
Revisiting MAC Forgeries, Weak Keys and Provable
Security of Galois/Counter Mode of Operation

Bo Zhu, Yin Tan, and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
{bo.zhu,y24tan,ggong}@uwaterloo.ca

Abstract. Galois/Counter Mode (GCM) is a block cipher mode of operation widely adopted
in many practical applications and standards, such as IEEE 802.1AE and IPsec. We demon-
strate that to construct successful forgeries of GCM-like polynomial-based MAC schemes,
hash collisions are not necessarily required and any polynomials could be used in the attacks,
which removes the restrictions of attacks previously proposed by Procter and Cid. Based
on these new discoveries on forgery attacks, we show that all subsets with no less than two
authentication keys are weak key classes, if the final block cipher masking is computed addi-
tively. In addition, by utilizing a special structure of GCM, we turn these forgery attacks into
birthday attacks, which will significantly increase their success probabilities. Furthermore,
we provide a method to fix GCM in order to avoid the security proof flaw discovered by
Iwata, Ohashi and Minematsu. By applying the method, the security bounds of GCM can
be improved by a factor of around 220. Lastly, we show that these forgery attacks will still
succeed if GCM adopts MAC-then-Enc paradigm to protect its MAC scheme as one of the
options mentioned in previous papers.

Keywords: Galois/Counter Mode, GCM, MAC forgery, weak key, birthday attack, provable
security, MAC-then-Enc

1 Introduction

Information security plays an increasingly important role due to the fast growth of computer net-
works. How to prevent personal data from unauthorized access by third parties is one of the fun-
damental problems of any system design, and it highly depends on the security levels of underlying
algorithms to protect confidentiality and authentication. However, in practice, system designers and
software developers may have restrained time and resources to learn and understand the detailed
designs and principles of sophisticated cryptographic algorithms and protocols, and may make poor
decisions in their system or software development and put users’ personal data in danger. Therefore,
bridging the gap between academic research and practical developments and introducing unified
interfaces for both confidentiality and authentication are very important tasks for researchers. We
believe these can serve as some of the goals of the CAESAR competition calling for authenticated
encryption designs [3].

Generally, block ciphers are used with various modes of operation, such as CCM, GCM and OCB,
to compute ciphertexts and message authentication codes to provide confidentiality and authentica-
tion respectively. It would be very important to better investigate and understand existing designs
of modes of operation when designing new authenticated encryption schemes. Galois/Counter Mode
(GCM) [4, 12] is an Authenticated Encryption with Associated Data (AEAD) mode [18] for block
ciphers, which possesses many excellent features. GCM can be easily and efficiently implemented
in both software and hardware. The computations of GCM can be done in parallel, and only small
portions need to be recomputed if one block of input is changed. The theoretical proofs of GCM are

2 Bo Zhu, Yin Tan, and Guang Gong

given by its designers McGrew and Viega in the paper [13]. GCM is included in NSA Suite B Cryp-
tography [15], and is widely adopted by many standards and protocols, such as IEEE 802.1AE [7]
and IPsec [21].

The design of GCM is based on Counter Mode for encryption and a polynomial-based MAC
scheme for authentication. The security of GCM has been assessed by many researchers [5, 6, 10].
Recently, the algebraic structures of its underlying polynomial-based MAC scheme were analyzed
by Saarinen [19], and by Procter and Cid [16, 17]. Procter and Cid showed that almost all subsets
of these kinds of polynomial-based MAC schemes are weak key classes. In 2012, Iwata et al. found
a flaw in GCM’s original security proofs, and presented new security bounds for it [8, 9]. Under
such circumstance, further investigation on these attacks and the security bounds would be very
important for usage of GCM and future designs of authenticated ciphers.

Our Contributions. The main contributions of this paper are as follows.

– We reveal (and demonstrate by practical examples) that hash collisions are not necessarily
required for forgeries of GCM-like polynomial-based MAC schemes, and polynomials with non-
zero constant terms can be used for the attacks. These remove certain restrictions of MAC
forgery attacks proposed by Procter and Cid.

– Based on the above discoveries on MAC forgeries, we show that all non-singleton subsets (i.e.
with more than one element) of authentication keys are weak key classes, if the final masking
by block ciphers is computed additively. This is an extension to previous analysis of Procter
and Cid.

– Based on a special structure of GCM, we show how to turn these forgery attacks into birthday-
bound based attacks by attacking the encryption oracle instead of the verification or decryption
oracle. This can significantly increase success probabilities and avoid certain countermeasures.

– We provide a method to fix GCM in order to avoid the security proofs’ flaw discovered by Iwata
et al. By applying this method, the security bounds of GCM can be improved by a factor of
around 220.

– We indicate that even if GCM is changed to MAC-then-Enc paradigm to make adversaries
more difficult to attack MAC schemes (one of the options mentioned in [16, 17]), these forgery
attacks can still work.

The rest of this paper is organized as follows. The next section gives the background knowl-
edge and notation used throughout the paper. Section 3 presents our improved forgery attacks
on polynomial-based MAC schemes, and studies weak key classes of GCM-like schemes. Section 4
shows how to turn these forgery attacks on GCM into birthday attacks to improve the success
probabilities. The method to fix GCM and the new security bounds are given in Section 5. The
attacks on the revised version of GCM in MAC-then-Enc paradigm are discussed in Section 6. The
last section concludes the paper and mentions potential future work. The appendix provides several
computational examples to demonstrate the MAC forgery attacks proposed in this paper.

2 Preliminaries

This section firstly clarifies the notation that will be used throughout the paper. Secondly, the
design of GCM and adversarial models will be briefly introduced.

