ek(N))

= hH(M)⊕ hH(M ′)

= hH(M ⊕M ′)

As the hash is a polynomial evaluated at H and the adversary knows TM , TM ′ , and both
messages, they are able to derive a polynomial that is known to have a root at H, namely
hH(M⊕M ′)⊕TM ⊕TM ′ . Joux suggests that by collecting pairs of messages authenticated with
the same IV, an adversary could compute the GCD of these polynomials and eventually recover
the key. This attack is prevented if we only consider nonce-respecting adversaries.

4.3 Handschuh and Preneel

Handschuh and Preneel [20] describe methods to verify a guess for and to recover the hash key.
The method for verifying a guess H? for the hash key requires an authentication tag on a

message of at least two blocks. Suppose that a valid authentication tag is known for M1||M2,



then pick any M ′2 and compute M ′1 = M1 + (M2 −M ′2)H?. Then the authentication tag for
M1||M2 is valid for M ′1||M ′2 if H = H?.

The key recovery attack extends the one described by Joux, as it does not require nonce reuse.
Given a valid authentication tag on a message M, the adversary performs a verification query
using the same tag but a different message M ′; this message is chosen so that the polynomial
defined by M −M ′ has many distinct roots. A successful forgery implies that the hash key is
one of the roots of this polynomial and so a binary search can be conducted on those roots in
order to recover the hash key. The key recovery method was initially identified by Black and
Cochran [8,9] but extended and generalised by Handschuh and Preneel. This attack is described
as infeasible by Handschuh and Preneel in the case of GCM, due to the blocksize of 128 bits,
however we will show that it is precisely as feasible as Saarinen’s cycling attacks, which are
described below.

Handschuh and Preneel [20, Sect. 3.1] also identify 0 as a weak authentication key for GCM
and other similar constructions as h0(M) = 0 for every message M.

4.4 Saarinen’s Cycling Attacks

In 2012, Saarinen [36] proposed cycling attacks against GCM and other polynomial-based MACs
and hashes. The key observation is that if a hash key H lies in a subgroup of order t, then
Ht = 1 ∈ K and (for any i, j) message blocks Mi and Mi+jt can be swapped without changing
the value of the hash.

For example (ignoring GCM’s length encoding), if H4 = H then blocks M1 and M4 can be
swapped without changing the value of the hash:

hH(M1||M2||M3||M4) = M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

= M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H4

= hH(M4||M2||M3||M1).

The attack is carried out by obtaining a valid tag for a message and performing a verification
query using the same tag with the message formed by simply swapping the position of two
message blocks. Saarinen observes that any t that divides 2128−1 can be used and that swapping
Mi and Mi+t will give a successful forgery with probability at least t+1

2128
.

Saarinen [36] also describes ‘targeted bit forgery attacks’ in which, instead of whole blocks,
only some bits are swapped (subject to the condition that Mi ⊕Mi+t remains constant). This
method permits the adversary more control over the forged message and the corresponding
plaintext; we discuss this further in Section 5.2.

Saarinen [36] also demonstrated that there are many more weak keys than those described
by Handschuh and Preneel by showing that small-order subgroups of K? are weak key classes.
The forgery technique described above is successful if the authentication key is an element of
a small-order subgroup with order dividing the distance between the swapped message blocks.
This gives a method for identifying whether the authentication key is in that class using one valid
(message, tag) pair and a single verification query; these classes of weak keys meet Handschuh
and Preneel’s definition of weak keys (given in Section 2.5).

The observation of this technique and the large number of weak key classes was the motivation
for proposing SGCM (described in Section 3.2).

5 The Algebraic Structure of Polynomial-based Authentication Schemes

This section describes the main observation that allows us to give a general forgery attack
against polynomial-based MAC schemes. We describe a malleability property of polynomial-



based MAC schemes and use this to identify a length-extension attack against GCM. Finally,
we discuss possible methods to generate polynomials with the required properties.

5.1 A Generalised Forgery Attack

LetH be a family of hash functionsH = {hH : {0, 1}? → {0, 1}n | H ∈ KH} based on polynomial
evaluation and let M be an input string. Let hH(M) = gM(H), where gM(x) =

∑m
i=1Mix

i ∈ K[x]
and H ∈ K. Now let q(x) =

∑r
i=1 qix

i ∈ K[x] be a polynomial with constant term zero, such
that q(H) = 0. Then it follows that

hH(M) = gM(H) = gM(H) + q(H) = gM+Q(H) = hH(M +Q),

where Q = q1||q2|| . . . ||qr and the addition M + Q is done block-wise (the shorter message is
zero-padded if required). Thus, given a polynomial q(x) satisfying these properties, it is straight-
forward to construct collisions for the hash function. Every polynomial in the ideal generated
by x2 −Hx has these properties because every element of this ideal has roots at 0 and H. The
ideal generated by f(x) is defined as:

〈f(x)〉 = {r(x) · f(x)|r(x) ∈ K[x]} ⊆ K[x].

In particular, the ideal 〈x2 −Hx〉 contains precisely the polynomials in K[x] that have x2 −Hx
as a factor.

Collisions in the hash function correspond to MAC forgeries by substituting the original
message for the one that yields a collision in the hash function. These forgeries arise from
collisions in the hash function and hence the messages can be substituted without any dependence
on the method or key used to encrypt the output of the hash function. This method allows an
adversary to create forgeries when he has seen a tuple of (nonce, message, tag) by only modifying
the message.

