
A preliminary version of this papers appears in Fast Software Encryption ’04, Lecture Notes in Computer
Science, vol. ?? , R. Bimal and W. Meier ed., Springer-Verlag, 2004. This is the full version.

The EAX Mode of Operation

(A Two-Pass Authenticated-Encryption Scheme
Optimized for Simplicity and Efficiency)

M. BELLARE∗ P. ROGAWAY† D. WAGNER‡

January 18, 2004

Abstract

We propose a block-cipher mode of operation, EAX, for solving the problem of authenticated-encryption
with associated-data (AEAD). Given a nonce N , a message M , and a header H , our mode protects the
privacy of M and the authenticity of both M and H . Strings N , M , and H are arbitrary bit strings, and
the mode uses 2�|M |/n� + �|H|/n� + �|N |/n� block-cipher calls when these strings are nonempty and n
is the block length of the underlying block cipher. Among EAX’s characteristics are that it is on-line (the
length of a message isn’t needed to begin processing it) and a fixed header can be pre-processed, effectively
removing the per-message cost of binding it to the ciphertext.

EAX is obtained by first creating a generic-composition method, EAX2, and then collapsing its two keys
into one. EAX is provably secure under a standard complexity-theoretic assumption. The proof of this fact
is novel and involved.

EAX is an alternative to CCM [26], which was created to answer the wish within standards bodies for a
fully-specified and patent-free AEAD mode. As such, CCM and EAX are two-pass schemes, with one pass
for achieving privacy and one for authenticity. EAX is simpler and more efficient than CCM, avoiding, for
example, elaborate padding rules or nonstandard parameters. With EAX we aimed to do as well as possible,
within the space of two-pass schemes, with regard to issues of efficiency, simplicity, elegance, ease of correct
use, and provable-security guarantees.

Keywords: Authenticated encryption, CCM, EAX, message authentication, CBC MAC, modes of operation,
OMAC, provable security.

∗Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. E-mail: mihir@cs.ucsd.edu WWW: www-cse.ucsd.edu/users/mihir/

†Department of Computer Science, University of California at Davis, Davis, California 95616, USA; and Department of Computer
Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/˜rogaway/

‡ Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720,
USA. E-mail: daw@cs.berkeley.edu WWW: http://www.cs.berkeley.edu/˜daw/

1

Contents

1 Introduction 3

2 Preliminaries 5

3 The EAX Algorithm 6

4 Intellectual Property Statement 9

5 EAX2 Algorithm 9

6 Definitions 11

7 Security Results 13

8 Acknowledgments 15

A Definition of CCM 17

B Criticism of CCM 17
B.1 Efficiency issues . 17
B.2 Parameterization . 19
B.3 Complexity . 20
B.4 Subtleties of variable-length authentication tags . 21
B.5 Security claims . 22

C Proof of Security of EAX2 22

D Proof of Security of OMAC 28

E Proof of Security of EAX 36

F Recommended API 38

G Test Vectors 43

2

1 Introduction

An authenticated encryption (AE) scheme is a symmetric-key mechanism by which a message M is a trans-
formed into a ciphertext CT with the goal that CT protect both the privacy and the authenticity of M . The
last few years has seen the emergence of AE as a recognized cryptographic goal. With this has come the de-
velopment of new authenticated-encryption schemes and the analysis of old ones. This paper offers up a new
authenticated-encryption scheme, EAX, and provides a thorough analysis of it. To understand why we are
defining a new AE scheme, we need to give some background.

FLAVORS OF AUTHENTICATED ENCRYPTION. It useful to distinguish two kinds of AE schemes. In a two-pass
scheme we make two passes through the data, one aimed at providing privacy and the other, authenticity. One
way of making a two-pass AE scheme is by generic composition, wherein one pass constitutes a (privacy-only)
symmetric-encryption scheme, while the other pass is a message authentication code (MAC). The encryption
scheme and the MAC each use their own key. Analyses of some generic composition methods can be found
in [5, 6, 20].

In a one-pass AE scheme we make a single pass through the data, simultaneously doing what is needed
to engender both privacy and authenticity. Typically, the computational cost is about half that of a two-pass
scheme. Such schemes emerged only recently. They include IAPM, OCB, and XCBC [12, 17, 25].

Soon after the emergence of one-pass AE schemes it was realized that often not all the data should be
privacy-protected. Changes were needed to the basic definitions and mechanisms in order to support the pos-
sibility that some information, like a packet header, must not be encrypted. Thus was born the notion of
authenticated-encryption with associated-data (AEAD), first formally defined in [24]. The non-secret data is
called the associated data or the header. Like an AE schemes, an AEAD scheme might make one pass or two.

STANDARDIZING A TWO-PASS AEAD SCHEME. Traditionally, it has been the designers of applications and
network protocols who were responsible for combining privacy and authenticity mechanisms in order to make
a two-pass AEAD scheme. This has not worked well. It turns out that there are numerous ways to go wrong in
trying to make a secure AEAD scheme, and many protocols, products, and standards have done just that. (For
example, see [11] for a wrong one-pass scheme, see [5] for weaknesses in the AEAD mechanism of SSH, and
[6, 20] for attacks on some methods of popular use.)

Nowadays, some standards bodies (including NIST, IETF, and IEEE 802.11) would like to standardize on
an AEAD scheme. Indeed IEEE 802.11 has already done so. This is a good direction. Standardized AEAD
might help minimize errors in mis-combining cryptographic mechanisms.

So far, standards bodies have been unwilling to standardize on any of the one-pass schemes due to pending
patents covering them. There is, accordingly, an established desire for standardizing on a two-pass AEAD
scheme. The two-pass scheme should be as good as possible subject to the limitation of falling within the
two-pass framework.

Generic-composition would seem to be the obvious answer. But defining a generic-composition AEAD
scheme is not an approach that has moved forward within any of the standards bodies. There would seem to be
a number of reasons. One reason is a relatively minor inefficiency—the fact that generic composition methods
must use two keys. Probably a bigger issue is that the architectural advantage of generic composition brings
with it an “excessive” degree of choice—after deciding on a generic composition method, one still needs two
lower-level specifications, namely a symmetric encryption scheme and a MAC, for each of which numerous
block-cipher based choices exist. Standards bodies want something self-contained, as well as being a patent-
avoiding, block-cipher based, single-key mechanism.

So far, there has been exactly one proposal for such a method (though see the “contemporaneous work”
section below). It is called CCM [26], and is due to Whiting, Housley, and Ferguson [26]. CCM has enjoyed
rapid success, and is now the required mechanism for IEEE 802.11 wireless LANs as well as 802.15.4 wireless
personal area networks. NIST has indicated that it plans to put out a “Recommendation” based on CCM.

3

OUR CONTRIBUTIONS. It is our view that CCM has a good deal of pointless complexity and inefficiency. It
is the first contribution of this paper to explain these limitations. It is the second and main contribution of this
paper to provide a new AEAD scheme, EAX, that avoids these limitations.

CCM LIMITATIONS. A description of CCM, together with a detailed description of its shortcomings, can be
found in Appendix A. Some of the points we make and elaborate on there are the following. CCM is not
on-line, meaning one needs to know the lengths of both the plaintext and the associated data before one can
proceed with encryption. This may be inconvenient or inefficient. CCM does not allow pre-processing of static
associated data. (If, for example, we have an unchanging header attached to every packet being authenticated,
we would like that the cost of authenticating this header be paid only once, meaning header authentication
should have no significant cost after a single pre-computation. CCM fails to have this property.) CCM’s
parameterization is more complex than necessary, including, in addition to the block cipher and tag length, a
message-length parameter. CCM’s nonce length is restricted in such a way that it may not provide adequate
security when nonces are chosen randomly. Finally, CCM implementations could suffer performance hits
because the algorithm can disrupt word alignment in the associated data.

EAX AND ITS ATTRIBUTES. EAX is a nonce-using AEAD scheme employing no tool beyond the block cipher
E : Key×{0, 1}n → {0, 1}n on which it is based. We expect that E will often be instantiated by AES, but we
make no restrictions in this direction. (In particular we do not require that n = 128.) Nothing is assumed about
the nonces except that they are non-repeating. EAX provides both privacy, in the sense of indistinguishability
from random bits, and authenticity, in the sense of an adversary’s inability to produce a new but valid 〈nonce,
header, ciphertext〉 triple. EAX is simple, avoiding complicated length-annotation. It is a conventional two-pass
AEAD scheme, making a separate privacy pass and authenticity pass, using no known intellectual property.

EAX is flexible in the functionality it provides. It supports arbitrary-length messages: the message space
is {0, 1}∗. The key space for EAX is the key space Key of the underlying block cipher. EAX supports arbitrary
nonces, meaning the nonce space is {0, 1}∗. Any tag length τ ∈ [0 .. n] is possible, to allow each user to select
how much security she wants from the authenticity guarantees. The only user-selectable parameters are the
block cipher E and that tag length τ .

EAX has desirable performance attributes. Message expansion is minimal: the length of the ciphertext
(which, following the conventions of [25], excludes the nonce) is only τ bits more than the length of the plain-
text. Implementations can profitably pre-process static associated data. (If an unchanging header is attached
to every packet, authenticating this header has no significant cost after a single pre-computation.) Key-setup is
efficient: all block-cipher calls use the same underlying key, so that we do not incur the cost of key scheduling
more than once. For both encryption and decryption, EAX uses only the forward direction of the block cipher,
so that hardware implementations do not need to implement the decryption functionality of the block cipher.
The scheme is on-line for both the plaintext M and the associated data H , which means that one can process
streaming data on-the-fly, using constant memory, not knowing when the stream will stop.

PROVABLE SECURITY. We prove that EAX is secure assuming that the block cipher that it uses is a secure pseu-
dorandom permutation (PRP). Security for EAX means indistinguishability from random bits and authenticity
of ciphertexts. The combination implies other desirable goals, like nonmalleability and indistinguishability
under a chosen-ciphertext attack.

The proof of security for EAX is surprisingly complex. The key-collapse of EAX2 destroys a fundamental
abstraction boundary. Our security proof relies on a result about the security of a tweakable extension of OMAC
(Lemma 4) in which an adversary can obtain not only a tag for a message of its choice, but also an associated
key-stream.

PRAGMATICS. The main reason there is any interest in two-pass schemes, as we have already discussed, is
that one-pass schemes would seem to be subject to patents. Motivated by this, standardization bodies have
expressed the intent of standardizing on a conventional, two-pass scheme, even understanding the factor-of-two

4

performance hit. The merit of this judgment is debatable, but the pragmatic reality is that there has emerged a
desire for a conventional scheme, like EAX, that is as good as possible subject to the two-pass constraint. Lack
of a scheme like EAX will simply lead to an inferior scheme being standardized, which is to the disadvantage
of the user community. Accordingly, EAX addresses a real and practical design problem. We took up work
on this design problem at the suggestion of the co-Chair of the IRTF (Internet Research Task Force), which
supports the standardization efforts of the IETF. We believe that EAX has the potential for widespread adoption
and use.

AFTERWARDS. One non-goal of EAX was to be parallelizable. Another recent two-pass design, CWC [19], is
parallelizable. It pays for this advantage with a somewhat complex algorithm, based on Carter-Wegman hashing
using polynomial evaluation over a prime field. More recent still is GCM [22], a parallelizable, two-pass design
based on multiplication in the finite field with 2128 elements.