2.1 Notation

Following the notation in [8], strn(x) denotes the n-bit binary representation of the integer x,
where the leftmost bits are interpreted as the most significant bits (MSB) of x, and int(s) returns
the integer converted from the bit-string s.

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 3

The operator || concatenates two bit-strings, e.g. s1||s2. len(s) returns the bit-length of s. msbn(s)
represents the leftmost n bits of s, and lsbn(s) is the rightmost n bits. 0l is used to denote a bit-
string with l-bit 0’s, and 0311 is the concatenation of 031 with one 1. For a set S, the number of
elements in S is denoted as |S|.

The function inc(s), where len(s) = 128, is defined as

inc(s) = msb96(s)||str32(int(lsb32(s)) + 1 mod 232),

and incn denotes applying inc for n times.

2.2 A Brief Introduction to GCM

GCM is an AEAD scheme who adopts Counter Mode for encryption, and a polynomial-based hash
algorithm for message authentication. In this paper, we concentrate on the version of GCM based
on a 128-bit block cipher, which is the major usage case proposed in its specification. The finite
field GF(2128) adopted in GCM uses the generating polynomial 1 + x+ x2 + x7 + x128.

The authenticated encryption of GCM requires four bit-string inputs, an initialization vector
(IV, or nonce) N , a master key K, a plaintext P and an associated data A, and then produces a pair
(C, T), where C is the ciphertext which has the same length as P and T is a t-bit authentication
tag, where t ≤ 128. The authenticated decryption algorithm takes N , K, C and T , and returns P
if T is valid or FAIL if T does not pass the verification. The lengths of these variables should meet
the following requirements [13]:

0 ≤ len(N) ≤ 264,
0 ≤ len(P) ≤ 128(232 − 2),
0 ≤ len(A) ≤ 264.

We use EK(x) to denote the block cipher encryption with the master key K. Suppose len(P) =
128(n− 1) +m, where 1 ≤ m ≤ 128. Segment P into a sequence of message blocks P1||P2|| · · · ||Pn,
where len(Pi) = 128 for 1 ≤ i ≤ n− 1 and len(Pn) = m. The authentication key H is derived from
the master key by computing H = EK(0128).

Algorithm 1 ([13]) The steps of GCM encryption are described as follows.

N0 =

{
N ||0311 if len(N) = 96,

GHASHH(N) if len(N) 6= 96,

Ni = inc(Ni−1) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn))
C = C1||C2|| · · · ||Cn,

where GHASH is a keyed hash function that will be described later.

GCM follows the Enc-then-MAC (EtM) paradigm, i.e. computing authentication tags from
ciphertexts. The authentication tag T is computed by GMAC, defined as

T = GMACH,t(A,C) = msbt(GHASHH(A,C)⊕ EK(N0)). (1)

GHASHH(·, ·) is a polynomial-based hash function defined over GF (2128), and GHASHH(s)
denotes GHASHH(00, s), i.e. the first parameter is an empty bit-string. Suppose w and v are two
bit-strings, len(w) = 128(n1 − 1) + m1 and len(v) = 128(n2 − 1) + m2 for 1 ≤ m1,m2 ≤ 128.
Segment w and v into w1||w2|| · · · ||wm1

and v = v1||v2|| · · · ||vm2
respectively, where len(wi) = 128

4 Bo Zhu, Yin Tan, and Guang Gong

for 1 ≤ i ≤ n1 − 1, len(vi) = 128 for 1 ≤ i ≤ n2 − 1, len(wn1) = m1, and len(vn2) = m2. By using
the following notation,

Bi =



wi for 1 ≤ i ≤ n1 − 1,

wi||0128−m1 for i = n1,

vi for n1 + 1 ≤ i ≤ n1 + n2 − 1,

vi||0128−m2 for i = n1 + n2,

str64(len(w))||str64(len(v)) for i = n1 + n2 + 1,

the computation of GHASHH(w, v) is defined as

n1+n2+1∑
i=1

BiH
n1+n2+2−i.

One important requirement when using GCM is that nonces must be distinct. Once an IV
is reused, the counter numbers Ni used in the Counter Mode of encryption will be the same,
and thus exclusive-oring two ciphertexts will eliminate the key stream and get information about
plaintexts. Another reason of forbidding IV reuse is well explained in Joux’s forbidden attack [10],
i.e. same nonces will result in identical EK(N0) used in the equation (1) and by exclusive-oring two
authentication tags we will get an equation on H over finite fields that may be easily solved.

For simplicity, in the following content, A, P and C are considered being multiples of 128 bits,
and N is also a multiple of 128 bits if len(N) 6= 96, such that all inputs do not need to be padded. If
not stated explicitly, A is regarded as an empty bit-string. Moreover, as in [17], the indices of input
blocks are reversed, e.g. P = Pn||Pn−1|| · · · ||P1 instead of P = P1||P2|| · · · ||Pn, for convenience of
polynomial representations.

2.3 Security Definitions

For a fixed but unknown master key K of GCM, adversaries are given two oracles, encryption oracle
and decryption oracle. Adversaries can feed a tuple (N,P) to the encryption oracle to get (C, T),
or query the decryption oracle with (N,C, T). The decryption oracle will return P if T passes
verification, or FAIL otherwise. Adversaries are assumed to be nonce-respecting, i.e. no repeating
nonces are queried to the encryption oracle, which is not allowed in GCM or Counter Mode.

One of adversaries’ goals is to construct MAC forgeries. In this case, adversaries aim to create
a valid authentication tag T for (N,C), which has not been queried yet. Adversaries can make
any queries except (N,C) to the encryption and decryption oracles. If adversaries target only
MAC schemes, they can be given two oracles, authentication oracle and verification oracle. The
authentication oracle produces T for queried (N,C); while the verification oracle returns FAIL if
T is not valid for (N,C), or returns PASS otherwise.