We remark that gM(x) is defined to have a zero constant term, if this were not the case and
the hash of a message was encrypted additively (i.e. T = Ek(N) + hH(M)) it would be possible
to flip bits in the first message block and flip the same bits in the authentication tag to create a
valid forgery. Because of this, the polynomial q(x) that is used to forge via a full hash collision
will always have x as a factor.

One of the main contributions of this paper is to observe that by working with polynomials
in the ideal 〈x2−Hx〉, it is straightforward to produce forgeries for polynomial evaluation based
authentication schemes. For example, Saarinen’s cycling attacks [36] are realised by working with
particular polynomials, namely xt− x (for more detail, see Sections 4.4 and 6.4). The forgery is
successful if (x−H)|(xt − x) and therefore if xt − x ∈ 〈x2 −Hx〉. However, the forgery will be
successful if any polynomial in this ideal is used to mount a similar attack. Furthermore, use of
these polynomials also makes it possible to test for membership of large subsets of the keyspace
with a single valid (message, tag) pair and a single verification query (see Section 7).

We also note that it is possible to extend the set of polynomials that are suitable for use as a
forgery polynomial in the case where the authentication tag is created by additively encrypting
the output of the hash function. This result has also been described by Zhu, Tan, and Gong [46],
who refer to the earlier version of this paper; we give a more algebraic treatment by casting the
result in terms of quotient rings of K[x]. It is possible to predict additive relations between the
output of the hash function on two different messages and, in this case, these differences are
preserved by the additive encryption. This allows an adversary to manipulate the value of the
authentication tag accordingly. If the output of the hash function is encrypted using a block
cipher then these relations are not preserved and so a full collision is required, as described
above.



In this more general setting, we consider the cannonical homomorphism into the quotient
ring:

φ :K[x]→ K[x]/I

f(x) 7→ f̄(x) = f(x) + I

where I = 〈x−H〉.
We observe that it is possible to pick a cannonical representative of each coset; by the

remainder theorem f̄(x) = f(H) + I. This homomorphism partitions K[x] into |K| equivalence
classes, with f(x) ∼ g(x) precisely when f(H) = g(H).

Now, let q(x) = q0 + q1x+ . . . qrx
r ∈ K[x] and Q̃ = q1|| . . . ||qr, so Q̃ is the concatenation of

non-constant coefficients of q(x).

Note that

φ
(
q0 + g

M+Q̃
(x)
)

= φ

(
q0 +

r∑
i=1

(Mi + qi)x
i

)

= φ

(
r∑
i=1

Mix
i

)
+ φ

(
q0 +

r∑
i=1

qix
i

)
= φ (gM(x)) + φ (q(x))

Also

φ
(
q0 + g

M+Q̃
(x)
)

= φ (q0 + (M1 + q1)x+ · · ·+ (Mr + qr)x
r)

= φ (q0) + φ

(
r∑
i=1

(Mi + qi)x
i

)

So

φ(gM(x)) + φ(q(x)) = φ(q0) + φ

(
r∑
i=1

(Mi + qi)x
i

)

which is equivalent to the following statements:

gM(x) + q(x) + I = q0 +
r∑
i=1

(Mi + qi)x
i + I

∃p(x) ∈ I s.t. gM(x) + q(x) = q0 +
r∑
i=1

(Mi + qi)x
i + p(x)

gM(H) + q(H) = q0 +

r∑
i=1

(Mi + qi)H
i + p(H)︸ ︷︷ ︸

=0

hH(M) + (q(H)− q0) = hH(M + Q̃)

This means that if H is a root of q(x) then forging with Q̃ creates a predictable difference
between the hash outputs. Because TM = Ek(N)+hH(M), these predictable differences between
the hash outputs will also be present between the authentication tags.

The description given at the beginning of this section is a special case in which q(H) = q0 = 0.



5.2 Malleability

Saarinen [36] also described ‘targeted bit forgeries’ against GCM where, rather than swapping
the full blocks Mi and Mi+jt, corresponding bits in each ciphertext block are flipped. This is a
special case of the general attack, by using a multiple of q(x).

If q(H) = 0, then α · q(H) = 0 for any α ∈ K and

TM = Ek(N) + hH(M)

= Ek(N) +M1 ·H + · · ·+Mm ·Hm

= Ek(N) + (M1 + αq1) ·H + · · ·+ (Mm + αqm) ·Hm

= TM+αQ

where TM+αQ is the authentication tag for the message M1⊕α · q1|| . . . ||Mm⊕α · qm (recall that
M contains the associated data, encrypted plaintext and the length of both).

If the plaintext is encrypted using a stream cipher (or a block cipher in counter mode)
flipping bits in the ciphertext causes the same bits in the plaintext to be flipped. This allows us
to predict relations between the original plaintext and the forged plaintext (as Ci⊕αqi decrypts
to Pi ⊕ αqi). Because α can be chosen so as to set Ci ⊕ αqi equal to any value chosen by the
adversary (for a single i), an adversary can choose a differential between the original message
and the forged message (in a single block).

If further control over the underlying plaintext is required, several forgery polynomials could
be used. For example, using two forgery polynomials q1 and q2 an adversary can choose constants
α1 and α2 and create the forgery M⊕α1q1⊕α2q2. In the best case, using t polynomials permits
the adversary control over t message blocks. The cost of this extra malleability is that the forgery
is only successful if the authentication key is a root of the greatest common divisor of the two
polynomials. This can be extended to give as much control over the plaintext as required, but
for every extra malleable block the success probability is reduced by at least 1

|KH| .