Other recent AEAD mechanisms include Helix [10] and SOBER-128 [13]. These are stream ciphers that
aim to provide authenticity. The provable-security methodology does not apply to these objects since they are
built directly rather than from lower level primitives.

2 Preliminaries

All strings in this paper are over the binary alphabet {0, 1}. For L a set of strings and n ≥ 0 a number, we let Ln

and L∗ have their usual meanings. The concatenation of strings X and Y is denoted X ‖Y or simply X Y . The
string of length 0, called the empty string, is denoted ε. If X ∈ {0, 1}∗ we let |X| denote its length, in bits. If
X ∈ {0, 1}∗ and � ≤ |X| then the first � bits of X are denoted X [first � bits]. The set BYTE = {0, 1}8 contains
all the strings of length 8, and a string X ∈ BYTE∗ is called a byte string or an octet string. If X ∈ BYTE∗ we
let ‖X‖8 = |X|/8 denote its length in bytes. For � ≥ 1 a number, we write BYTE<� for all byte strings having
fewer than � bytes. If X ∈ BYTE∗ and � ≤ ‖X‖n then the first � bytes of X are denoted X [first � bytes].
When X ∈ {0, 1}n is a nonempty string and t ∈ N is a number we let X + t be the n-bit string that results
from regarding X as a nonnegative number x (binary notation, most-significant-bit first), adding x to t, taking
the result modulo 2n, and converting this number back into an n-bit string. If t ∈ [0..2n − 1] we let [t]n denote
the encoding of t into an n-bit binary string (msb first, lsb last). If X and P are strings then we let X ⊕→ P
(the xor-at-the-end operator) denote the string of length � = max{|X|, |P |} bits that is obtained by prepending∣∣|X| − |P |∣∣ zero-bits to the shorter string and then xoring this with the other string. (In other words, xor the
shorter string into the end of the longer string.) A block cipher is a function E : Key × {0, 1}n → {0, 1}n

where Key is a finite, nonempty set and n ≥ 1 is a number and EK(·) = E(K, ·) is a permutation on {0, 1}n.
The number n is called the block length. Throughout this note we fix such a block cipher E.

In Figure 1 we define the algorithms CBC, CTR, pad, OMAC (no superscript), and OMAC • (with super-
script). The algorithms CBC (the CBC MAC) and CTR (counter-mode encryption) are standard. Algorithm
pad is used only to define OMAC. Algorithm OMAC [14] is a pseudorandom function (PRF) that is a one-
key variant of the algorithm XCBC [9]. Algorithm OMAC • is like OMAC but takes an extra argument, the
integer t. This algorithm is a “tweakable” PRF [21], tweaked in the most simple way possible.

We explain the notation used in the definition of OMAC. The value of iL (line 40: i an integer in {2, 4} and
L ∈ {0, 1}n) is the n-bit string that is obtained by multiplying L by the n-bit string that represents the number i.
The multiplication is done in the finite field GF(2n) using a canonical polynomial to represent field points. The
canonical polynomial we select is the lexicographically first polynomial among the irreducible polynomials
of degree n that have a minimum number of nonzero coefficients. For n = 128 the indicated polynomial is
x128 + x7 + x2 + x + 1. In that case, 2L = L<<1 if the first bit of L is 0 and 2L = (L<<1)⊕ 012010000111
otherwise, where L<<1 means the left shift of L by one position (the first bit vanishing and a zero entering into
the last bit). The value of 4L is simply 2(2L). We warn that to avoid side-channel attacks one must implement
the doubling operation in a constant-time manner.

5

Algorithm CBCK (M)

10 Let M1 · · ·Mm ← M where |Mi| = n
11 C0 ← 0n

12 for i ← 1 to m do
13 Ci ← EK(Mi ⊕Ci−1)
14 return Cm

Algorithm CTRN
K (M)

20 m ← �|M |/n�
21 S ← EK(N) ‖ EK(N+1) ‖ · · · ‖ EK(N+m−1)
22 C ← M ⊕ S [first |M | bits]
23 return C

Algorithm pad (M ; B,P)

30 if |M | ∈ {n, 2n, 3n, . . .}
31 then return M ⊕→ B,
32 else return (M ‖ 10n−1−(|M | mod n)) ⊕→ P

Algorithm OMACK (M)

40 L ← EK(0n); B ← 2L; P ← 4L
41 return CBCK(pad (M ; B,P))

Algorithm OMAC t
K (M)

50 return OMACK([t]n ‖ M)

Figure 1: Basic building blocks. The block cipher E : Key × {0, 1}n → {0, 1}n is fixed and K ∈ Key. For CBC,
M ∈ ({0, 1}n)+. For CTR, M ∈ {0, 1}∗ and N ∈ {0, 1}n. For pad, M ∈ {0, 1}∗ and B,P ∈ {0, 1}n and the
operation ⊕→ xors the shorter string into the end of longer one. For OMAC, M ∈ {0, 1}∗ and t ∈ [0..2n − 1] and
the multiplication of a number by a string L is done in GF(2n).

We have made a small modification to the OMAC algorithm as it was originally presented, changing one
of its two constants. Specifically, the constant 4 at line 40 was the constant 1/2 (the multiplicative inverse
of 2) in the original definition of OMAC [14]. The OMAC authors indicate that they will promulgate this
modification [15], which slightly simplifies implementations.

3 The EAX Algorithm

ALGORITHM. Fix a block cipher E : Key × {0, 1}n → {0, 1}n and a tag length τ ∈ [0..n]. These parameters
should be fixed at the beginning of a particular session that will use EAX mode. Typically, the parameters
would be agreed to in an authenticated manner between the sender and the receiver, or they would be fixed for
all time for some particular application. Given these parameters, EAX provides a nonce-based AEAD scheme
EAX[E, τ] whose encryption algorithm has signature Key × Nonce × Header × Plaintext → Ciphertext and
whose decryption algorithm has signature Key × Nonce × Header × Ciphertext → Plaintext ∪ {INVALID}
where Nonce, Header, Plaintext, and Ciphertext are all {0, 1}∗. The EAX algorithm is specified in Figure 2
and a picture illustrating EAX encryption is given in Figure 3. We now discuss various features of our algorithm
and choices underlying the design.

NO ENCODINGS. We have avoided any nontrivial encoding of multiple strings into a single one.1 Some other
approaches that we considered required a PRF to be applied to what was logically a tuple, like (N, H, C).
Doing this raises encoding issues we did not want to deal with because, ultimately, there would seem to be no
simple, efficient, compelling, on-line way to encode multiple strings into a single one. Alternatively, one could
avoid encodings and consider a new kind of primitive, a multi-argument PRF. But this would be a non-standard
tool and we didn’t want to use any non-standard tools. All in all, it seemed best to find a way to sidestep the
need to do encodings.

1 One could view the prefixing of [t]n to M in the definition of OMAC t
K(M) as an encoding, but [t]n is a constant, fixed-length

string, and the aim here is just to “tweak” the PRF. This is very different from needing to encode arbitrary-length strings into a single
string.

6

Algorithm EAX.EncryptN H
K (M)

10 N ← OMAC 0
K(N)

11 H ← OMAC 1
K(H)

12 C ← CTRN
K(M)

13 C ← OMAC 2
K(C)

14 Tag ← N⊕C⊕H

15 T ← Tag [first τ bits]
16 return CT ← C ‖ T

Algorithm EAX.DecryptN H
K (CT)

20 if |CT | < τ then return INVALID

21 Let C ‖ T ← CT where |T | = τ
22 N ← OMAC 0

K(N)
23 H ← OMAC 1

K(H)
24 C ← OMAC 2

K(C)
25 Tag ′ ← N⊕C⊕H

26 T ′ ← Tag ′ [first τ bits]
27 if T = T ′ then return INVALID

28 M ← CTRN
K(C)

29 return M

Figure 2: Encryption and decryption under EAX mode. The plaintext is M , the ciphertext is CT , the key is K,
the nonce is N , and the header is H. The mode depends on a block cipher E (that CTR and OMAC implicitly
use) and a tag length τ .

N

T

OMAC 0
K

C

HM

N

H

C

CTRK

OMAC 1
K

OMAC 2
K

Figure 3: Encryption under EAX. The message is M , the key is K, and the header is H. The ciphertext is
CT = C ‖ T .

WHY NOT GENERIC COMPOSITION? Why have we specified a block-cipher based (BC-based) AEAD scheme
instead of following the generic-composition approach of combining a (privacy-only) encryption method and

7

CCM EAX

Functionality AE with AD AE with AD

Built from Block cipher E with 128-bit blocksize Block cipher E with n-bit blocksize

Parameters Block cipher E
Tag length τ ∈ {4, 6, 8, 10, 12, 14, 16}
Length of message length field λ ∈ [2..8]

Block cipher E
Tag length τ ∈ [0..n]

Message space Parameterized: 7 choices: λ ∈ [2..8].
Each possible message space a sub-
set of BYTE∗, from BYTE216−1 to
BYTE<264−1

{0, 1}∗

Nonce space Parameterized, with a value of 15 − λ
bytes. From 56 bits to 104 bits

{0, 1}∗

Key space One block-cipher key One block-cipher key

Ciphertext expansion τ bytes τ bits

Block-cipher calls 2
⌈
|M |
128

⌉
+

⌈
|H|
128

⌉
+ 2 + δ, for δ ∈ {0, 1} 2

⌈
|M |
n

⌉
+

⌈
|H|
n

⌉
+

⌈
|N |
n

⌉

Block-cipher calls
with static header

2
⌈
|M |
128

⌉
+

⌈
|H|
128

⌉
+ 2 + δ, for δ ∈ {0, 1} 2

⌈
|M |
n

⌉
+

⌈
|N |
n

⌉
Key setup Block cipher subkeys Block cipher subkeys

3 block-cipher calls

IV requirements Non-repeating nonce Non-repeating nonce

Parallelizable? No No

On-line? No Yes

Preprocessing (/msg) Limited (key stream) Limited (key stream, header)

Memory rqmts Small constant Small constant

Provable security? Yes (if E is a good PRP)
Bound of Θ(σ2/2128)

Yes (if E is a good PRP)
Bound of Θ(σ2/2n)

Patent-encumbered? No No

Figure 4: A comparison of basic characteristics of CCM and EAX. The count on block-cipher calls for EAX
ignores key-setup costs. We denote by τ the length of the EAX tag in bits, and by τ (boldface) the length of
the CCM tag in bytes.

a message authentication code? In fact, there are reasonable arguments in favor of generic composition, based
on aesthetic or architectural sensibilities. One can argue that generic composition better separates conceptually
independent elements (privacy and authenticity) and, correspondingly, allows greater implementation flexibil-
ity [6, 20]. Correctness becomes much simpler and clearer as well. All the same, BC-based AEAD modes
have some important advantages of their own. They make it easier for implementors to use a scheme without
knowing a lot of cryptography, presenting a simpler abstraction boundary. They make it easier to obtain inter-
operably. They reduce the risk that implementors will choose insecure parameters. They can save on key bits
and key-setup time, as generic-composition methods invariably require a pair of separate keys.

EAX can be viewed as having been derived from a generic-composition scheme we call EAX2, described in
Section 5. Specifically, one instantiates EAX2 using CTR mode (counter mode) and OMAC, and then collapses
the two keys into one. If one favors generic composition, EAX2 is a nice algorithm for it.

ON-LINE. We say that an algorithm is on-line if it is able to process a stream of data as it arrives, with constant
memory, not knowing in advance when the stream will end. Observe then that on-line methods should not

8

require knowledge of the length of a message until the message is finished. A failure to be on-line has been
regarded as a significant defect for an encryption scheme or a MAC. EAX is on-line.