Analysis of a cryptographic algorithm’s weak keys is a very important assessment. Handschuh
and Preneel give a theoretical definition of weak keys for symmetric cryptosystems in [6]: “A class of
keys is called weak if for members of the class the algorithm behaves in an unexpected way and if it
is easy to detect whether a particular key belongs to this class.” For example, for a MAC scheme, the
unexpected behavior may be that MAC forgeries can be made in a very high probability. Moreover,
to determine whether a key is in the class K, the number of queries has to be fewer than exhaustive
search’s, i.e. |K|.

3 Revisiting Weak Keys of Polynomial-based MACs

In [16, 17], Procter and Cid study the weak keys and MAC forgeries of polynomial-based MAC
schemes, including the one used in GCM. This is a more general model upon Saarinen’s cycling
attack [19].

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 5

The main framework of MACs, in which they are interested, is based on evaluation hash [20]. Let
F be a finite field of characteristic 2,H ∈ F be the authentication key, andM = Mm||Mm−1|| · · · ||M1

be a message to be authenticated, where Mi ∈ F. Define a polynomial gM (x) ∈ F[x] as

gM (x) =

m∑
i=1

Mix
i.

Then the function hH(M) = gM (H) is called evaluation hash. The hash function outputs are
masked by block cipher encryptions to produce the authentication tags, such as EK(N)⊕ hH(M)
and EK(hH(M)). Poly1305-AES [2], and the MAC schemes in GCM and SGCM [19] are all within
this framework.

We summarize the main observation by Procter and Cid in [17] as follows. For the convenience
of the readers, we include a short proof of their result.

Result 1 ([17]) With the same notation as above, if there exists a polynomial f(x) ∈ F[x] without
a constant term, such that f(H) = 0, then forgeries of MAC schemes based on the evaluation hash
hH(x) can be made.

Proof. Assume

f(x) =

n∑
i=1

Fix
i,

and F = Fn||Fn−1|| · · · ||F1. Given a message M , we have

hH(M ⊕ F) = gM⊕F (H) = gM (H)⊕ f(H) = gM (H) = hH(M),

where the shorter one of M and F in M ⊕ F is padded with zeros. We obtain a collision on the
evaluation hash, and thus a MAC forgery of the MAC scheme. ut

After obtaining a valid tuple (N,C, T) by eavesdropping or active querying, the adversaries query
the verification oracle about (N,C ⊕ F, T). If the result is not FAIL, then a valid MAC is forged.
Please note that the polynomial f(x) always has x as its factor, and is in the ideal 〈x2 ⊕Hx〉.

For an unknown H, the success probability of MAC forgery is directly related to the choice
of f(x). Procter and Cid propose three ways to select f(x): (1) The first way is to use f(x) =
x
∏

i(x⊕Hi) to involve as many Hi as desired; (2) The second way is based on irreducible factors

of x2
128 ⊕ x, which includes Saarinen’s cycling attack as a special case; (3) The third is just using

random polynomials.

In the next section, we will show that, a MAC forgery can also be made for any polynomial
f(x) ∈ F[x], which is an extension of Result 1.

Moreover, based on these analyses, Procter and Cid point out that almost any subset of the key
space of these polynomial-based MAC schemes is a weak key class.

Result 2 ([17]) Let H be a subset of the authentication key space of the MAC scheme based on
evaluation hash. If 0 ∈ H and |H| ≥ 2, or |H| ≥ 3, then H is weak.

Proof. If |H| ≥ 2 and 0 ∈ H, one query forged by f(x) = x
∏

i(x ⊕ Hi) can be fed into the
verification oracle, where Hi ∈ H. To further determine whether 0 is in the set H, two queries by
distinct f(x) ∈ 〈x2 ⊕Hx〉 have to be made, so all elements in a subset |H| ≥ 3 can be detected by
using two queries. ut

6 Bo Zhu, Yin Tan, and Guang Gong

3.1 New Improved MAC Forgery Attacks

The MAC forgery attacks proposed by Procter and Cid are constructed upon hash collisions, and
one of the attacks’ restrictions is that the chosen polynomial f(x) should always have x as a factor,
or equivalently do not have a constant term. We will demonstrate below how to create MAC forgeries
not based on hash collisions, and without the zero constant term restriction.

For the MAC schemes as in GCM and SGCM, whose final masking by block ciphers is computed
additively, we give the following theorem, where the notation is the same as above.

Theorem 1. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, for the evaluation hash based
MAC scheme T = EK(N)⊕ hH(M), a MAC forgery can be constructed.

Proof. Let Q∗ be the concatenation of coefficients Qn||Qn−1|| · · · ||Q1 without Q0, and q(x) =
q∗(x)⊕Q0. Since q(H) = 0, we have

T = hH(M)⊕ Ek(N) = hH(M)⊕ Ek(N)⊕ q(H),

which implies
T ⊕Q0 = Ek(N)⊕ hH(M)⊕ q∗(H)

= Ek(N)⊕ gM (H)⊕ q∗(H)
= Ek(N)⊕ gM⊕Q∗(H).

This means if we know a polynomial q(x) such that q(H) = 0, we can exclusive-or coefficients of
q(x)’s non-constant terms with the captured message, to obtain a valid tuple as (N,M⊕Q∗, T⊕Q0),
if the authentication tag T is computed as Ek(N)⊕ hH(M). ut

Please note that the method in the above proof does not rely on a hash collision, and the
constant term Q0 is not required to be zero. We also want to mention that Theorem 1 leads us to
an extension to the original analysis of Procter and Cid on weak keys, which will be discussed in
the next subsection.