If the plaintext was encrypted using a block cipher (not in counter mode) then an adversary
would not have this fine control over the plaintext, but would still be able to manipulate the
ciphertext in this way.

This property also permits an adversary to create as many forgeries as there are non-zero
elements in the field (see [8,9,29] for further discussion of multiple forgeries).

5.3 Length Extension

In the GCM specification, the last block input to the hash function (corresponding to the term
M1 ·H in the MAC calculation) describes the length of the plaintext and additional data. The
general attack described in Section 5.2 allows an adversary to manipulate the length field (even
though it does not explicitly appear in the sent message). If an adversary is given a valid tag
for a message, then the content of the length field is known as it correctly encodes the length
of the plaintext and additional data. It is therefore possible to choose a difference in the length
field so that it corresponds to the length of the new message. In particular, forgeries can be
created using high degree polynomial q(x) regardless of the size of the message in the initial
(message,tag) pair.

This is an important remark as it removes one significant limitation on the effectiveness of
cycling attacks against GCM [36], which is the length of the message necessary to launch an
attack. For a cycling attack to be attempted, an adversary requires as many blocks of correctly
authenticated data as there are elements in the subgroup with which he wishes to forge, in order
to swap the first and last blocks. By manipulating the length field any forgery probability can
be realised starting with a valid authentication tag on a single message block.



A common criticism of GCM is that the maximum message length may be restrictive in the
future as data rates increase [17]. However, it follows from our work (and the original security
proofs [31]) that increasing the maximum permissible length would significantly decrease the
security of the scheme.

5.4 Choosing Polynomials

To maximise the probability of a successful forgery it is important that the polynomial used to
attempt a forgery has many distinct roots, as a root with multiplicities increases the degree of the
polynomial (and hence the length of the attempted forgery) without increasing the probability
of success. The näıve way to achieve this is to compute q(x) =

∏
i (x−Hi) for as many Hi as is

required to give the desired forgery probability.

Alternatively, if the polynomial defined by the hash function is evaluated in Fpr and the
irreducible factorisation of xp

r − x is computed in a subfield Fpd , a subset of these factors
can be multiplied together (in Fpd). By choosing distinct irreducible factors, the roots of the
product polynomial will be distinct. Cycling attacks [36] employ a variation on this method.
The factorisation

22
n − 1 =

n∏
i=1

22
i−1

+ 1

allows Saarinen to find factors of x2
128−x in F2[x] which can be used in a cycling attack (although

they are not necessarily irreducible):

x2
128 − x = x(x− 1)

(x3 − 1)

x− 1

(x5 − 1)

x− 1

(x17 − 1)

x− 1
· · ·

= x(x− 1)(1 + x+ x2)(1 + x+ · · ·+ x4)(1 + x+ · · ·+ x16) . . .

To carry out the attack using a subgroup of order t, the factors x, (x−1) and (1 + x+ · · ·+ xt−1)
are multiplied together to obtain the polynomial xt+1− x. In general there is no requirement to
select (x−1) or to use only three factors, for example the polynomial x(1+x+x2)(1+x+. . . x16)
could be used to give a forgery probability of 19

2128
. This is not a cycling attack, as the polynomial

used contains more than two terms so the forgery does not involve simply swapping two message
blocks, but it does rely on the same underlying algebraic structure.

A third option is to use a randomly selected polynomial in Fpr [x]. One potential issue with
this method is the presence of repeated factors; if a factor appears more than once in the fac-
torisation of the forgery polynomial then the degree of the forgery polynomial (and hence the
length of the forged message) is increased, without improving the success probability. Square-
free factorisation has been extensively studied as it is a common first step in many polynomial
factorisation algorithms (for example, see [43, Ch. 14]). It may be feasible to sample polynomi-
als from Fpr [x] randomly and process this polynomial to make it more desirable by removing
repeated factors. However, the presence of repeated factors is only a fairly small problem as the
fraction of polynomials in Fpr with a repeated factor is approximately 1

pr [11,32].

A larger issue is that a random polynomial in Fpr [x] does not necessarily split in Fpr [x].
Irreducible factors in Fpr [x] do not have roots at possible hash keys and so will never evaluate
to zero and hence do not increase the success probability. It is well known that the fraction of
degree d polynomials that is irreducible is approximately 1

d [11,27,32], so this is not a significant
problem as the forgery polynomial will probably be chosen to have a high degree in order to
realise a larger success probability. However, a forgery polynomial consisting of only a few linear
factors and a several high degree irreducible factors will give a low success probability and there
are many polynomials in Fpr [x] with this form. Irreducible polynomials in Fp that are known



to have a root in Fpr would be good candidates for attempting forgeries as the normality of
Fpr/Fp guarantees that these polynomials will split into linear factors. Unfortunately this does
not appear to be a well-studied area.

The main disadvantage of choosing random polynomials is that, although the roots of a
polynomial in K[x] can be identified efficiently (see [2] for example), it would be unlikely that a
non-intersecting subset of the keyspace would be used for a second forgery attempt if the first
was unsuccessful. This rules out utilising the keyspace search described in Section 7.3.

6 The Algebraic Structure of Previous Attacks

In this section, we explain the relationship between the properties described in Section 5 and
the known results against GCM and polynomial hash based MACs, which were described in
Section 4.