Now it is true that in many contexts where one would be encrypting a string one does know the length of
the string in advance. For example, many protocols will already have “packaged up” the string length at a lower
level. In effect, such strings have been represented in the computing system as sequence of bytes and a count
of those bytes. But there are also contexts where one does not know the length of a message in advance of
getting an indication that it is over. For examples, a printable string is often represented in computer systems
as a sequence of non-zero bytes followed by a terminal zero-byte. Certainly one should be able to efficiently
encrypt a string which has been represented in this way.

ABILITY TO PROCESS STATIC AD. In many scenarios the associated data H will be static over the course of
a communications session. For example, the associated data may include information such as the IP address of
the sender, the receiver, and fixed cryptographic parameters associated to this session. In such a case one would
like that the amount of time to compute EncryptN H

K (M) and DecryptN H
K (C) should be independent of |H|,

disregarding the work done in a preprocessing step. The significance of this goal was already explained in [24].
EAX achieves this goal.

ADDITIONAL FEATURES. Invalid messages can be rejected at half the cost of decryption. This is one of the
benefits of following what is basically an encrypt-then-authenticate approach as opposed to an authenticate-
then-encrypt approach.

To obtain a MAC as efficient as the PRF underlying EAX define MACK(H) = Encrypt0
n H

K (ε).

COMPARISON WITH CCM. Appendix A provides a description of CCM together with a discussion of its lim-
itations. Figure 4 summarizes some of that discussion by comparing EAX and CCM along a few relevant
dimensions.

4 Intellectual Property Statement

The authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We do not intend
to apply for any patents covering this technology. Our work for this note is hereby placed in the public domain.
As far as we know, EAX is free and unencumbered for all uses.

5 EAX2 Algorithm

To understand the the proof of security of EAX and the approach taken for its design, we introduce EAX2, a
generic composition method. EAX is EAX2 for the particular case of CTR encryption and OMAC authentica-
tion, but then collapsed to a single key.

EAX2 COMPOSITION. Let F : Key1 × {0, 1}∗ → {0, 1}n be a PRF, where n ≥ 2. Let Π = (E ,D) be an IV-
based encryption scheme having key space Key2 and IV space {0, 1}n. This means that E : Key2 × {0, 1}n ×
{0, 1}∗ → {0, 1}∗ and D : Key2 × {0, 1}n × {0, 1}∗ → {0, 1}∗ and Key2 is a set of keys and for every
K ∈ Key2 and N ∈ {0, 1}n and M ∈ {0, 1}∗, if C = EN

K(M) then DN
K(C) = M . Let τ ≤ n be a number.

Now given F and Π and τ we define an AEAD scheme EAX2[Π, F, τ] = (EAX2.Encrypt, EAX2.Decrypt)
as follows. Set F t

K(M) = FK([t]n ‖ M). Set Key = Key1 × Key2. Then the encryption algorithm
EAX2.Encrypt : Key × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and the decryption algorithm EAX2.Decrypt : Key ×
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {INVALID} are defined in Figure 5. Scheme EAX2[Π, F, τ] is provably secure
under natural assumptions about Π and F . See Section 7.

EAX1 COMPOSITION. Let EAX1 be the single-key variant of EAX2 where one insists that Key = Key1 =
Key2 and where one keys F , E , and D with a single key K ∈ Key. One associates to F and Π the scheme

9

Algorithm EAX2.EncryptN H
K1,K2 (M)

10 N ← F 0
K1(N)

11 H ← F 1
K1(H)

12 C ← EN
K2(M)

13 C ← F 2
K1(C)

14 Tag ← N⊕C⊕H

15 T ← Tag [first τ bits]
16 return CT ← C ‖ T

Algorithm EAX2.DecryptN H
K1,K2 (CT)

20 if |CT | < τ then return INVALID

21 Let C ‖ T ← CT where |T | = τ
22 N ← F 0

K1(N)
23 H ← F 1

K1(H)
24 C ← F 2

K1(C)
25 Tag ′ ← N⊕C⊕H

26 T ′ ← Tag ′ [first τ bits]
27 if T = T ′ then return INVALID

28 M ← DN
K2(C)

29 return M

N

C

HM

N

H

C

T

F 0
K1 F 1

K1

F 2
K1

EK2

Figure 5: Encryption and decryption under EAX2. The mode is built from a PRF F : Key1 × {0, 1}∗ → {0, 1}n

and an IV-based encryption scheme Π = (E ,D) having key space Key2 and message space {0, 1}∗. The
plaintext is M and the key is (K1,K2) and the header is H. By F i

K we mean the function where F i
K(M) =

FK([i]n ‖ M).

EAX1[Π, F, τ] that is defined as with EAX2 but where the one key K keys everything. Notice that EAX[E, τ] =
EAX1[CTR[E], OMAC[E], τ]. This is a useful way to look at EAX.

10

6 Definitions

AEAD SCHEMES. A set of keys is a nonempty set having a distribution (the uniform distribution when the set is
finite). A (nonce-based) authenticated-encryption with associated-data (AEAD) scheme is a pair of algorithms
Π = (E,D) where E is a deterministic encryption algorithm E : Key × Nonce × Header × Plaintext →
Ciphertext and a D is a deterministic decryption algorithm D : Key × Nonce × Header × Ciphertext →
Plaintext ∪ {INVALID}. The key space Key is a set of keys while the nonce space Nonce and the header
space Header (also called the space of associated data) are nonempty sets of strings. We write EN H

K (M)
for E(K, N, H, M) and DN H

K (CT) for D(K, N, H,CT). We require that DN H
K (EN H

K (M)) = M for all
K ∈ Key and N ∈ Nonce and H ∈ Header and M ∈ Plaintext. In this note we assume, for notational
simplicity, that Nonce, Header, Plaintext, and Ciphertext are all {0, 1}∗ and that |EN H

K (M)| = |M |. An
adversary is a program with access to one or more oracles.

NONCE-RESPECTING. Suppose A is an adversary with access to an encryption oracle E · ·
K (·). This oracle,

on input (N, H, M), returns EN H
K (M). Let (N1, H1, M1), . . . , (Nq, Hq, Mq) denote its oracle queries. The

adversary is said to be nonce-respecting if N1, . . . , Nq are always distinct, regardless of oracle responses and
regardless of A’s internal coins.

PRIVACY OF AEAD SCHEMES. We consider adversaries with access to an encryption oracle E · ·
K (·). We

assume that any privacy-attacking adversary is nonce-respecting. The advantage of such an adversary A in
violating the privacy of AEAD scheme Π = (E,D) having key space Key is

Advpriv
Π (A) = Pr

[
K

$← Key : AE · ·
K (·) = 1

]
− Pr

[
K

$← Key : A$ · ·(·) = 1
]

where $ · ·(·) denotes the oracle that on input (N, H, M) returns a random string of length |M |.
AUTHENTICITY OF AEAD SCHEMES. This time we provide the adversary with two oracles, an encryption
oracle E · ·

K (·) as above and also a verification oracle D̂ · ·
K (·). The latter oracle takes input (N, H,CT) and

returns 1 if DN H
K (CT) ∈ Plaintext and returns 0 if DN H

K (CT) = INVALID. The adversary is assumed to
satisfy three conditions, and these must hold regardless of the responses to its oracle queries and regardless
of A’s internal coins:

• Adversary A must be nonce-respecting. (The condition is understood to apply only to the adversary’s
encryption oracle. Thus a nonce used in an encryption-oracle query may be used in a verification-oracle
query.)

• Adversary A may never make a verification-oracle query (N, H,CT) such that the encryption oracle
previously returned CT in response to a query (N, H, M).

• Adversary A must call its verification-oracle exactly once, and may not subsequently call its encryption
oracle. (That is, it makes a sequence of encryption-oracle queries, then a verification-oracle query, and
then halts.)

We say that such an adversary forges if its verification oracle returns 1 in response to the single query made to
it. The advantage of such an adversary A in violating the authenticity of AEAD scheme Π = (E,D) having
key space Key is

Advauth
Π (A) = Pr

[
K

$← Key : AE· ·
K (·), D̂· ·

K (·) forges
]

.

IV-BASED ENCRYPTION. An IV-based encryption scheme (an IVE scheme) is a pair of algorithms Π = (E ,D)
where E : Key × IV × Plaintext → Ciphertext is a deterministic encryption algorithm and D : Key × IV ×
Ciphertext → Plaintext ∪ {INVALID} is a deterministic decryption algorithm. The key space Key is a set of
keys and the plaintext space Plaintext and ciphertext space Ciphertext and IV space IV are all nonempty sets
of strings. We write ER

K(M) for E(K, R, M) and DR
K(C) for D(K, R, C). We require that DR

K(ER
K(M)) = M

for all K ∈ Key and R ∈ IV and M ∈ Plaintext. We assume, as before, that Plaintext = Ciphertext = {0, 1}∗

11

and that |ER
K(M)| = |M |. We also assume that IV = {0, 1}n for some n ≥ 1 called the IV length.

PRIVACY OF IVE SCHEMES WITH RANDOM IVS. Let Π = (E ,D) be an IVE scheme with key space Key and
IV space IV = {0, 1}n. Let E$ be the probabilistic algorithm defined from E that, on input K and M , chooses
an IV R at random from {0, 1}n, computes C ← ER

K(M), and then returns C along with the chosen IV:

Algorithm E$
K(M) // The probabilistic encryption scheme built from IVE scheme E

R
$←{0, 1}n ; C ← ER

K(M) ; return R ‖ C

Then we define the advantage of an adversary A in violating the privacy of Π (as an encryption scheme using
random IV) by

Advpriv
Π (A) = Pr

[
K

$← Key : AE$
K(·) = 1

]
− Pr

[
K

$← Key : A$(·) = 1
]

where $(·) denotes the oracle that on input M returns a random string of length n + |M |. This is just the
ind$-privacy of the randomized symmetric encryption scheme associated to Π. We comment that we have used
a superscript of “priv” for an IVE scheme and “priv” (bold font) for an AEAD scheme.

PSEUDORANDOM FUNCTIONS. A family of functions, or a pseudorandom function (PRF), is a map F : Key×
D → {0, 1}n where Key is a set of keys and D is a nonempty set of strings. We call n the output length of F .