A practical attack example on GCM, by using the method in Theorem 1 (along with a length
extension technique), is given in Appendix A.1.

For the sake of completeness, we also give the following theorem, which works for both EK(N)⊕
hH(M) and EK(hH(M)).

Theorem 2. Given any polynomial q(x) ∈ F[x] such that q(H) = 0, a forgery can be made on the
MAC schemes based on evaluation hash by using α(x)q(x), where α(x) is a polynomial without a
constant term.

Proof. Since q(H) = 0, we have α(H)q(H) = 0. Because α(0) = 0, α(0)q(0) = 0. Therefore, we can
apply the same method in Result 1 to construct hash collisions and thus MAC forgeries. ut

Theorem 2 can be seen as covered by the analysis of Procter and Cid, since α(x)q(x) is still in
the ideal 〈x2⊕Hx〉. However, Theorem 2 is insufficient to deduce the result about weak key classes
(Theorem 3 in the next subsection) supported by Theorem 1.

3.2 All Non-singleton Subsets of Keys are Weak

To detect whether an authentication key H is in a subset H of the key space, the number of queries
should be less than |H|. If |H| = 2, only one query can be made, and thus whether the used key
is zero cannot be determined by using polynomials in 〈x2 ⊕ Hx〉, since it will need at least two
queries. However, based on the analysis of Theorem 1, we may use polynomials in 〈x⊕H〉 instead
of 〈x2 ⊕Hx〉 to make one query and determine whether the authentication key is in H.

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 7

Theorem 3. For an evaluation hash based MAC scheme, T = EK(N) ⊕ hH(M), if given a valid
tuple (N,M, T), then making one query to the verification oracle is enough to determine whether
the authentication key H ∈ F in use is in a subset of keys H = {H1, H2, · · · , Hn} ⊆ F.

Proof. First define a polynomial

q(x) =

n∑
i=0

Qix
i =

n∏
i=1

(x⊕Hi),

where Qi ∈ F for 0 ≤ i ≤ n. Let M ′ = M ⊕Q∗ and T ′ = T ⊕Q0 with zero pre-padding for shorter
strings, where Q∗ = Qn||Qn−1|| · · · ||Q1. Query the verification oracle with the tuple (N,M ′, T ′). If
the verification oracle does not return FAIL, the authentication key H in use is known to be in H.
H is not in H if FAIL is returned.

It is easy to see H is in H if and only if (N,M ′, T ′) passes. If H is in H, then q(H) = 0, and
thus (N,M ′, T ′) is valid. On the other hand, the validity of (N,M ′, T ′) implies q(H) = 0, so H
must be a root of q(x) = 0, which is among all the elements of H. ut

The steps in Theorem 3 are similar to those in [17], except the absence of the steps to determine
whether 0 is in H.

Based on Theorem 3, we have the following corollary about weak key classes.

Corollary 1. For an evaluation hash based MAC scheme, T = EK(N) ⊕ hH(M), any subset of
authentication key space, H, is weak if |H| ≥ 2.

Proof. Due to Theorem 3, after obtaining a valid tuple (N,M, T) by passive eavesdropping, whether
the authentication key H in use is the subset H can be determined by only one query, which is
efficient compared to the size of the subset, i.e. 1 < |H|.

On the other hand, once H is known to be in the subset H, H is a solution for q(x) =
∏n

i=1(x⊕
Hi) = 0, where Hi’s are all elements of H. Then the polynomial α(x)q(x) with an arbitrary non-zero
α(x) can be used to construct more MAC forgeries. ut

4 Turning MAC Forgeries into Birthday Attacks

In [8], Iwata et al. find a flaw in the security proofs of GCM given by McGrew and Viega in [13].
The main problem is that inc may be translated to multiple distinct forms in terms of exclusive-ors,
such that the equation

incr1(GHASHH(Na)) = incr2(GHASHH(N b)) (2)

may have many more solutions than the desired lN + 1 for any given r1, r2, Na and N b, where
0 ≤ r1, r2 ≤ 232 − 2, Na 6= N b, and lN is the maximum number of blocks for nonces.

Result 3 ([8]) For a randomly chosen H, the probability for the equation (2) to hold is at most

222(lN + 1)/2128.

Furthermore, for n queries to the encryption oracle with the nonces N i’s, where 1 ≤ i ≤ n, the
probability of having a collision on counter numbers, i.e. Na

r1 = N b
r2 for certain r1, r2, a and b, is

at most
222(n− 1)(σ + n)(lN + 1)

2128
, (3)

where 0 ≤ r1, r2 ≤ 232 − 2, 1 ≤ a, b ≤ n, the total length of plaintexts is at most σ blocks, and Na

and N b are the corresponding nonces for the counter numbers Na
r1 and N b

r2 respectively.

8 Bo Zhu, Yin Tan, and Guang Gong

4.1 New Birthday-bound-based MAC Forgery Attacks on GCM

The original forgery attacks on polynomial-based MAC schemes, including our attacks described in
Section 3.1, are targeting algebraic properties of underlying evaluation hash functions, e.g., GHASH
in the case of GCM. The forged queries cannot be fed to the encryption oracle directly because two
queries with identical nonces are forbidden.

The work by Iwata et al. reminds us that GCM has a very special design, in which GHASH is
reused for generating initial counter numbers if len(N) 6= 96. This makes GHASH attackable in the
encryption oracle. Precisely, assuming H 6= 0, the attack consists of the following three steps:

1. Either passively or actively obtain a valid tuple (N,P,C), where len(N) 6= 96. Please note that
we do not need the authentication tag T here.