6.1 Ferguson’s Short Tag Attack

Ferguson’s attack against GCM when short tags are used [17] begins by the adversary manipu-
lating the message in blocks M2i (for some i). This is equivalent to attempting to forge using a
linearised polynomial, that is, a polynomial q(x) =

∑
i aix

2i for which qj = 0 unless j = 2i for
some i. Linearised polynomials have the property that their roots form a linear subspace of the
splitting field of the polynomial (see [27, Ch 3.4] for an overview). Ferguson uses polynomials
in F2[x] that split over F2128 , so the roots correspond to possible authentication keys and this
guarantees that the each of the roots of the polynomial is distinct.

If the forgery is not successful then the adversary can choose a different (and distinct)
subspace of the keyspace; if the forgery is successful, the adversary can choose a subspace that is
contained within the original subspace. This corresponds to choosing a second forgery polynomial
with either a distinct set of roots or a subset of the roots of the original forgery polynomial.
Because of the structure of the roots of linearised polynomials, it is possible to describe the
roots of a linearised polynomial using a matrix over F2. Multiple successful forgeries reduce the
dimension of the subspace of the keyspace containing the authentication key, which is equivalent
to reducing the number of roots of the forgery polynomial; eventually an adversary will recover
the key by reducing the dimension of the subspace to zero, or equivalently by reducing the degree
of the forgery polynomial to one.

6.2 Joux’s Forbidden Attack

Joux’s ‘forbidden attack’ against GCM [23] is also a specific case of the properties discussed in
this paper. Joux observes that if an adversary obtains two messages that are authenticated using
the same IV then they are able to derive a polynomial that is known to be satisfied by H, by
finding the XOR of the authentication tags and recalling the definition of the polynomial hash.
The suggestion in Joux’s paper is that once one polynomial has been computed, the adversary
may ‘hesitate between a large number of possible H’. The proposed solution to this issue is to
compute more forgery polynomials using more pairs of messages that have been authenticated
with the same IVs and then to compute the GCD of all of these. We note that the techniques
described in Sections 5.2 and 7.3 can also be applied once one successful forgery polynomial has
been identified.

6.3 Handschuh and Preneel

Handschuh and Preneel [20] describe a method to verify a guess for a key and a key-recovery
attack.



The method for verifying a key guess H? corresponds precisely with attempting to forge
using the polynomial x2 −H?x. A successful forgery confirms that either H = H? or H = 0.

The key-recovery attack consists of attempting to create a forgery and then conducting
a binary search through the roots of the polynomial defined by the difference between the
original message and the forged message. As with Joux’s forbidden attack, there is no reason
why the techniques described in Sections 5.2 and 7.3 cannot be applied once one successful
forgery polynomial has been identified. It is also possible to use the length-extension attack
described in Section 5.3 to increase the forgery probability.

6.4 Saarinen’s Cycling Attacks

Saarinen observed that, if a hash key H lies in a subgroup of order t, then Ht = 1 ∈ K and (for
any i, j) message blocks Mi and Mi+jt can be swapped without changing the value of the hash.

We suggest that it is more natural and general to consider the authentication keys that fall
in low order subgroups as roots of a low degree polynomial. Noting that Ht+1 = H is equivalent
to Ht+1−H = 0, we can describe cycling attacks in terms of the more general attack introduced
in this paper using the polynomial

q(x) = (Mi −Mi+jt)(x
t+1 − x),

noting that in fields of characteristic 2 subtraction is the same as ⊕.
This observation rephrases the example given in Section 4.4 as:

hH(M1||M2||M3||M4) =M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

=M1 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M4 ·H4

⊕ (M1 ⊕M4) ·H ⊕ (M1 ⊕M4) ·H4

=M4 ·H ⊕M2 ·H2 ⊕M3 ·H3 ⊕M1 ·H4

=hH(M4||M2||M3||M1)

Using the more general ‘polynomial roots’ description it is possible to forge using any subset
of the keyspace, however if the authentication keys that we wish to attempt to forge with are
the elements of a low order subgroup then the polynomial that is created corresponds precisely
to Saarinen’s cycling attack.

For example, the order three subgroup of F?2128 (identified by Saarinen [36, Sect. 4.1]) plus
the all zero key:

H0 = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H1 = 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

H2 = 10 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

H3 = 90 D0 4D 25 F9 35 56 E6 9F 58 CE 2F 8D 03 5A 94

corresponds to the polynomial (x−H0)(x−H1)(x−H2)(x−H3) = x4 − x.

7 Weak Keys for Polynomial-based Authentication Schemes

In this section we describe the existing results on weak keys for polynomial-based authentication
schemes, expand the known weak key classes, and describe a general method for recovering the
hash key of such a scheme.



7.1 Existing Results

Handschuh and Preneel [20] identify H = 0 as a weak authentication key for GCM and other
similar constructions because h0(M) = 0 for every message M. Following the definition given
in Section 2.5 and because |D| = 1, an adversary is not allowed to test any key by exhaustive
search, nor are they allowed any verification queries. Therefore for a single element subset of
the keyspace D = {H?} to be a weak key class, a nonce-respecting adversary must be able to
identify whether or not H = H? when they are given only (message, tag) pairs of their choosing,
each created using a different IV; they may not test any key by exhaustive search or make any
verification queries.