We write FK for the function F (K, ·) and we write f
$← F to mean K

$← Key ; f ← FK . We denote by R∗
n the

set of all functions with domain {0, 1}∗ and range {0, 1}n; by Rn
n the set of all functions with domain {0, 1}n

and range {0, 1}n; and by RI
n the set of all functions with domain I and range {0, 1}n. We identify a function

with its key, making Rn
n, R∗

n and RI
n pseudorandom functions. The advantage of adversary A in violating the

pseudorandomness of the family of functions F : Key × {0, 1}∗ → {0, 1}n is

Advprf
F (A) = Pr

[
K

$← Key : AFK(·) = 1
]
− Pr

[
ρ

$←R∗
n : Aρ(·) = 1

]
A family of functions E : Key ×D → {0, 1}n is a block cipher if D = {0, 1}n and each EK is a permutation.
We let Pn denote all the permutations on {0, 1}n and define

Advprp
E (A) = Pr

[
K

$← Key : AEK(·) = 1
]
− Pr

[
π

$←Pn : Aπ(·) = 1
]

RESOURCES. If xxx is an advantage notion for which Advxxx
Π (A) has been defined we write Advxxx

Π (R)
for the maximal value of Advxxx

Π (A) over all adversaries A that use resources at most R. When counting the
resource usage of an adversary, one maximizes over all possible oracle responses, including those that could not
be returned by any experiment we have specified for adversarial advantage. Resources of interest are: t—the
running time; q—the total number of oracle queries; qe—the number of oracle queries to the adversary’s first
oracle; qv—the number of oracle queries to the adversary’s second oracle; and σ—the data complexity. The
running time t of an algorithm is its actual running time (relative to some fixed RAM model of computation)
plus its description size (relative to some standard encoding of algorithms). The data complexity σ is defined
as the sum of the lengths of all strings encoded in the adversary’s oracle queries, plus the total number of all
of these strings.2 In this paper the length of strings is measured in n-bit blocks, for some understood value n.
The number of blocks in a string M is defined as ‖M‖n = max{1, �|M |/n�}, so that the empty string counts
as one block. As an example, an adversary that asks queries (N1, H1, M1), (N2, H2, M2) to its first oracle and
query (N, H, M) to its second oracle has data complexity ‖N1‖n + ‖H1‖n + ‖M1‖n + ‖N2‖n + ‖H2‖n +
‖M2‖n + ‖N‖n + ‖H‖n + ‖M‖n + 9. The name of a resource measure (t, t′, q, etc.) will be enough to make
clear what resource it refers to.

When we use big-O notation it is understood that the constant hidden inside the notation may depend on n.
We write Õ(f(x)) for O(f(x) lg(f(x)). When F is a function we write TimeF (σ)) for the maximal amount
of time to compute the function F over inputs of total length σ. When Π = (E ,D) is an AEAD scheme or an

2 There is a certain amount of arbitrariness in this convention, but it is reasonable and simplifies subsequent accounting.

12

IVE scheme with key space Key we write TimeE(σ) for the time to compute a random element K
$← Key plus

the maximal amount of time to compute the function EK on arguments of total length σ.

7 Security Results

We first obtain results about the security of EAX2 and then prove a result about the security of a tweakable-
OMAC extension. These results are applied to derive results about the security of EAX. The notation and
security measures referred to below are defined in Section 6.

SECURITY OF EAX2. We begin by considering the EAX2[Π, F, τ] scheme with F being equal to Rn
n, the set

of all functions with domain {0, 1}n and range {0, 1}n. In other words, we are considering the case where FK1

is a random function with domain {0, 1}n and range {0, 1}n. First we show that EAX2[Π,Rn
n, τ] inherits the

privacy of the underlying IVE scheme Π. The proof of the following is in Appendix C.

Lemma 1 [Privacy of EAX2 with a random PRF] Let Π be an IVE scheme with IV space {0, 1}n and let
τ ∈ [0..n]. Then

Advpriv
EAX2[Π,Rn

n,τ](t, q, σ) ≤ Advpriv
Π (t′, q, σ)

where t′ = t + Õ(σ). �

We now turn to authenticity. The following shows that EAX2[Π,Rn
n, τ] provides authenticity under the as-

sumption that the underlying IVE scheme Π provides privacy. The proof is in Appendix C.

Lemma 2 [Authenticity of EAX2 with a random PRF] Let Π be an IVE scheme with IV space {0, 1}n and
let τ ∈ [0..n]. Then

Advauth
EAX2[Π,Rn

n,τ](t, q, σ) ≤ Advpriv
Π (t′, q, σ) + 2−τ

where t′ = t + Õ(σ). �

Our definition of authenticity allows the adversary only one query to its verification oracle, meaning only one
forgery attempt. A standard argument says that the advantage of an adversary making qv verification queries
can grow by a factor of at most qv. As per the above this means it is at most qv · [2−τ + Advpriv

Π (t′, q, σ)]. We
believe that in fact the bound is better than this, namely that it is qv2−τ + Advpriv

Π (t′, q, σ). However, we do
not have a proof of this stronger bound. Such a proof would require an extension of Lemma 7 that we have not
been able to prove to date.

The above allows us to obtain results about the security of the general EAX2[Π, F, τ] scheme based on
assumptions about the security of the component schemes. The proof of the following is in Appendix C.

Theorem 3 [Security of EAX2] Let F : Key1 × {0, 1}∗ → {0, 1}n be a family of functions, let Π = (E ,D)
be an IVE scheme with IV space {0, 1}n and let τ ∈ [0..n]. Then

Advauth
EAX2[Π,F,τ](t, q, σ) ≤ Advpriv

Π (t2, q, σ) + Advprf
F (t1, 3q + 3, σ) + 2−τ (1)

Advpriv
EAX2[Π,F,τ](t, q, σ) ≤ Advpriv

Π (t2, q, σ) + Advprf
F (t3, 3q, σ) (2)

where t1 = t + TimeE(σ) + Õ(σ) and t2 = t + Õ(σ + nq) and t3 = t + TimeE(σ) + Õ(σ). �

13

We remark that although “birthday” terms of the form σ2/2n or q2/2n do not appear explicitly in the bounds
above, they may appear when we bound the Advpriv

Π (·, ·, ·) and Advprf
F (·, ·, ·) in terms of their arguments.

SECURITY OF A TWEAKABLE-OMAC EXTENSION. This section develops the core result underlying why
key-reuse “works” across OMAC and CTR modes. To do this, we consider the following extension of the
tweakable-OMAC construction. Fix n ≥ 1 and let t ∈ {0, 1, 2} and ρ ∈ Rn

n and M ∈ {0, 1}∗ and s ∈ N. Then
define

Algorithm OMACρ(t, M, s)

10 R ← OMACt
ρ(M)

11 for j ← 0 to s − 1 do Sj ← ρ(R + j)
12 return R S0S1 · · ·Ss−1

Thus an OMACρ oracle, when asked (t, M, s), returns not only R = OMACt
ρ(M) but also a key stream

S0S1 . . . Ss formed using CTR-mode and start-index R. We emphasize that the key stream is formed using the
same function ρ (that is, the same key) that underlies the OMAC computation. Note too that we have limited
the tweak t to a small set, {0, 1, 2}.

We imagine providing an adversary A with one of two kinds of oracles. The first is an oracle OMACρ(·, ·, ·)
for a randomly chosen ρ ∈ Rn

n. The second is an oracle $n(·, ·, ·) that, on input (t, M, s), returns n(s + 1)
random bits. Either way, we assume that the adversary is length-committing: if the adversary asks a query
(t, M, s) it does not ask any subsequent query (t, M, s′). As the adversary runs, it asks some sequence of
queries (t1, M1, s1), . . . , (tq, Mq, sq). The resources of interest to us are the sum of the block lengths of the
messages being MACed, σ1 =

∑ ‖Mi‖n, and the total number σ2 =
∑

si of key-stream blocks that the
adversary requests. We claim that a reasonable adversary will have little advantage in telling apart the two
oracles, and we bound its distinguishing probability in terms of the resources σ1 and σ2 that it expends. Recall
that for oracles X and Y and an adversary A we measure A’s ability to distinguish between oracles X and Y
by the number Advdist

X,Y (A) = Pr[AX = 1] − Pr[AY = 1]. The proof of the following is in Appendix D.

Lemma 4 [Pseudorandomness of OMAC] Fix n ≥ 2. Then, for length-committing adversaries,

Advdist
OMAC[Rn

n],$n
(σ1, σ2) ≤ (σ1 + σ2 + 3)2

2n �

SECURITY OF EAX. We are now ready to consider the security of EAX. The proof of the following is in
Appendix E.

Theorem 5 [Security of EAX] Let n ≥ 2 and τ ∈ [0..n]. Then

Advpriv
EAX[Rn

n,τ](σ) ≤ 9 σ2

2n

Advauth
EAX[Rn

n,τ](σ) ≤ 10.5 σ2

2n
+

1
2τ �

Finally, we may, in the customary way, pass to the corresponding complexity-theoretic result where we start
with an arbitrary block cipher E.

14

Corollary 6 [Security of EAX] Let n ≥ 2 and E : Key×{0, 1}n×{0, 1}n be a block cipher and let τ ∈ [0..n].
Then

Advpriv
EAX[E,τ](t, σ) ≤ 9.5 σ2

2n
+ Advprp

E (t′, σ)

Advauth
EAX[E,τ](t, σ) ≤ 11 σ2

2n
+

1
2τ

+ Advprp
E (t′, σ)

where t′ = t + O(σ). �

We omit the proof, which is completely standard.

8 Acknowledgments

We received useful comments and information from Paulo Barreto, Niels Ferguson, Brian Gladman, Jack Lloyd,
David McGrew, Jesse Walker, and Doug Whiting. An anonymous referee provided an unusually thoughtful and
thorough reading.

Mihir Bellare’s work was funded by NSF grants CCR-0098123, ANR-0129617, CCR-0208842, and by an
IBM Faculty Partnership Development Award. Phil Rogaway’s work was funded by NSF CCR-0208842 and a
gift from CISCO Systems. David Wagner’s work was funded by NSF CCR-0113941.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption: Analysis
of the DES modes of operation. Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE,
1997.

[2] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message authentication using finite
pseudorandom functions. Advances in Cryptology – CRYPTO ’95, Lecture Notes in Computer Science, vol. 963,
D. Coppersmith ed., Springer-Verlag, 1995.

[3] M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudorandom functions: Security beyond
the birthday barrier. Advances in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109,
N. Koblitz ed., Springer-Verlag, 1996.

[4] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code.
Journal of Computer and System Sciences (JCSS), vol. 61, no. 3, pp. 362–399, Dec 2000.

[5] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH binary
packet protocol. Proceedings of the 9th Annual Conference on Computer and Communications Security, ACM,
2002.

[6] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. Advances in Cryptology – ASIACRYPT ’00, Lecture Notes in Computer Science,
vol. 1976, T. Okamoto ed., Springer-Verlag, 2000.

[7] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in plain-
texts for efficient encryption. Advances in Cryptology – ASIACRYPT ’00, Lecture Notes in Computer Science,
vol. 1976, T. Okamoto ed., Springer-Verlag, 2000.

[8] M. Bellare, P. Rogaway and D. Wagner. The EAX mode of operation (A two-Pass authenticated-encryption
scheme optimized for simplicity and efficiency). Extended abstract of this paper, in Fast Software Encryption
’04, Lecture Notes in Computer Science, vol. ?? , R. Bimal and W. Meier ed., Springer-Verlag, 2004.

15

[9] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key constructions. Advances in
Cryptology – CRYPTO ’00, Lecture Notes in Computer Science, vol. 1880, M. Bellare ed., Springer-Verlag,
2000.

[10] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: Fast encryption and authen-
tication in a single cryptographic primitive. Fast Software Encryption (FSE 2003), Lecture Notes in Computer
Science, vol. 2887, Springer-Verlag, pp. 330–346, 2003.

[11] V. Gligor and P. Donescu. Integrity-aware PCBC encryption. Security Protocols, 7th International Workshop.
Lecture Notes in Computer Science, vol. 1796, Springer-Verlag, pp. 153–171, 1999.

[12] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB authentication modes.
Presented at the 2nd NIST Workshop on AES Modes of Operation, Santa Barbara, CA, August 24, 2001.

[13] P. Hawkes and G. Rose. Primitive specification for SOBER-128. Cryptology ePrint Archive Report 2003/48. April
2003.