2. Construct a polynomial q(x), and properly apply xdq(x) to N to derive N ′, where d ≥ 1. Feed
the pair (N ′, P) to the encryption oracle, and get the corresponding ciphertext C ′. If C ′ = C,
we know that q(H) = 0.

3. Apply q(x) to other captured messages and tags to construct more forgeries, or recover the
authentication key by binary search or solving q(x) = 0.

If H = 0, the outputs of GHASH will be the same, and thus it can be easily detected.

One advantage of targeting the encryption oracle is that we can collect all query results into
a set to perform birthday attacks. For any query to the encryption oracle, we can always get
corresponding ciphertext and tag as long as the nonce is not previously queried. Using the same
notation in the specification of GCM in Algorithm 1, collect EK(N1)’s, which are derived from
exclusive-oring P1’s with C1’s, into a set S. If a collision occurs in S, e.g. EK(Na

1) = EK(N b
1),

where Na
1 and N b

1 are the corresponding first counter numbers for the nonces Na and N b, then we
have Na

1 = N b
1 as well. Hence a collision GHASHH(Na) = GHASHH(N b) is found. This birthday

collision attack can have a significantly higher success probability than the original attacks on the
verification or decryption oracle.

Assume the polynomial q(x) is chosen randomly and independently, and H 6= 0. The success
probability for the original trial-and-error method on the verification or decryption oracle is

n(lN + 1)/2128, (4)

where n is the number of queries that have been made; while the upper bound for the probability
of the birthday attack is (see Lemma A.9 in Section A.4 of [11])

0.5 · n2(lN + 1)/2128. (5)

In addition to the first encrypted counter blocks, we can also collect the following blocks into
S, in which way we may achieve even larger collision probabilities. For example, EK(Na

i) may
be equal to EK(N b

j) for certain i and j. The collision probability for this case can be obtained
from the equation (3) in Result 3. Although the success probability of this case is higher than the
previous methods of trial-and-error and birthday attacks, the collision Na

i = N b
j may need more

time complexity to be utilized for MAC forgery attacks. One naive way is to try every polynomial
over the finite field that can be converted from incr with the specific r, and this will cost 222 time
at most.

Moreover, if certain countermeasures on the decryption or verification oracle are carried out,
such as forbidding nonce reuse, the original attacks would fail or be detected, but the attacks on
the encryption oracle will be unaffected.

A practical attack example on non-96-bit nonces is given in Appendix A.2.

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 9

5 Revisiting Provable Security of GCM

After pointing out the flaw in GCM’s original security proofs, Iwata et al. give new security bounds,
which are characterized by privacy advantage and authenticity advantage. Please refer to [13, 8, 9]
for the detailed definitions of privacy and authenticity advantages.

Result 4 ([16, 17]) The privacy advantage of GCM is at most

0.5(σ + q + 1)2

2128
+

222q(σ + q)(lN + 1)

2128
, (6)

and the upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

222(q + q′ + 1)(σ + q)(lN + 1)

2128
+
q′(lA + 1)

2t
, (7)

where the total length of plaintexts is at most σ blocks, q and q′ are numbers of encryption and
decryption queries respectively, and lN and lA are the maximum numbers of blocks for nonces and
inputs respectively.

Generally, the values of the equations (6) and (7) are dominated by their second terms, since
they have a large constant 222.

5.1 Repairing GCM and Its Security Bounds

Here we propose a method to fix the design of GCM such that the large constant 222 in the
equations (6) and (7) can be reduced to 22. Since the flaw of the GCM’s security proofs originates
from the operation inc as explained in the previous section, we aim to replace the functionality of
inc with operations in the finite field.

Consider w ·x, where w is a primitive element of F2n . It is clear that the outputs of w ·x consist
of two cycles, namely (0) and (1, w, . . . , w2n−2). Now define a new function Lw as

Lw(x) =


w · x if x = wi, 0 ≤ i ≤ 2n − 3,

0 if x = w2n−2,

1 if x = 0.

(8)

The following theorem is important for our discussions in this subsection.

Theorem 4. Let Lw be the function defined above, and f, g be two functions defined on F2n with
f(0), g(0) 6= 0. Denoting deg(f) = d1,deg(g) = d2 and d = max(d1, d2), we have

max
0≤r≤2n−1

|{x : x ∈ F2n |Lr
w(f(x)) + g(x) = 0}| ≤ 4d.

Proof. Now we consider the number of solutions of the equation

Lr
w(f(x)) + g(x) = 0, (9)

where 0 ≤ r ≤ 2n − 1. The equation (9) can be divided into the following cases.

1. If f(x) = 0,
(a) If Lr

w(f(x)) = 0, then g(x) = 0.
(b) If Lr

w(f(x)) 6= 0, then g(x) = wr−1.
2. If f(x) 6= 0,

(a) If Lr
w(f(x)) = 0, then g(x) = 0.

10 Bo Zhu, Yin Tan, and Guang Gong

(b) If Lr
w(f(x)) 6= 0, let f(x) = wr1 and Lr

w(f(x)) = wr2 , where 0 ≤ r1, r2 < 2n − 1. Then we
have

i. If r1 ≤ r2, then wrf(x) = g(x).
ii. If r1 > r2, then wr−1f(x) = g(x).

Therefore, for a given r, any solution of the equation Lr
w(f(x)) + g(x) = 0 must be one of the

solutions of the four equations 
g(x) = 0,
g(x) = wr−1,

wrf(x) = g(x),
wr−1f(x) = g(x).