We note that it is possible for a nonce-respecting adversary to detect whether D = {0}
if |IV| 6= 96: in this case all IVs hash to give the same initial counter value and h0(M) = 0
for every message M so all messages have the same authentication tag (as identified in [31,
Sect. 5]). However, if |IV| = 96 a different initial counter value is used to encrypt the output of
the hash function and so, although the output of the hash function does not change, this cannot
be detected given only the output of the MAC algorithm. Therefore, 0 is a weak key for GCM
only if |IV| 6= 96 and is not, in general, a weak key for polynomial evaluation based message
authentication schemes.

However, the behaviour of the zero key is undesirable; the value of the authentication tag
depends only on IV and not on the message. This means that, given a valid (message, tag) pair,
an adversary would be able to substitute any message and still have a valid pair. This is not
captured by Handshuh and Preneel’s notion of weak keys, due to fact that the adversary is not
permitted any verification queries. The zero key can be considered a weaker key than other keys:
for any key guess it is possible to construct a forgery so that it is successful if the key guess is
correct (see Section 5 and the discussion regarding cosets), but if the guess is the zero key then
any forgery will be succesful if the key guess is correct.

Saarinen [36] demonstrated that the situation is much worse than described by Handschuh
and Preneel, as he was able to find classes of weak keys where the authentication key falls
in a low order subgroup of K?. It is then possible to create a valid forgery by swapping two
message blocks of a valid (message, tag) pair without changing the authentication tag if the
authentication key lies in a subgroup with order dividing the distance between the swapped
message blocks.

This forgery will be successful if and only if the key is an element of such a subgroup and
therefore this provides a simple method for identifying weak keys which requires one valid (mes-
sage, tag) pair and one verification query. These classes of weak keys therefore meet Handschuh
and Preneel’s definition of weak keys (given in Section 2.5).

For example, the subset of authentication keys corresponding to zero and the elements of the
subgroup of order 3 in F2128 is a weak key class. Membership of this subset can be confirmed by a
successful forgery if Mi and Mj are swapped and i ≡ j mod 3. This is equivalent to attempting
a forgery using (a multiple of) the polynomial x4 − x.

7.2 New Weak Key Classes

For each subset of the keyspace it is possible to construct several polynomials that will evaluate
to zero on any element of that set and to a non-zero field element otherwise. By attempting to
forge using one of these polynomials, a successful forgery confirms that H was in the subset of
the keyspace used to define the polynomial and a failed forgery attempt confirms that the H was
not in that subset. This polynomial may not have ‘nice’ binary coefficients like the polynomials
for Saarinen’s cycling attacks but instead will, in general, be an element of F2128 [x]; this is not
problematic.



It follows that almost every subset of the keyspace for a polynomial evaluation based MAC
is weak, regardless of the method of encryption used to form the authentication tag from the
output of the hash function. Using the properties discussed in Section 5 and the observation
above, it is possible to test for membership of any subset of the keyspace using at most two
verification queries. Membership of a subset D that includes the zero key can be tested by
setting q(x) =

∏
H∈D (x−H). This therefore requires one verification query, independent of the

size of D. To test for membership of a subset D that does not include zero, first test whether
H ∈ D∪{0} and then rule out H = 0 using the method described below. This therefore requires
two verification queries, but again is independent of the size of D.

The distinction between subsets including zero or not including zero is a consequence of the
constant term of gM(x) being zero to avoid predictable changes in the output of the hash from
flipping low order bits. Therefore, using Handschuh and Preneel’s definition, a set D of hash
keys for a universal hash based authentication scheme is a weak key class if either: |D| ≥ 3 or
|D| ≥ 2 and 0 ∈ D, regardless of how hH(M) is encrypted to form T.

If the encryption is performed additively (as it is in GCM), then it is possible to extend this
result to include every subset D with |D| ≥ 2, using the observation in Section 5 regarding the
quotient ring K[x]/〈x−H〉. This has also been noted independently by Zhu, Tan, and Gong [46].

Given one valid (message, tag) pair for a single block message and one verification query it
is easy to determine whether or not H = 0. If the adversary attempts to forge using any other
single block message and the same tag, then the forgery is successful if and only if H = 0 as
seen below.

If no length encoding is used:

T = E(CTR0) + (M ·H)

= E(CTR0) + (M ′ ·H)

⇔ (M −M ′) ·H = 0

⇔M = M ′ or H = 0

If a GCM style length encoding is used:

T = E(CTR0) + (length ·H) + (M ·H2)

= E(CTR0) + (length ·H) + (M ′ ·H2)

⇔ (M −M ′) ·H2 = 0

⇔M = M ′ or H = 0

We discuss this issue further in Section 10.

7.3 Key Recovery

Saarinen suggests that once a weak key has been identified (by a successful cycling attack), the
adversary would create many forgeries by further cycling attacks [36, Sect. 9]. Translating this to
the more general polynomial root description: once a successful forgery occurs, the authentication
key is known to be one of the roots of the ‘forgery polynomial’ q(x). Therefore rather than making
repeated ‘cycling forgeries’ with guaranteed success but limited control of the plaintext, the
adversary can aim to recover the authentication key and forge authentication tags for arbitrary
messages. By attempting to forge using a subset of the roots of the forgery polynomial (and
reducing the number of roots in the subset after each successful attempt), an adversary can
gradually recover the authentication key using a method that is independent of encryption
method or key used. This would give a forgery probability less than 1 at each stage, however the



adversary can choose a trade-off between the forgery probability and the speed of recovering the
authentication key. This is analogous to the key recovery attack described by Handschuh and
Preneel [20] (where the subsets are chosen to realise a binary search of the keyspace).