[14] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Encryption (FSE 2003), Lecture Notes in
Computer Science, vol. 2887, Springer-Verlag, pp. 129–153, 2003.

[15] T. Iwata and K. Kurosawa. Personal communications, January 2002.

[16] J. Jonsson. On the security of CTR + CBC-MAC. Proceedings of Selected Areas of Cryptography (SAC), 2002.

[17] C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology – EUROCRYPT ’01,
Lecture Notes in Computer Science, vol. 2045 , B. Pfitzmann ed., Springer-Verlag, 2001.

[18] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation. Fast Software Encryption
’00, Lecture Notes in Computer Science, vol. 1978, B. Schneier ed., Springer-Verlag, 2000.

[19] T. Kohno, J. Viega, and D. Whiting. A high-performance conventional authenticated encryption mode. Fast Soft-
ware Encryption (FSE 2004), Lecture Notes in Computer Science, Springer-Verlag, 2004.

[20] H. Krawczyk. The order of encryption and authentication for protecting communications (or: how Secure is
SSL?). Advances in Cryptology – CRYPTO ’01, Lecture Notes in Computer Science, vol. 2139, J. Kilian ed.,
Springer-Verlag, 2001.

[21] M. Liskov, R. Rivest, and D. Wagner. Advances in Cryptology – CRYPTO ’02, Lecture Notes in Computer
Science, vol. 2442, pp. 31–46, Springer-Verlag, 2002.

[22] D. McGrew and J. Viega. Flexible and efficient message authentication in hardware and software. Manuscript,
2003. Available from http://www.zork.org/

[23] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of Cryptology, vol. 13, no. 3 pp. 315–
338, 2000.

[24] P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the 9th Annual Conference on Com-
puter and Communications Security (CCS-9), pp. 98–107, ACM, 2002.

[25] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient authenticated encryp-
tion. ACM Transactions on Information and System Security (TISSEC), vol. 6, no. 3, pp. 365–403, Aug. 2003.

[26] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available at
http://csrc.nist.gov/encryption/modes/proposedmodes/

16

A Definition of CCM

Since CCM [26] was a major motivation for our work, we recall its definition, writing it in a new form. First
some notation. Write string constants in hexadecimal, as in 0xFFFE. When X ∈ {0, 1}� is a nonempty string
and i ∈ N is a number we let X + i be the �-bit string that results from regarding X as a nonnegative number x
(binary notation, msb first), adding x to i, taking the result modulo 2n, and converting this number back into an
�-bit string. Now CCM depends on three parameters:

• E — the block cipher — where E : Key × {0, 1}128 → {0, 1}128

• τ — the tag length — where τ ∈ {4, 6, 8, 10, 12, 14, 16}
• λ — the length-of-the-message-length-field — where λ ∈ {2, 3, 4, 5, 6, 7, 8}

Once parameters (E, τ , λ) have been fixed, where E : Key × {0, 1}128 → {0, 1}128 is a block cipher, CCM
is the AE scheme specified in Figure 6. The nonce space is Nonce = BYTE15−λ and the header space is
Header = BYTE<264

and the message space is Plaintext = BYTE<28λ
. There is a tradeoff between the length

of nonces, η = |N | = 15 − λ bytes, and the longest permitted message, 256λ − 1 bytes.

B Criticism of CCM

We partition our criticism into five categories: efficiency, parameterization, complexity, variable-tag-length
subtleties, and some wrong security claims.

B.1 Efficiency issues

We discuss three efficiency problems with CCM: (a) CCM is not on-line, (b) CCM disrupts word-alignment,
and (c) CCM can’t pre-process static associated data.

NOT ON-LINE. Here, an algorithm being on-line refers to its being able to process a stream of data as it arrives,
with constant memory, not knowing in advance when the stream will end. Observe then that on-line methods
should not require knowledge of the length of a message until the message is finished.

CCM fails to be on-line in both the plaintext and the associated data: one needs to know the length of both
of these before one can proceed with encryption.

For message authentication codes, the significance of being on-line was brought out by the work of Petrank
and Rackoff [23], whose work was motivated by the observation that the length-prepend CBC MAC (and other
suggestions appearing in [4]) were not on-line. Since their paper, a failure to be on-line has been regarded as a
significant defect for an encryption scheme or a MAC.

Now it is true that in many contexts where one would be encrypting a string one does know the length of
the string in advance. For example, many protocols will already have “packaged up” the string length at a lower
level. In effect, such strings have been represented in the computing system as sequence of bytes and a count
of those bytes. But there are also contexts where one does not know the length of a message in advance of
getting an indication that it is over. For examples, a printable string is often represented in computer systems
as a sequence of non-zero bytes followed by a terminal zero-byte. Certainly one should be able to efficiently
encrypt a string which has been represented in this way.

DISRUPTS WORD-ALIGNMENT. Length-prepend annotation causes an additional problem for the associated
data (also called the header)—namely, CCM disrupts its word-alignment. This is a problem when the associated
data, H , is long. To understand this issue, remember that most modern machines perform operations much more
efficiently when pointers into memory fall along word-boundaries (which typically occur every 4 or 8 bytes).
A typical software implementation of a CBC MAC, for example, will exhibit much worse performance if it is
called on an argument which is not word-aligned. By prepending length-annotation to the associated data H ,

17

Algorithm CCM.EncryptN H
K (M) // N ∈ BYTE15−λ and H ∈ BYTE<264

and M ∈ BYTE<2λ

100 B ← 0 ‖ if H = ε then 0 else 1 endif ‖ [τ/2 − 1]3 ‖ [λ − 1]3 ‖
101 N ‖ [‖M‖n]8λ ‖
102 if H = ε then ε elseif ‖H‖n < 62580 then [‖H‖n]16 elseif ‖H‖n < 232

103 then 0xFFFE ‖ [‖H‖n]32 else 0xFFFF ‖ [‖H‖n]64 endif ‖
104 H ‖
105 if H = ε then ε elseif ‖H‖n < 62580 then [0]n

(14−‖H‖n) mod 16

106 elseif ‖H‖n < 232 then [0]n
(10−‖H‖n) mod 16 else [0]n

(6−‖H‖n) mod 16 endif
107 ‖ M ‖
108 [0]n

(−‖M‖n) mod 16

109 U ← CBCK(B)
110 A0 ← [λ − 1]8 ‖ N ‖ [0]n

15−λ

111 V ‖ C ← CTRA0
K (U ‖ M) where |V | = 128

112 T ← V [first τ bytes]
113 return CT ← C ‖ T

Algorithm CCM.DecryptN H
K (CT) // N ∈ BYTE15−λ and H ∈ BYTE<264

and CT ∈ BYTE∗

200 if ‖CT‖n < τ then return INVALID

201 Partition CT into C ‖ T where ‖T‖n = τ
202 if ‖C‖n > 2λ − 1 then return INVALID

210 A0 ← [λ − 1]8 ‖ N ‖ [0]n
15−λ

211 M ← CTRA0+1
K (C)

220 B ← 0 ‖ if H = ε then 0 else 1 endif ‖ [τ/2 − 1]3 ‖ [λ − 1]3 ‖
221 N ‖ [‖M‖n]8λ ‖
222 if H = ε then ε elseif ‖H‖n < 62580 then [‖H‖n]16 elseif ‖H‖n < 232

223 then 0xFFFE ‖ [‖H‖n]32 else 0xFFFF ‖ [‖H‖n]64 endif
224 ‖ H ‖
225 if H = ε then ε elseif ‖H‖n < 62580 then [0]n

(14−‖H‖n) mod 16

226 elseif ‖H‖n < 232 then [0]n
(10−‖H‖n) mod 16 else [0]n

(6−‖H‖n) mod 16 endif
227 ‖ M ‖
228 [0]n

(−‖M‖n) mod 16

230 U ← CBCK(B)
231 V ← EK(A0)⊕U
232 T ′ ← V [first τ bytes]
233 if T = T ′ then return INVALID

234 return M

Figure 6: Encryption and decryption under CCM[E, τ , λ]. The block cipher is E : Key × {0, 1}128 → {0, 1}128

and the tag length (in bytes) is τ ∈ {4, 6, 8, 10, 12, 14, 16} and the length-of-the-message-length-field (in bytes)
is λ ∈ {2, 3, 4, 5, 6, 7, 8} and the nonce length (in bytes) is η = 15 − λ.

18

λ 2 3 4 5 6 7 8

msgs shorter than 64 KBytes 16 MBytes 8 GBytes 240 bytes 248 bytes 256 bytes 264 bytes

η = 15 − λ 13 12 11 10 9 8 7

8η (nonce length) 104 bits 96bits 88 bits 80 bits 72 bits 64 bits 56 bits

Figure 7: CCM-allowed values of the length-of-the-message-length-field, λ, the corresponding bound on mes-
sage lengths, and the resulting length of nonces η = ‖N‖n that one must use, measured in bytes and then in
bits.

this length-annotation not being a multiple of 16 or even 4 bytes, one can expect that typical implementations
will suffer a big performance hit.

The disruption of word-alignment is not a big concern if the associated data is just a few bytes, as we
expect that it often will be. But, again, NIST and others are considering CCM for use as a general-purpose
AEAD algorithm. We have no idea how long will be the associated data. For all we know, the user is primarily
interested in authenticating traffic, is doing this to a large volume of traffic, and is encrypting nothing or almost
nothing. We don’t want the authentication side of an AEAD scheme to be significantly more costly than using
a dedicated CBC MAC.

CAN’T PRE-PROCESS STATIC AD. In many scenarios the associated data H will be static over the course of
a communications session. For example, the associated data may including information such as the IP address
of the sender, the receiver, and fixed cryptographic parameters associated to this session. In such a case one
would like that the amount of time to compute EncryptN H

K (M) and DecryptN H
K (C) should be independent of

|H| (disregarding the work done in a preprocessing step). The significance of this goal was already explained
in [24], and a simple approach for achieving this goal was given there. Basically, the reason that CCM fails to
allow pre-processing of associated data H is that the algorithm encodes the nonce N and the message length
‖M‖n before H rather than after it.

B.2 Parameterization

We criticize a few aspects of CCM related to its parameterization: (a) the requirement for the user to specify
a length-of-the-message-length-field parameter; (b) the fact that this choice involves a trade-off against a con-
ceptually unrelated quantity, the nonce length; (c) the marginal utility of the mode for random nonces; (d) the
mode’s strict byte orientation.

AN INAPPROPRIATE PARAMETER. The user of CCM is presented with a parameter, the-length-of-the-message-
length-field, that she really has no business seeing. This parameter can be regarded as a surrogate for the
maximum message length. While it is reasonable to fix a suitably large maximum message length, such as
264 − 1 bytes, it seems undesirable to force the user to think about choosing smaller message spaces. The very
name of this parameter makes clear that this was always conceived of as an implementation-oriented parameter
and not a fundamental characteristic of an AEAD scheme.

TRADEOFF BETWEEN NONCE LENGTH AND MAXIMUM MESSAGE LENGTH. Worse than the fact that the user
must choose a parameter value that she shouldn’t have to think about is that the definition of CCM involves a
tradeoff between two things that are conceptually unrelated: the maximal message length and the length of the
scheme’s nonce. The tradeoff is summarized in Figure 7, which shows the seven allowed values of the-length-
of-the-message-length-field parameter, the message space one gets as a result (restricted to octet string), and
the corresponding value that is mandated for the the nonce length.