The total number of solutions for these four equations are at most 2d2 + 2d ≤ 4d. ut

It is known that the detailed design of the next counter function of Counter Mode is not
important as long as counter numbers are produced uniquely [14]. If the underlying block cipher
is ideal, i.e. treated as a pseudorandom permutation PRP for randomly chosen encryption key,
PRP(Lr

w(s)) is indistinguishable from PRP(incr(s)). Therefore, the Counter Mode encryption in
GCM will have same security properties as original if inc is replaced by Lw defined over F. We
propose the following revised design of GCM.

Algorithm 2 The encryption steps of the revised GCM, denoted by LGCM, are as follows.

N0 = GHASHH(N),
Ni = Li

w(N0) for 1 ≤ i ≤ n,
Ci = Pi ⊕ EK(Ni) for 1 ≤ i ≤ n− 1,
Cn = Pn ⊕msbm(EK(Nn)),
C = C1||C2|| · · · ||Cn,

where the notation is the same as in Algorithm 1.

Please note that nonces are always processed by GHASH regardless of nonces’ lengths, for simplicity
of security proofs.

Based on Theorem 4, we can have the following lemma.

Lemma 1. Randomly choosing an authentication key H, the probability to have

Lr1
w (GHASHH(N1)) = Lr2

w (GHASHH(N2)) (10)

is no more than 4(lN + 1)/2128 for any given r1, r2, N1 and N2, where 0 ≤ r1, r2 ≤ 232 − 2,
N1 6= N2, and lN is the maximum number of blocks for nonces.

Proof. Without loss of generality, assume r2 ≤ r1, then the equation (10) is equivalent to

Lr1−r2
w (GHASHH(N1)) = GHASHH(N2). (11)

The maximum degree of GHASHH(N1) and GHASHH(N2) is lN + 1, so by applying Theorem 4 we
know the probability for the equation (11) to hold is 4(lN + 1)/2128 for a randomly chosen H. ut

Now we can give the security bounds of LGCM as follows.

Theorem 5. For LGCM, the revised GCM algorithm defined in Algorithm 2, the privacy advantage
is at most

0.5(σ + q + 1)2

2128
+

4q(σ + q)(lN + 1)

2128
, (12)

and the new upper bound for the authenticity advantage is

0.5(σ + q + q′ + 1)2

2128
+

4(q + q′ + 1)(σ + q)(lN + 1)

2128
+
q′(lA + 1)

2t
, (13)

where the notation is the same as in Result 4.

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 11

Proof. The proofs of Theorems 1 and 2 in [9] can be carried over by using Lemma 1 in the paper
to replace the original probability statement of counter number collisions. ut

Implementation against Timing-based Side-channel Attacks.
The functions defined in (8) have vulnerabilities for timing-based side-channel attacks since the

computations will have inconsistent times for different inputs. To minimize such effects, we may
use the following equations in practical implementations.

y = w · x,

Lw(x) =


1 if y = 0,

0 if y = 1,

y otherwise.

(14)

The equations (14) would have very close computational time costs for different branches.

We want to make a note here that it might be possible to directly adopt w · x instead of Lw(x) to
generate counter numbers since the probability for GHASH to output zero is low, but the security
proofs for GCM may require to be largely rewritten and new bounds might have different formats
as existing ones. We leave this as an open problem for interested readers.

6 Attacking GCM in MAC-then-Enc Mode

GCM follows the Enc-then-MAC paradigm, i.e. authentication tag is computed based on cipher-
texts. It is known that once the integrity of the system is compromised, the whole system including
privacy will not be trustworthy. For GCM, if we successfully perform a MAC forgery attack de-
scribed in previous sections, e.g., a forged tuple (N,C ′, T ′), based on a valid (N,C, T), is fed to the
decryption oracle and passes verification, the oracle will return P ′ that may have a known linear
difference with P . In this way, P can be obtained even without any knowledge of the encryption
key. Therefore, the message authentication algorithm must be well protected.

One potential and straightforward option, which is indicated in [16, 17], is to change GCM to a
MAC-then-Enc scheme (MtE GCM, thereafter). More precisely, in MtE GCM, GMAC is computed
based on plaintexts instead of ciphertexts, and the authentication tag is encrypted by block ciphers
in Counter Mode.

However, we find that the MAC forgery attacks described in previous sections may still work on
MtE GCM. These attacks are based on the linear properties of the polynomial-based MAC schemes.
Assuming no length extension is needed, applying q(x) directly to ciphertexts and encrypted tags
may successfully result in MAC forgeries. Consider the simplified case with

ET = hH(P)⊕ EK(N)⊕ EK(Nt)
= hH(P)⊕Mask
= hH(C ⊕ S)⊕Mask,

where ET is the encrypted authentication tag, EK(Nt) is to encrypt the authentication tag, Mask =
EK(N)⊕EK(Nt), S is the key stream produced by Counter Mode, and the other variables are the
same as in previous analyses. If we know a function q(x) such that q(H) = 0, then

ET ′ = ET ⊕Q0 = hH(C ⊕ S)⊕ q∗(H)⊕Mask
= gC⊕S(H)⊕ gQ∗(H)⊕Mask
= gC⊕Q∗⊕S(H)⊕Mask
= hH(C ⊕Q∗ ⊕ S)⊕Mask
= hH(C ′ ⊕ S)⊕Mask.

12 Bo Zhu, Yin Tan, and Guang Gong

This implies the tuple (N,C ′, ET ′), where C ′ = C ⊕ Q∗ and ET ′ = ET ⊕ Q0, will pass the
verification oracle of MtE GCM. A computational example is given in Appendix A.3.