By testing for membership of subsets of the keyspace, it is plausible that an adversary could
recover one bit of the authentication key with each forgery attempt. If q(x) =

∏
H∈Y (x−H),

where Y is the set of authentication keys for which the first bit is zero, then a successful forgery
confirms that the first bit of the authentication key is zero and a failure confirms that the first
bit is one. Repeating this for each bit of the authentication key, the whole key could be recovered
using 128 verification queries.

This would require unfeasibly large messages to be used in the forgery attempts in the case
of authentication keys corresponding to elements of a field with |K| ≈ 2128, but it is a strong
argument against using a hash function based on polynomial evaluation in a field with |K| � 2128.
This may be a direction taken by variants of GCM designed to improve performance (see [1] for
one such example and Section 8 for an analysis of this scheme), however we recommend extreme
caution when considering these modifications. In the case of GCM the size of the subsets that
can be tested is limited to around 256 as the maximum message length is limited.

One advantage of being able to test for membership of arbitrary subsets is that it allows the
adversary to use any partial knowledge of the authentication key that they may have. Note that
in the case of GCM, recovery of the hash key H does not lead to the recovery of the encryption
key k as H = Ek(0).

8 GCM with Short Multiplications

In 2012, Yasuda and Aoki [1] proposed GCM/2+, a variant of GCM that evaluates the hash
function using ‘short’ multiplications in F264 rather than multiplications in F2128 . The motivation
for this change is to increase the efficiency in software, where F2128 multiplications are signifi-
cantly more expensive than F264 multiplications. However this change to the specification makes
the attacks in Sections 5 and 7 much more efficient, as described below.

The most significant difference from the GCM specification relates to the polynomial g that
is used to define the hash function h in GCM/2+. The hash key H is split into two ‘half keys’
H = L||R, where |L| = |R| = n

2 and each message block is considered as two ‘half blocks’

Mi = M
(L)
i ||M

(R)
i . We will use M (L) to denote M

(L)
1 || . . . ||M

(L)
m and similarly for M (R). Of

particular relevance is the message block that encodes the length of the message. The length of

the additional authenticated data is encoded in M
(L)
1 and the length of the ciphertext is encoded

in M
(R)
1 . This is identical to the GCM specification but is noteworthy because GCM/2+ carries

out all operations on half blocks.
The hash function is evaluated in two halves, hH = hL||hR, and

hH(M) = gM(H)

= hL(M (L))||hR(M (R))

= gM(L)(L)||gM(R)(R)

where gM(·)(·) is evaluated in F2n/2 . The key remark at this point is that hH is simply the
concatenation of the evaluation of two polynomials, gM(L) and gM(R) .

GCM/2+ also makes the following changes to the GCM specification:

Block size: GCM/2+ supports the use of a block cipher with any block size (denoted by n).
Tag Encryption: An extra block cipher call is added to the end of the GCM authentication tag

generation algorithm. The authentication tag is computed as T = Ek(hH(M)⊕ Ek(CTR0)).



Final Multiplication: There is no final multiplication by the authentication key in the evalua-
tion of the hash function. The hash function polynomial is gM(H) = MmH

m−1+. . .+M2H+
M1, rather than gM(H) = MmH

m + . . .+M2H
2 +M1H. The requirement for the constant

term of gM(x) to be zero (in order to prevent the predictable bit flipping, as described in
Section 5) can be relaxed due to the introduction of the tag encryption.

We will consider the half-sized multiplications and the removal of the final multiplication
below. The support for other block sizes need not be considered as all of the results in this paper
are independent of the block size of the block cipher. The introduction of an extra block cipher
call slightly affects our results. We now require a full collision and hence a forgery polynomial
with q0 = 0 and q(H) = 0; we are unable to use the general technique described in Section 5
that allows us to utilise any polynomial. We also note that the specification of GCM/2+ makes
no recommendations regarding maximum message length.

The hash function consists of the concatenation of two polynomial hash functions (each
evaluated in F2n/2). There is no interaction between the two sides of the computation until the
output is encrypted with the block cipher. We may, therefore, choose forgery polynomials q(L)(x)
and q(R)(x) for the two polynomial hash functions, as described in Section 5. The forgery will
be successful if q(L)(L) = q(R)(R) = 0. However, as there is no interaction between the two sides
of the gM(H), we can choose (without loss of generality) q(R) ≡ 0. In this case, we have reduced
finding a collision for hH to finding hash collisions for hL.

If we set q(R) ≡ 0 then we are unable to alter the right half of any message block, in particular

M
(R)
1 . In this case we cannot change the length of the ciphertext, but still have total control

over the length of the additional authenticated data (provided that q(L) 6≡ 0). Similarly, we
could choose q(L) ≡ 0 and lose the ability to increase the length of the additional authenticated
data, while retaining control of the ciphertext length. In the GCM specification the maximum
length of the additional authenticated data is significantly larger than the maximum length of
the ciphertext and so, if this is mimicked in the specification of GCM/2+, setting q(R) ≡ 0 does
not significantly reduce the potential for a length extension attack.

We note that it is possible to attack both L and R simultaneously, by choosing both q(R) 6≡ 0
and q(L) 6≡ 0. However, this forgery will only be successful if q(L)(L) = q(R)(R) = 0. As the left
and right components of the hash function behave independently, the overall success probability
is simply the product of the success probability for the components. Choosing q(R) ≡ 0 results
in a success probability of 1 for the right component, which allows the adversary to identify a
subset containing L, without any chance of the forgery failing due to the right half key. This
leads to a faster key recovery than attacking both halves simultaneously; if an adversary can
try every half key by using t queries, then they can cover the entire keyspace with 2t queries
by attacking the two halves separately whereas t2 queries are required to cover the keyspace if
both halves are attacked together.