There seem to us several reasonable choices for what should be the nonce length of an AEAD scheme that
is based on a 128-bit block cipher. (i) One reasonable choice is 64 bits. This value is large enough to handle a

19

counter, as no real application will encrypt as many as 264 messages. (ii) Another reasonable choice is 128 bits.
This choice is natural for matching the block length and being the right length for handling a random value for
the nonce. (iii) A third natural choice is any string (or any byte string). This is conceptually clean, and it might
be convenient, for example, to allow nonces that are initially 1 byte, and then grow to 2 bytes, and so forth.

One thing that does not make sense to us is to say that the nonce length is a number of bytes that is 15 minus
the log base two of one more than the size of longest permissible message length. The message space and the
nonce space have nothing to do with each other.

MARGINAL UTILITY WITH RANDOM NONCES. The fact that CCM nonce lengths are allowed to exceed 64 bits
suggests that its inventors are thinking of random values as possible choices for the nonce. Though the maximal
nonce length (104 bits) may be acceptable for a random nonce, the minimal nonce length (56 bits) probably is
not. In general, the suitability of CCM for random nonces is linked to the length of the longest message one
wishes to be able to handle, an unnecessary and undesirable connection.

BYTE ORIENTATION. Though some would view this criticism as strictly a matter of taste, we ourselves do
not like that CCM is only defined on octet strings. It is not that one is all that likely to need to use an AEAD
scheme on strings that are not octet strings. It is more that cryptographic algorithms reach beyond technological
conventions like the prevalence byte-orientation in computing systems. To put things in perspective: most
cryptographers would have viewed it as a poor choice if MD4, MD5, and SHA1 had only been defined on octet
strings. It is no less a defect if a general-purpose AEAD scheme is only defined on octet strings.3

B.3 Complexity

While human-perceived complexity is inherently subjective, we ourselves find CCM to be complex. The authors
of the current document can not even remember the definition of CCM without consulting its defining document.
To us, a mode of operation with so many details that one cannot easily remember it (even after working with it
for a few days) is off to a bad start.

BIT MANIPULATIONS. We see two underlying causes for this complexity. The first is all the bit twiddling that
CCM does. We believe that it is preferable for a mode of operation to avoid bit manipulations beyond standard
padding or length annotation. The central concern for a mode of operation is the correct and efficient use of the
block cipher. That purpose has never been shown to need tricky ways to package up arguments or encode string
lengths.

MISSING ABSTRACTION BOUNDARY. More fundamentally, we see the complexity of CCM as stemming
from the fact that it is designed directly on top of a block cipher—in particular, it was not designed to use
any particular message authentication code. In our own exposition of CCM we have done our best to “push
upwards” the abstraction boundary to which CCM writes, so that we could “call out” to the raw CBC MAC
and CTR encryption. Doing this is at odds with the defining document [26], but CCM’s authors have expressed
the viewpoint that they are combining such primitives, and so one rather expects a description of CCM in those
terms. But the raw CBC MAC is not a secure MAC and the authentication tag that CCM computes can only be
seen as something computed by a process integral to the entire mode. There’s no sense in which one can say
“do CCM using this other message authentication code.” CCM employs no autonomous MAC.

It is our view that an AEAD scheme should be designed on top of higher-level primitives than a block
cipher. Even if the higher-level primitives are to be implemented using a block cipher, the abstraction boundary
helps the scheme to be conceptually clean and support a convincing security analysis. The complexity that one
is concerned with isn’t the number of lines to implement the mode (which is certainly small) or write it down

3 Nothing in this paragraph should be understood to suggest that an implementation is under any compulsion to implement an AEAD
scheme that operates on arbitrary bit strings (no more than people implement SHA1 to operate on arbitrary bit strings). We are simply
saying that it should be well-defined.

20

in pseudocode. It is the conceptual complexity of an algorithm as induced by the distance between it and what
it sits on top of.

ILLUSTRATION 1. A glimpse of CCM’s complexity can be seen from the fact that correctness crucially depends
on the encoding convention: namely, the authors have excluded the possibility of τ = 2 (i.e., two-byte tags),
which means that at least one of bits 3, 4, or 5 of the first block of B, which holds [τ/2 − 1]3 is non-zero, while
these bits are always zero in the initial counter value A0. If one allowed a tag of τ = 2 bytes4 or if one had
encoded τ as [τ/2 − 2]3 instead of [τ/2 − 1]3 the CCM method would be wrong.5

ILLUSTRATION 2. A final way to get at the complexity of CCM is to precisely answer the question, how many
block cipher calls does CCM use? The answer is given by the following expression:

NumCallsCCM(M, H) = 2
⌈ |M |

128

⌉
+

⌈ |H|
128

⌉
+ 2 + δ(|H|)

where δ(i) ∈ {0, 1} is defined as follows: letting

λ(i) =

0 if i = 0
16 if i ∈ [8, 8 · 62572]
48 if i ∈ [8 · 62580, 235 − 8]
80 if i ∈ [235, 264 − 8]

we set δ(i) = 0 if (i mod 128) + λ(i) ≤ 128, and δ(i) = 1 otherwise. It appears that much of this complexity
is so that δ(|H|) will be more often 0 than 1.

B.4 Subtleties of variable-length authentication tags

In CCM, the authentication tag τ is of variable length: it is permitted to be 4, 6, 8, 10, 12, 14, or 16 bytes long.
Variable-length tags come with some security risks, if the schemes are not implemented carefully or what they
achieve is not stated clearly.

A SCENARIO AND AN ATTACK. In the design of Internet protocols, a common slogan is “be conservative in
what you send, and liberal in what you accept.” Imagine a CCM implementation takes this literally: the sender
always creates messages with a 16-byte tag, but the receiver accepts messages if they have a valid tag of any
permitted length.

How secure would such an implementation be? Of course, since the attacker is free to choose a tag of any
length, a smart attacker will choose the tag length that is most convenient for him: presumably, 4-byte tags.
Clearly such an attacker can generate a valid ciphertext within 232 tries. This vulnerability is unavoidable in
any scheme with authentication tags that are only four bytes long. However, this attack might be of limited
value to the attacker, because it is a blind forgery: the attacker cannot control what message will be accepted
by the recipient.

We point out that a worse attack on CCM is possible in the envisaged scenario: a more clever attacker can
fully control what message the recipient will be tricked into accepting. The reason for this is that, in CCM, the
transmitted ciphertext has the form C ‖T where T is an authentication tag and where the received message M is
computed as a function of C but not τ . The directed forgery attack on CCM is as follows. Suppose the attacker
intercepts a single ciphertext C ‖T16 that is the encryption of some message M formed by the legitimate sender.

4 We comment that allowing tags of one byte, or even one bit, is a reasonable thing to do, as there are contexts, like authenticating a
video frame, where one has to forge many messages to have a detrimental effect.

5 Criticism that an algorithm “would be wrong if the following change was made” is never-ending and inherently unconvincing—
“but the algorithm isn’t that way” is a quite sufficient response. Here the criticism is simply being used to emphasize that CCM’s
correctness is integrally wrapped up in its encoding-scheme details.

21

Imagine that the attacker has a difference ∆ that it would like to XOR into the message; for instance, the attacker
might want to flip certain bit positions in M . Then the attacker can generate the 232 ciphertexts of the form
(C ⊕∆) ‖ T4 where T4 varies over all 4-byte values. Most of these will be rejected by the receiver as having
invalid authentication tags, but one will be accepted as a valid encryption of the modified message M ⊕∆.
Thus an adversary can forge any message it likes with 232 tries, given a single ciphertext (with known plaintext)
that was authenticated with a 128-bit tag. One can reasonably maintain that authenticating a message with a
128-bit tag should not have had this consequence.

INTERPRETATION. Does the attack above mean that the tag length τ should have been used for computing
the ciphertext core C? In our opinion, the answer is: “not necessarily.” Rather, the attack highlights that the
specification [26] has made it unclear what the goal is with respect to handling a multiplicity of tag lengths.

We suggest that the tag length parameter τ should be fixed at key-negotiation time, bound securely to the
key, and negotiated authentically between both parties. Once a session has begun, there should be only a single
value τ that will be accepted by the receiver, and this should remain unchanged throughout the lifetime of the
session. The receiver shouldn’t accept a new τ in the middle of a session any more than it would accept a
new block cipher E. All parameters should have the same status. Under this interpretation the inclusion of τ
within the string B in CCM was not necessary to achieve the security goals. This is not a flaw in CCM, but it
underscores the need to think carefully about the desired security goals.

B.5 Security claims

Jonsson has done an admirable job of finding an abstraction of CCM that permits a security proof, and going
ahead and giving such a proof [16]. Though none of us have studied the proof in detail, it seems credible and
well-conceived. This is fortunate, because many of the security comments in the WHF writeup itself [26] can
only be described as uninformed. For example, in Section 1.8 the authors claim that CCM “is secure against
attackers limited to 2128 steps of operation if the key K is 256 bits or longer.” Such a claim is unsupported by
any known results and would seem to be wrong under any reasonable interpretation, as privacy itself vanishes
by the time that 264 blocks have been enciphered. Later, in Section 1.10 [26], we hear that “[by enciphering the
CBC MAC] we avoid CBC-MAC collision attacks. If the block cipher behaves as a pseudo-random permuta-
tion, then the key stream is indistinguishable from a random string. Thus the attacker gets no information about
the CBC-MAC result. The only avenue of attack that is left is differential-style attack, which has no significant
chance of success if the block cipher is a pseudo-random permutation.” This paragraph is so far from saying
something technically accurate that we wouldn’t know where to begin. Of course wrong or unscientific security
claims are not an indictment of the method they speak about; our only point is that one needs to ignore the
security statements of the writeup, regard it only as an algorithm specification, and turn to Jonsson [16] for
more scientific assertions.

C Proof of Security of EAX2

Proof of Lemma 1: Let Key2 be the key space of the IVE scheme Π = (E ,D). Let A be an adversary
attacking the privacy of the AEAD scheme EAX2[Π,Rn

n, τ] = (E,D). Assume that A makes at most q oracle
queries, has data complexity at most σ, and running time at most t. Using A, we construct an adversary P ,
defined in Figure 8, for attacking the privacy of Π. Observe that P makes at most q oracle queries, has data
complexity σ, and running time at most t′. Regarding the design of P , our first claim is that its assignment
of a value to f([0]n ‖ N), made in answering an oracle query of A, is legitimate because f([0]n ‖ N) was not

22

Adversary P e(·)

Initially, f is everywhere undefined
Run A

When A makes oracle query (N, H, M) answer the query as follows:

N ‖ C
$← e(M) // where |N| = n

f([0]n ‖ N) ← N

if f([1]n ‖ H) is undefined then f([1]n ‖ H) $←{0, 1}n

H ← f([1]n ‖ H)

if f([2]n ‖ C) is undefined then f([2]n ‖ C) $←{0, 1}n

C ← f([2]n ‖ C)
Let T be the first τ bits of N⊕H⊕C

Return CT ← C ‖ T as the oracle response

When A outputs a bit, d, return d

Figure 8: Adversary P attacking the privacy of IVE scheme Π using as subroutine adversary A attacking the
privacy of Π = EAX2[Π,Rn

n, τ].

previously defined. This is true because A is nonce-respecting. Now we claim that

Pr
[
K2 $← Key2 : P E$

K2(·) = 1
]

= Pr
[
f

$←Rn
n ; K2 $← Key2 : AE·,·

f,K2(·) = 1
]

(3)

Pr
[
K2 $← Key2 : P $(·) = 1

]
= Pr

[
f

$←Rn
n ; K2 $← Key2 : A$·,·(·) = 1

]
. (4)

Subtracting, we get

Advpriv
Π (P) = Advpriv

EAX2[Π,Rn
n,τ](A) ,

which concludes the proof. We now justify the two equations above. The first is clear from the definitions.
With regarding Equation (4), we need to check that when P ’s oracle is $(·), the oracle-responses returned to A
are uniformly and independently distributed. Such a response has the form C ‖ T . We know that C is random
because it is chosen by P ’s oracle. The reason T is also random is that it is the xor of some quantities with N

and the latter, being returned by P ’s oracle, is random.