If len(Q∗) > len(C), i.e. length extension is needed, the above attack on MtE GCM may not
work. To decrypt C⊕Q∗, where len(C⊕Q∗) > len(C), the verification oracle will produce longer key
stream S′ = S||Su with an unknown portion Su, so outputs of the oracle will become unpredictable.
However, adversaries may avoid this by trying to attack GHASH in the encryption oracle as discussed
in Section 4.1, or simply waiting for longer ciphertexts.

Therefore, we can see that changing GCM into MAC-then-Enc paradigm would add little
strength against these MAC forgery attacks.

7 Concluding Remarks

This paper revisits weak key classes of polynomial-based MAC schemes and provable security of
GCM. We demonstrate that hash collisions are not necessary to construct successful MAC forgeries
and any polynomials can be used in these attacks, which removes the restrictions in Procter and
Cid’s attacks. Based on these new discoveries on MAC forgeries, we prove that all subsets of keys
with no less than two elements are weak key classes for GCM-like polynomial-based MAC schemes,
which is an extension to Procter and Cid’s analysis on weak keys. Moreover, we present a novel
approach to transform these MAC forgery attacks into birthday attacks to increase their success
probabilities. The success probabilities of these attacks are summarized in Table 1. Furthermore,
we provide a method to fix GCM in order to avoid the security proof flaw discovered by Iwata et
al. and significantly improve the security bounds. In addition, we show that these MAC forgeries
attacks would still succeed if GCM is modified to MAC-then-Enc paradigm, as one of the options
mentioned in [16, 17], such that authentication tags are protected by Counter Mode encryptions.

Table 1. Comparisons of success probabilities of MAC forgery attacks.

Method Success Probability Reference

Trial-and-Error n(lN + 1)/2128 [16, 17]
Birthday Attack ≤ 0.5 · n2(lN + 1)/2128 Section 4.1

Birthday Attack with inc ≤ 222(n− 1)(n+ σ)(lN + 1)/2128 Section 4.1

Future work may include improving the probability analyses in Section 4.1. Certain probabilities
for collisions and MAC forgeries are characterized by upper bounds rather than average estimations.
If more accurate probabilities can be derived, this work may also, in return, improve the security
bounds given by Iwata et al. on the original GCM design.

As recommended in [8, 9], we further suggest that GCM may preferably be used with 96-bit
nonces. For example, an altered version of GCM was introduced by Aoki and Yasuda in [1], which
only accepts a fixed-length nonce. Reusing GHASH in both generating initial counter numbers and
computing authentication tags may help attackers to amplify their success probabilities for MAC
forgeries as we discussed in Section 4.1. For practical applications that have to use non-96-bit
nonces, we suggest applying the fix to GCM proposed in Section 5.1, i.e. using LGCM defined in
Algorithm 2, which could tighten the security bounds by a factor of around 220.

Acknowledgments

The authors would like to thank the anonymous reviewers for the helpful comments. This work is
supported by NSERC Discovery Grant and ORF-RE Grant.

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 13

References

1. K. Aoki and K. Yasuda. The security and performance of “GCM” when short multiplications are used
instead. In M. Kutyowski and M. Yung, editors, Information Security and Cryptology, volume 7763 of
Lecture Notes in Computer Science, pages 225–245. Springer Berlin Heidelberg, 2013.

2. D. Bernstein. The Poly1305-AES message-authentication code. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption, volume 3557 of Lecture Notes in Computer Science, pages 32–49.
Springer Berlin Heidelberg, 2005.

3. CAESAR. Competition for Authenticated Encryption: Security, Applicability, and Robustness. http:
//competitions.cr.yp.to/caesar.html.

4. M. J. Dworkin. SP 800-38D. Recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. Technical report, Gaithersburg, MD, United States, 2007.

5. N. Ferguson. Authentication weaknesses in GCM. Comments submitted to NIST Modes of Operation
Process, 2005.

6. H. Handschuh and B. Preneel. Key-recovery attacks on universal hash function based MAC algo-
rithms. In D. Wagner, editor, Advances in Cryptology CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 144–161. Springer Berlin Heidelberg, 2008.

7. IEEE 802.1AE. Media access control (MAC) security. http://www.ieee802.org/1/pages/802.1ae.

html, 2006.
8. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In R. Safavi-

Naini and R. Canetti, editors, Advances in Cryptology CRYPTO 2012, volume 7417 of Lecture Notes
in Computer Science, pages 31–49. Springer Berlin Heidelberg, 2012.

9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. Cryptology
ePrint Archive, Report 2012/438, 2012. http://eprint.iacr.org/.

10. A. Joux. Authentication failures in NIST version of GCM. NIST Comment, 2006.
11. J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman & Hall, 2008.
12. D. McGrew and J. Viega. The Galois/Counter Mode of operation (GCM). Submission to NIST Modes

of Operation Process, 2004.
13. D. McGrew and J. Viega. The security and performance of the Galois/Counter Mode (GCM) of

operation. In A. Canteaut and K. Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004,
volume 3348 of Lecture Notes in Computer Science, pages 343–355. Springer Berlin Heidelberg, 2005.

14. D. A. McGrew. Counter mode security: Analysis and recommendations. http://www.mindspring.

com/~dmcgrew/ctr-security.pdf, 2002.
15. NSA. Suite B Cryptography. http://www.nsa.gov/ia/programs/suiteb_cryptography/, 2005.
16. G. Procter and C. Cid. On weak keys and forgery attacks against polynomial-based MAC schemes. In

Fast Software Encryption, Lecture Notes in Computer Science, page To appear. Springer, 2013.
17. G. Procter and C. Cid. On weak keys and forgery attacks against polynomial-based MAC schemes.