If the maximum length of the message is close to 264 blocks then we can achieve a significant
success probability. Every half key is a root of x2

64 − x and therefore if messages of at least
264 blocks are permitted a forgery can be made with probability 1 − 1

264
given a single valid

(message, tag) pair. This probability is not quite one, as we may need to manipulate the length
field (the constant term in each polynomial). It is not possible to do this using q(x) = x2

64 − x,
so we will use x2

64−1 − 1. This forgery will fail only if the half key is zero. Alternatively, an
adversary could recover a half key with one valid (message, tag) pair and 65 verification queries
by utilising a binary search (as described in Section 7.3 and [20]), with an additional query at
the end to decide whether or not H = 0.

Not permitting 264-block messages prevents this highly efficient attack, but similar attacks
are still possible. If m-block messages are permitted, it is possible to recover the key with at most
264−logm+logm+1 verification queries. In this case, m keys can be tested with each verification



query, so we will partition the keyspace into 264−logm subsets of size m. The attack begins by
using up to 264−logm verification queries to establish which subset contains the authentication
key. We then conduct a binary search of the appropriate partition, requiring logm queries and
finally use one more query to establish whether or not the half key is zero. This demonstrates
that the attack remains feasible if logm is not much smaller than 64.

For example, if 256-block messages are permitted (as is the case for GCM) then 256 keys can
be tested with a single verification query. By partitioning the keyspace into 28 sets it is possible
to identify which of these sets contains the authentication key using no more than 28 verification
queries and a binary search of the relevant set. In this case, at most 28+56+1 ≈ 315 verification
queries are required to recover a half key.

We also remark that the original GCM proposal [30] includes an appendix describing GCM
with a 64-bit block cipher. In this case the polynomial evaluation is computed in F264 . This
leads to exactly the same problem as described above and the (full) authentication key can be
recovered using approximately 315 verification queries.

The attacks in this section highlight the relationship between the field size, maximum message
length, and the forgery probability or speed of key recovery. We recommend against the use of
GCM/2+ as, even if the maximum message length is a single block, it offers a worse security
guarantee than GCM.

9 Weak Keys for Square Hash

Square Hash was proposed by Etzel et al. in 1999 [16]. It is a universal hash function family,
H = {hk : Zmp → Zp | k ∈ KH}, and is based on MMH [19]. For each k,M ∈ Zmp , hk is defined
by

hk(M) =
m∑
i=1

(Mi + ki)
2 mod p

This is a fundamentally different construction than those considered so far in this paper,
however we will assume that Square Hash is being used in a MAC algorithm, as described in
Section 2.2, and identify classes of weak keys for the hash component of the MAC algorithm.
That is, we will demonstrate sets D for which it is possible to assert whether the hash key is
an element of that set, using fewer than |D| verification queries and fewer than |D| generation
queries.

Handschuh and Preneel [20] have identified a number of weak keys for Square Hash, in
particular those keys with ki = kj for some i and j, which can be identified by a successful
forgery when Mi and Mj are swapped. We demonstrate that every Square Hash key is an

element of several weak key classes of the form: Di,λj,µ = {k ∈ Zmp |λki = µkj}, where λ, µ ∈ Zp.
We assume that an adversary can ask for a message of their choice to be authenticated and then
aims to forge using a different message but the same authentication tag. All of the queries that
our adversary will ask consist of just two message blocks. We will use M1||M2 to represent the
message sent to the MAC generation oracle, and M ′1||M ′2 to represent the message sent to the
verification oracle (with the authentication tag that is valid for M1||M2). The results can be
trivially extended to messages consisting of several blocks provided that Mr = M ′r for all r 6= i, j
and analogous methods can be applied to identify Di,λj,µ for any i 6= j with i, j ≤ m.

The key observation is that:



hk(M) =
m∑
i=1

(Mi + ki)
2 mod p

=
m∑
i=1

M2
i + 2

m∑
i=1

(Mi · ki) +
m∑
i=1

k2i mod p.

So for a fixed key, it is possible to find a hash collision (and hence a MAC forgery) if it is
possible to find two messages M and M ′ that meet the following two conditions:

Condition 1
m∑
i=1

M ′i
2

=
m∑
i=1

M ′i
2

mod p

Condition 2
m∑
i=1

(Mi · ki) =
m∑
i=1

(M ′i · ki) mod p

It is possible to identify whether or not a particular relationship holds between two key
blocks (e.g. λki = µkj for some λ, µ ∈ Zp) using one MAC generation and one MAC verification

query. As |Di,λj,µ| > 1 for every i, j ∈ {1, . . . ,m}, λ, µ ∈ Zp, these are weak key classes for Square
Hash. We now describe a method for identifying the two messages required to determine whether
k ∈ D1,λ

2,µ in the case where the message consists of only two blocks. This is a specific case of a
method that uses techniques from [28].

Condition 1 described above can be satisfied by choosing pairs of messages (M1,M2), (0,M ′2)

such that M2
1 +M2

2 = M ′2
2. We will test for the class of weak keys D1,λ

2,µ where λ, µ 6= 0 using a
well-known formula of Euclid.