Towards the proof of Lemma 2 we consider a new game and a lemma about it. The game is parameterized by
integers m, τ ≥ 1. Let I denote the set of all strings of length at most m and let f : I → {0, 1}τ . We consider
an adversary with access to two oracles, XTagf (·) and XVff (·, ·). The xor-tag oracle XTagf (·) takes input a
set S ⊆ I and returns

∑
x∈S f(x), the sum here being modulo two, ie. XOR. The xor-verify oracle XVff (·, ·)

takes input a set S ⊆ I and a string T . It returns 1 if T =
∑

x∈S f(x) and 0 otherwise. We require that A make
exactly one query to its xor-verify oracle and that this be its last oracle query. (That is, it makes a sequence of
queries to its xor-tag oracle, then a query to its xor-verify oracle, and then halts.) We say that A forges if its
query to its xor-verify oracle results in the oracle returning 1. We let

Advxtag
m,τ (A) = Pr

[
f

$←RI
τ : AXTagf (·), XVff (·,·) forges

]
.

Towards stating the lemma we need about this advantage, we need some notation. Let c = |I| and let x1, . . . , xc

denote a lexicographic ordering of I . If S ⊆ I we let ChV(S) denote its c-bit characteristic vector, meaning
ChV(S)[j] = 1 if xj ∈ S and 0 otherwise (1 ≤ j ≤ c). Suppose adversary A makes xor-tag queries S1, . . . , Sq

and finally a xor-verify query (S, T). We say that A is rank respecting if ChV(S) is not a linear combination

23

Adversary BXTagf (·), XVff (·,·)

i ← 0 ;
Run A

When A makes an xor-tag query S

if ChV(S) is linearly dependent on ChV(S1), . . . ,ChV(Si)
then Let L ⊆ {1, . . . , i} be such that ChV(S) =

∑
l∈L ChV(Sl) ; Ai ←

∑
l∈L Al

else i ← i + 1 ; Si ← S ; Ai ← XTagf (Si)
Return Ai to A as the oracle response

When A makes an xor-verify query (S, T)
for j = i + 1, . . . , c − 1 do

Pick some Sj ⊆ I such that ChV(S), ChV(S1), . . . ,ChV(Sj) are linearly independent

Aj ← XTagf (Sj)
Return XVff (S, T) to A as the oracle response

Figure 9: Adversary for the proof of Lemma 7.

of ChV(S1), . . . ,ChV(Sq). (This must be true regardless of oracle responses and regardless of A’s internal
coins.) In considering linear combinations we are working over the field of two elements.

Lemma 7 Let m, τ ≥ 1 be integers and let A be a rank-respecting adversary. Then

Advxtag
m,τ (A) ≤ 2−τ . �

Proof of Lemma 7: This lemma is pretty much implicit in [2, 3], but for completeness we provide a proof
here. First, some notation. Let I be the set of all strings of length at most m and let c = |I|. When we write a
sum of vectors, we mean the vectors are being added componentwise modulo 2. When we write a sum of τ -bit
strings, we mean the bitwise XOR.

We begin by considering the adversary B depicted in Figure 9. It has the following features:

• Advxtag
m,τ (B) = Advxtag

m,τ (A).
• B makes exactly c − 1 xor-tag oracle queries.

• B makes exactly one xor-verify query and this is the last oracle query it makes.

• Let S1, . . . , Sc−1 be the xor-tag oracle queries made by B, and let Sc be the first component of the
pair that constitutes the xor-verify oracle query made by B. Then ChV(S1), . . . ,ChV(Sc) are linearly
independent.

To complete the proof we will show that Advxtag
m,τ (B) ≤ 2−τ .

Let f : I → {0, 1}τ denote the function chosen at random in the game. Let Si be the random variable taking
value the i-th xor-tag oracle query made by B (1 ≤ i ≤ c − 1), and let Sc denote the random variable taking
value the first component of the pair that constitutes the xor-verify oracle query made by B. For 1 ≤ i ≤ c let
Ai be the random variable taking value the response returned by the game to xor-tag oracle query Si. (Query Sc

is not made to the xor-tag oracle by B, but we define the random variable whose value is its response anyway).
That is:

Ai =
∑
x∈Si

f(x) (1 ≤ i ≤ c) .

24

Let S1, . . . , Sc−1 be any sequence of xor-tag queries made by B, and let A1, . . . , Ac−1 be responses returned
to them. Let Sc be the first component of the pair constituting a following xor-verify query made by B. Let Ac

be any τ -bit strings. We claim that

Pr [Ac = Ac | (S1, . . . ,Sc,A1, . . . ,Ac−1) = (S1, . . . , Sc, A1, . . . , Ac−1)] = 2−τ , (5)

the probability being over the choice of the function f alone. This implies that Advxtag
m,τ (B) = 2−τ , which

completes the proof. It remains to justify Equation (5).

Let M be the c − 1 by c matrix whose i-th row is ChV(Si) (1 ≤ i ≤ c − 1) and let M be the c by c
matrix whose i-th row is ChV(Si) (1 ≤ i ≤ c). Since ChV(S1), . . . ,ChV(Sc) are linearly independent, M
is non-singular. Let x1, . . . , xc denote a lexicographic ordering of I . We identify f with the (column) vector
f = (f(x1), . . . , f(xc)). Below we use “·” to denote matrix-vector multiplication. Then we have

Pr [Ac = Ac | (S1, . . . ,Sc,A1, . . . ,Ac−1) = (S1, . . . , Sc, A1, . . . , Ac−1)]

=
|{ f ∈ RI

τ : M · f = (A1, . . . , Ac) }|
|{ f ∈ RI

τ : M · f = (A1, . . . , Ac−1) }|

=
|{ f ∈ RI

τ : M · f = (A1, . . . , Ac) }|∑
A∈{0,1}τ |{ f ∈ RI

τ : M · f = (A1, . . . , Ac−1, A) }|

=
1∑

A∈{0,1}τ 1
(6)

=
1
2τ

.

Above, Equation (6) is true because M is non-singular.

We will now use Lemma 7 to prove Lemma 2.

Proof of Lemma 2: Let B be an adversary attacking the authenticity of EAX2[Π,Rn
n, τ]. Assume it makes

at most qe encryption oracle queries, has data complexity at most σ, and running time at most t. Let m be
large enough that no string in an oracle query of B has length exceeding m, regardless of oracle responses and
regardless of B’s internal coins. Let I be the set of all strings of length at most m. For any f : I → {0, 1}n we
define:

Algorithm EEN H
f (M)

N ← f([0]n ‖ N)
H ← f([1]n ‖ H)
C

$←{0, 1}|M |

C ← f([2]n ‖ C)
Tag ← N⊕C⊕H

T ← Tag [first τ bits]
return CT ← C ‖ T

Algorithm D̂D
N H

f (CT)

if |CT | < τ then return INVALID

Let C ‖ T ← CT where |T | = τ
N ← f([0]n ‖ N)
H ← f([1]n ‖ H)
C ← f([2]n ‖ C)
Tag ′ ← N⊕C⊕H

T ′ ← Tag ′ [first τ bits]
if T = T ′ then return INVALID else return 1

We let

Advrauth(B) = Pr
[
f

$←RI
n : BEE· ·

f (·), D̂D
· ·
f (·) forges

]
.

We will construct a rank-respecting adversary A such that

Advrauth(B) ≤ Advxtag
m,τ (A) . (7)

25

We will also construct an adversary P , using resources t′, q, σ and attacking the privacy of Π, such that

Advauth
EAX2[Π,Rn

n,τ](B) − Advrauth(B) ≤ Advpriv
Π (P) . (8)

Thus we have

Advauth
EAX2[Π,Rn

n,τ](B) = Advrauth(B) +
(
Advauth

EAX2[Π,Rn
n,τ](B) − Advrauth(B)

)
≤ Advxtag

m,τ (A) + Advpriv
Π (P)

≤ 2−τ + Advpriv
Π (t′, q, σ) ,

where the last inequality uses Lemma 7. This completes the proof of the lemma. It remains to construct the
adversaries A and P indicated above.

Adversary AXTagf (·), XVff (·,·) defines the following subroutines:

Subroutine SimEN H (M)

C
$←{0, 1}|M |

S ← { [0]n ‖ N, [1]n ‖ H, [2]n ‖ C }
T ← XTagf (S)
return CT ← C ‖ T

Subroutine SimDN H (CT)

if |CT | < τ then return INVALID

Let C ‖ T ← CT where |T | = τ
S ← { [0]n ‖ N, [1]n ‖ H, [2]n ‖ C }
if XVff (S, T) = 0 then return INVALID

else return 1

Adversary A then runs BSimE· ·(·), SimD· ·(·). Equation (7) is true because for any choice of the underlying
function f we have SimE· ·(·) = EE· ·

f (·) and SimD· ·(·) = D̂D
· ·
f (·). It remains to show that A is rank-

respecting. Let c = |I| and let x1, . . . , xc denote a lexicographic ordering of I . For 1 ≤ i ≤ q let (Ni, Hi, Mi)
be the i-th encryption-oracle query made by B, leading to A making xor-tag query Si, and let (N, H,CT)
denote the verification query made by B, leading to A making xor-verify query (S, T). Let CT = C ‖ T
where |T | = τ . Imagine a matrix whose i-th row is ChV(Si) (1 ≤ i ≤ q) and whose (q + 1)-th row is
ChV(S). Column j is called an l-column if xj is prefixed by [l]n (0 ≤ l ≤ 2 and 1 ≤ j ≤ c). Since A is
nonce-respecting there exists a set D of q 0-columns such that the submatrix formed by the first q rows of the
matrix and the columns in D is a q by q identity matrix. Since ChV(S) has exactly one 1 in a 0-column, the
only way that ChV(S) could be a linear combination of ChV(S1), . . . ,ChV(Sq) is that it equals ChV(Si) for
some i (1 ≤ i ≤ q). This means that N = Ni, H = Hi and the response to B’s i-th oracle query was CT . But
this contradicts the condition we imposed on B that disallowed a verification-oracle query (N, H,CT) such
that CT had been obtained in response to an encryption-oracle query (N, H, M). (It is important here that
we required the condition to hold regardless of the responses to oracle queries and the coin tosses of B.) So
ChV(S) cannot equal ChV(Si). This completes the proof that A is rank-respecting.