Cryptology ePrint Archive, Report 2013/144, 2013. http://eprint.iacr.org/.
18. P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM conference

on Computer and communications security, CCS ’02, pages 98–107, New York, NY, USA, 2002. ACM.
19. M.-J. Saarinen. Cycling attacks on GCM, GHASH and other polynomial MACs and hashes. In

A. Canteaut, editor, Fast Software Encryption, volume 7549 of Lecture Notes in Computer Science,
pages 216–225. Springer Berlin Heidelberg, 2012.

20. V. Shoup. On fast and provably secure message authentication based on universal hashing. In
N. Koblitz, editor, Advances in Cryptology CRYPTO 96, volume 1109 of Lecture Notes in Computer
Science, pages 313–328. Springer Berlin Heidelberg, 1996.

21. J. Viega and D. A. McGrew. The use of Galois/Counter Mode (GCM) in IPsec encapsulating security
payload (ESP). http://tools.ietf.org/html/rfc4106.html, 2005.

Appendix A Practical Attack Examples

A.1 A Example for Forgeries by Polynomials with Non-zero Constant Terms

This example is for GCM with AES-128 and 128-bit authentication tags, and the associated data
A is always considered as empty. We use the same representations as the test vectors in GCM’s

14 Bo Zhu, Yin Tan, and Guang Gong

specification [12], e.g. 1 in GF(2128) is represented as 80000000000000000000000000000000, and
longer strings will written in multiple lines.

We take the following values for the encryption of GCM. The lengths of P and C are 128 bits,
i.e. one block.

K 71eebc49c8fb773b2224eaff3ad68714

N 07e961e67784011f72faafd95b0eb640

89c8de15ad685ec57e63d56e679d3e20

2b18b75fcbbec3185ffc41653bc2ac4a

e6ae8be8c85636f353a9d19a86100d0b

P 705da82292143d2c949dc4ba014f6396

H d27430c121f14d4ddfecb38acaffec53

C 251ccc6d2c45540cac4fde8b1e36802d

T be2da05993fbde00421c1d8eaaaea373

Suppose we have a subset of authentication keys H = {H1, H2, H3}, whose values are as follows.

H1 d27430c121f14d4ddfecb38acaffec53

H2 00000000000000000000000000000001

H3 00000000000000000000000000000002

Construct the polynomial

q(x) =

3∑
i=0

Qix
i =

3∏
i=1

(x⊕Hi),

we can get the values for Qi’s.

Q3 80000000000000000000000000000000

Q2 d27430c121f14d4ddfecb38acaffec50

Q1 c488aa211ab5dccec9c440bc33fc47b3

Q0 5bb5716dc4b4687a06f15f10d62613ee

Please note q(x) is a polynomial with non-zero constant term, i.e. Q0 6= 0.
Then compute α = (1⊕2)/Q0 = 7ef05dd871ead7e7f8e79d7d9343a170, such that α·Q1⊕1 will

match the length of new message, i.e. 2. Construct the new ciphertext C ′ = (α ·Q3)||(C ⊕ α ·Q2),
and the authentication tag T ′ = T ⊕ α ·Q0.

C ′ 7ef05dd871ead7e7f8e79d7d9343a170

7ccbd8dbfca54d785f5662d48c7eef81

T ′ 8b53b318750a2e948459b204e47629b4

(N,C ′, T ′) passes the verification, and thus we complete a MAC forgery with length extension
by using a polynomial with a non-zero constant term.

A.2 MAC Forgeries by Attacking Non-96-bit Nonces of GCM

We only give a basic example for this case. The values and the polynomial q(x) computed in the
previous example are reused here.

Construct the polynomial q′(x) = x2q(x), and apply q′(x) to N to get a new 512-bit nonce N ′,
i.e. N ′ = (N4 ⊕Q3)||(N3 ⊕Q2)||(N2 ⊕Q1)||(N1 ⊕Q0).

N ′ 87e961e67784011f72faafd95b0eb640

5bbceed48c991388a18f66e4ad62d270

ef901d7ed10b1fd6963801d9083eebf9

bd1bfa850ce25e8955588e8a50361ee5

Feeding (N ′, P) to the encryption oracle will result in the same ciphertext as C, so we are sure
that the authentication H is the set H, and further MAC forgeries can be carried out by using q(x).

Revisiting MAC Forgeries, Weak Keys and Provable Security of GCM 15

A.3 MAC Forgeries for GCM in MAC-then-Enc Mode

The same K, N , H1, and H2 as in the previous examples are used. In order to avoid length extension,
P is chosen to be longer and H3 is explicitly chosen to be H1 ·H2/(H1 ⊕H2).

P 705da82292143d2c949dc4ba014f6396

705da82292143d2c949dc4ba014f6396

C a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET 5aba7c39516a4a90f738eaf61b02514a

H3 6e0b0d1eaf109b0f26926be82780085c

Constructing the polynomial q(x), we can have its coefficients as follows.

Q3 80000000000000000000000000000000

Q2 bc7f3ddf8ee1d642f97ed862ed7fe40e

Q1 00000000000000000000000000000000

Q0 c52222258b2614c4c6f5981c65f15acd

Please note Q1 = 0, so the length padding block in GHASH can stay unchanged.
The new ciphertext and encrypted authentication tag are C ′ = (C2 ⊕ Q3)||(C1 ⊕ Q2) and

ET ′ = ET ⊕Q0.

C ′ a51ccc6d2c45540cac4fde8b1e36802d

a4bd55da5dcde1d763021d44f5fb3ab8

ET ′ 5aba7c39516a4a90f738eaf61b02514a

(N,C ′, ET ′) passes the verification oracle of MtE GCM.