We set:

M1 = 2λµ M ′1 = 0

M2 = λ2 − µ2 M ′2 = λ2 + µ2

Then:

M2
1 +M2

2 = (4λ2µ2) + (λ4 − 2λ2µ2 + µ4)

= λ4 + 2λ2µ4 + µ4

= (λ2 + µ2)2

= M ′2
2

Also:

k1M1 + k2M2 = k1(2λµ) + k2(λ
2 − µ2)

= 2k1λµ+
λk1
µ

(λ2 − µ2)

= k1(
λ3

µ
+ λµ)

=
k1λ

µ
(λ2 + µ2)

= k2M
′
2



The hash of (M1,M2) is equal to the hash of (M ′1,M
′
2) and therefore the MAC forgery is

successful if k ∈ D1,λ
2,µ. It can easily be seen that a successful MAC forgery is in fact both necessary

and sufficient for k ∈ D1,λ
2,µ. Using this technique it is possible to recover the relationship between

any ki and kj using no more than 1 valid (message, tag) pair and p verification queries.

10 Discussions and Conclusions

10.1 Choice of Fields

It is true that the security against cycling attacks, as presented in [36], can be increased by
evaluating a hash function in a field with a multiplicative group, the order of which does not
have many factors. However the attack introduced in this paper (of which cycling attacks are a
special case) applies equally well in any finite field, so the claim that ‘The security of polynomial-
evaluation MACs against attacks of this type of attack can be determined from the factorization
of the group size in a straightforward manner’ [36, Sect. 8] is somewhat misleading.

Saarinen’s claim is valid in the sense that the factorisation of |K| − 1 determines the extent
to which the process of computing irreducible factors will succeed; however an attack using∏
H∈D (x−H) will work equally well in every field. In particular, it follows from our work that

the SGCM variant of GCM has the same inherent weaknesses regarding polynomial based forgery
attacks.

The size of the field has another important implication to the security of a scheme, as
demonstrated in Section 8. It is therefore important to choose an appropriately large field in
which to evaluate the polynomial, or to employ some other mechanism to ensure that multiple
copies of a small field do not behave independently (as in GCM/2+ [1]).

10.2 Length Extension

It is unfortunate that including the length of the additional authenticated data and plaintext in
the input to the hash function is not sufficient to prevent the length extension attack presented
in this paper. In schemes that use a GCM–like length encoding, if the value of the length field
were encrypted using a block cipher before being input to the hash function, it would not be
possible to alter the message length as described in Section 5. However, one of the design goals
of GCM was to take advantage of AES pipelining, which precludes the use of the block cipher
to compute the authentication tag.

10.3 Malleability

Part of the reason that the algebraic structure of polynomial hashing is problematic for GCM
is that it allows an adversary to choose the changes that are made to the plaintext in a forged
message. This is because addition in a field of characteristic 2 is used for both the counter mode
encryption and the hash function evaluation.

One way to avoid this issue is to use different operations during encryption and MAC gener-
ation. This is one advantage that the combination of CTR & Poly1305–AES [5] has over GCM,
as in this scheme the MAC is computed using addition in a prime order field while the message
is encrypted using addition in a field of characteristic 2.

An alternative method to increase the difficulty for an adversary attempting to make mean-
ingful manipulations of plaintext is to use a mode of operation other than CTR as this will
prevent the ‘targeted bit forgeries’ [36, Sect. 6] and the analogous forgeries in this paper.

GCM roughly follows the Encrypt–then–MAC paradigm, as is generally perceived to be best
practice (although MAC–then–Encrypt has also been proved secure in the nonce-based AEAD



setting [34]). Despite going against the perceived best practice, using a MAC–then–Encrypt
approach (in addition to the proposed changes described above) would make it harder for an
adversary to create ciphertexts that correctly decrypt to a plaintext known to be related to
a (plaintext,ciphertext) pair obtained from a query. We note that we have not analysed this
construction and that the introduction of other weaknesses caused by making these changes has
not been ruled out.

10.4 Weak Keys

The weak key classes that are identified in Section 7 cause the forgery probability to be higher
than expected because an adversary can detect whether the authentication key that is being
used is a member of that class and can then forge with probability one.

The broader issue with polynomial evaluation based hash functions is that it is possible to
test for membership of large subsets of the keyspace with only one or two verification queries and
once an adversary has successfully confirmed membership of a subset they can either continue
to forge messages or conduct a search of a much reduced keyspace. This is an unusual and
undesirable property of a cryptosystem.

It is interesting that the two-element subsets of the keyspace containing zero are always weak
key classes, whereas two-element subsets not containing zero may be weak depending on how
the output of the hash function is encrypted.

This perhaps suggests a problem with the definition of a weak key class. In our opinion the
definition is correct; the observations made in this paper are unavoidable properties of hash
functions based on polynomial evaluation that result from the algebraic structure of the con-
struction. The distinction between the two methods to encrypt the output of the hash function
arises from the use of the same algebraic structure to encrypt additively and the fact that the
application of a block cipher removes this structure so requires a full collision. These results are
therefore not best described in terms of the number of weak keys.

The most important discussion around this issue is whether an algorithm in which almost
every subset of the keyspace is a weak key class is a weak algorithm or whether this is a property
of the construction that, although highly undesirable, is not considered to reduce the security
of the scheme to an unacceptable level. We suggest that, in the case of GCM, it is the latter; in
other polynomial-based MAC schemes with different parameters it may be the former and this
property must be considered when designing and evaluating schemes.
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