We now turn to the design of adversary P . It is depicted in Figure 10. It is an extension of the adversary
constructed in the proof of Lemma 1 that also handles verification-oracle queries. A crucial feature of EAX2
we have exploited in order to be able to respond to verification-oracle queries is that the validity of a ciphertext
can be verified without decrypting under the IVE scheme. Regarding the design of P , our first claim is that its
assignment of a value to f([0]n ‖N), made in answering an encryption-oracle query of B, is legitimate because
f([0]n ‖ N) was not previously defined. This is true for two reasons. The first is that B is nonce-respecting.
The second is that B does not make any encryption-oracle queries after it has made its verification-oracle query.
(The verification-oracle query might define f([0]n ‖ N), but since no encryption-oracle queries follow we do
not have to be concerned about f([0]n ‖ N) being defined at the time of answering one of them.) Now we turn

26

Adversary P e(·)

Initially, f is everywhere undefined
Run B

When B makes encryption-oracle query (N, H, M):

N ‖ C
$← e(M) // where |N| = n

f([0]n ‖ N) ← N

if f([1]n ‖ H) is undefined then H ← f([1]n ‖ H) $←{0, 1}n

if f([2]n ‖ C) is undefined then C ← f([2]n ‖ C) $←{0, 1}n

Let T be the first τ bits of N⊕H⊕C

Return CT ← C ‖ T to B as the oracle response

When B makes verification-oracle query (N, H,CT):
if |CT | < τ then return INVALID to B as the oracle response

Let C ‖ T ← CT where |T | = τ

if f([0]n ‖ N) is undefined then f([0]n ‖ N) $←{0, 1}n

N ← f([0]n ‖ N)

if f([1]n ‖ H) is undefined then f([1]n ‖ H) $←{0, 1}n

H ← f([1]n ‖ H)

if f([2]n ‖ C) is undefined then f([2]n ‖ C) $←{0, 1}n

C ← f([2]n ‖ C)
Let T ′ be the first τ bits of N⊕H⊕C

if T = T ′ then d ← 1 else d ← 0
if d = 0

then return INVALID to B as the oracle response

else return 1 to B as the oracle response

return d

Figure 10: Adversary P attacking the privacy of IVE scheme Π in the proof of Lemma 2.

to the analysis. Let Key2 be the key-space of Π. It is easy to see that

Pr
[
K2 $← Key2 : P E$

K2(·) = 1
]

= Advauth
EAX2[Π,Rn

n,τ](B) (9)

Pr
[
K2 $← Key2 : P $(·) = 1

]
= Advrauth(B) . (10)

Subtracting, we get Equation (8), and this concludes the proof.

Proof of Theorem 3: Let A be an adversary using resources at most (t, q, σ) that attacks the authenticity

of Π = (E,D) = EAX2[Π, F, τ]. Using A, we construct an adversary B for distinguishing f
$← F from

f
$←Rn

n. Adversary B, which has oracle f , works as follows. At the beginning of B’s execution it chooses

K2 $← Key2 where Key2 is the key space of Π. Then B runs A. When A makes an oracle query (Ni, Hi, Mi)
adversary B computes Ni ← f([0]n ‖ Ni) and Ci ← ENi

K2(Mi) and Hi ← f([1]n ‖ Hi) and Ci ← f([2]n ‖ Ci)
and Ti ← (Ni ⊕Ci ⊕Hi) [first τ bits] and CT i ← Ci ‖ Ti and then B returns to A the string CT i. When A

27

halts, outputting an attempted forgery (N, H, C ‖T), adversary B checks if this is a valid forgery: (1) it checks
if (N, H, C‖T) is distinct from every (Ni, Hi, Ci‖Ti) that has been computed; (2) it computes N ← f([0]n‖N)
and H ← f([1]n ‖H) and C ← f([2]n ‖C) and sees if T = (N⊕H⊕C) [first τ bits]. If both conditions hold
then B returns the bit 1 (it guesses that f = FK1 for a random K1) and otherwise it outputs the bit 0 (it guesses
that f is a random function from Rn

n).

Note that B makes a total of 3q + 3 oracle calls. The total length of those queries is σ. (Recall our convention
that we include in σ the output length and the number of components in each vector that is queried.) The running
time of B is t1 = t+TimeE(σ)+Õ(σ). Finally, adversary B provides A a perfect simulation of EAX2[Π, F, τ]
if f is selected by f

$← F while B provides A a perfect simulation of EAX2[Π,Rn
n, τ] if f

$←Rn
n. Thus using

Lemma 2 we have that

Advauth
EAX2[Π,F,τ](A)

=
(
Advauth

EAX2[Π,F,τ](A) − Advauth
EAX2[Π,Rn

n,τ](A)
)

+ Advauth
EAX2[Π,Rn

n,τ](A)

≤
(
Pr[f $← F : Bf = 1] − Pr[f $←Rn

n : Bf = 1]
)

+ 2−τ + Advpriv
Π (t2, q, σ)

= Advprf
F (B) + Advpriv

Π (t2, q, σ) + 2−τ

≤ Advprf
F (t1, 3q + 3, σ) + Advpriv

Π (t2, q, σ) + 2−τ .

This completes the proof of Equation (1).

Reusing the name, let A be an adversary that attacks the privacy of Π = (E,D) and uses resources at most
(t, q, σ). Reusing the name, we construct an adversary B for attacking the pseudorandomness of F .

Adversary B, which has an oracle for f , is constructed as follows. At the beginning of B’s execution it chooses
K2 $← Key2 where Key2 is the key space of Π. Then B runs A. When A makes an oracle call (Ni, Hi, Mi)
adversary B computes Ni ← f([0]n ‖ Ni) and Ci ← ENi

K2(Mi) and Hi ← f([1]n ‖ Hi) and Ci ← f([2]n ‖ Ci)
and Ti ← (Ni ⊕Ci ⊕Hi) [first τ bits] and CT i ← Ci ‖ Ti and then B returns to A the string CT i. When A
halts, outputting a bit b, adversary B outputs the same bit b.

The total number of oracle queries made by B is 3q. The total length of these queries is at most σ. The running
time of B is t3 = t+TimeE(σ)+Õ(σ). Finally, adversary B provides A a perfect simulation of EAX2[Π, F, τ]
if f is selected by f

$← F while B provides A a perfect simulation of EAX2[Π,Rn
n, τ] if f

$←Rn
n. Now using

Lemma 1 we have that

Advpriv
EAX2[Π,F,τ](A) =

(
Advpriv

EAX2[Π,F,τ](A) − Advpriv
EAX2[Π,Rn

n,τ](A)
)

+ Advpriv
EAX2[Π,Rn

n,τ](A)

≤
(
Pr[f $← F : Bf = 1] − Pr[f $←Rn

n : Bf = 1]
)

+ Advpriv
Π (t2, q, σ)

= Advprf
Π (B) + Advpriv

Π (t2, q, σ)

≤ Advprf
Π (t3, 3q, σ) + Advpriv

Π (t2, q, σ)

This completes the proof of Equation (2).

D Proof of Security of OMAC

Proof of Lemma 4: Let A be a length-committing adversary for distinguishing OMAC[Rn
n] from a random

function. Assume that A uses resources (σ1, σ2). Without loss of generality we assume that A is deterministic
and makes no repeated queries. We simulate the behavior of an OMAC[Rn

n] oracle as show in Figure 11. That

28

Initialization

00 ρ
$←Rn

n

01 L0 ← ρ([0]n) ; L1 ← ρ([1]n) ; L2 ← ρ([2]n)

On query (t, M, s), where t ∈ {0, 1, 2} and M = M1 · · ·Mm and s ∈ N

10 if |M | = n then T ← ρ(M1 ⊕Lt ⊕ 2L0)
20 elseif |M | < n then T ← ρ(M̃1 ⊕Lt ⊕ 4L0)
30 else if Y [t, M1] is undefined then Y [t, M1] ← ρ(M1 ⊕Lt)
31 u ← the largest number in [1 .. m − 1] s.t. Y [t, M1..u] is defined
32 for j ← u + 1 to m − 1 do Y [t, M1..j] ← ρ(Y [t, M1..j−1]⊕Mj)
33 if |Mm| = n then T ← ρ(Y [t, M1..m−1]⊕Mm ⊕ 2L0)
34 if |Mm| < n then T ← ρ(Y [t, M1..m−1]⊕ M̃m ⊕ 4L0)
40 for j ← 0 to s − 1 do Sj ← ρ(T +j−1)
50 return T ‖ S0 · · ·Ss−1

Figure 11: Game Q1, which perfectly simulates an OMACt
ρ oracle for t ∈ {0, 1, 2} and ρ a random function

from Rn
n.

figure depicts a mechanism, game Q1, that coincides with the definition of OMAC[Rn
n]. As before, we use the

notation X̃ for the padded version of the string X , namely X̃ = X10n−|X|−1.

Game Q1 is not the most obvious simulation of an OMAC[Rn
n] oracle. In particular, the game distinguishes

among the following cases: one-block messages that are a full n bits (line 10); one-block messages that fall
short of n bits (line 20); messages with two or more blocks where the final block is a full block (line 33); and
messages with two or more blocks where the final block is a short block (line 34). In addition to breaking
into these cases, we implement memoization by way of the array Y . In particular, when a query M1 . . . Mm is
asked we record (memoize) the intermediate values that we get as we CBC our way down M1 · · ·Mm−1. If any
of prefixes M1, M1..2, . . . , M1..m−1 should arise again with the same tweak we will not re-compute the values
needed as we chain down the message, looking up the answer in the array Y instead. Notice that memoization
stops one block short of the final block Mm and that the memoization is tweak-dependent.

To help us understand the behavior of game Q1 we make some changes to it, yielding game Q2, defined
in Figure 12. As is standard, game Q2 avoids choosing ρ

$←Rn
n at the beginning and instead fills in values

incrementally. We write Domain(ρ) for the set of all X ∈ {0, 1}n such that ρ(X) has been assigned some
value. Any time we need a ρ(X) value, if it is not yet defined then we choose a value at random from {0, 1}n

and make this to be ρ(X). Any time we need a value for ρ(X) that has been defined already, we use that old
value. In the latter case we also set a flag bad. The flag bad effects nothing visible to the adversary, but it is
central to our subsequent analysis. It is easy to verify that games Q1 and Q2 provide identical views to any
adversary that interacts with them, so Pr[AQ1 = 1] = Pr[AQ2 = 1].

Also defined in Figure 12 is game R1. This game is obtained by dropping the highlighted statements from
game Q1. We only omit statements that immediately follow the setting of the flag bad. The game R1 is easily
seen to return n(s−1) random bits in response to any query (t, M, s). Thus Advdist

Q2,R1(A) = |Pr[AQ2 = 1]−
|Pr[AR1 = 1]| ≤ Pr[AR1 sets bad]. This is the standard setup for analyses within the game-playing paradigm.

To more easily understand game R1 we rewrite it a bit, resulting in the game R2 shown in Figure 13. To
understand the change from game R1 to game R2 notice that, having eliminated the seven highlighted state-
ments of game Q2, the ρ(X)-values are no longer actually used in game R1: all that one needs to keep track

29

Initialization

00 L0
$←{0, 1}n ; L1

$←{0, 1}n ; L2
$←{0, 1}n

01 ρ([0]n) ← L0 ; ρ([1]n) ← L1 ; ρ([2]n) ← L2

02 bad ← false

On query (t, M, s), where t ∈ {0, 1, 2} and M = M1 · · ·Mm and s ∈ N

05 T
$←{0, 1}n

10 if |M | = n then
11 X1 ← M1 ⊕Lt ⊕ 2L0 ; if X1 ∈ Domain(ρ) then bad ← true , T ← ρ(X1)
12 ρ(X1) ← T
20 elseif |M | < n then
21 X1 ← M̃1 ⊕Lt ⊕ 4L0 ; if X1 ∈ Domain(ρ) then bad ← true , T ← ρ(X1)
22 ρ(X1) ← T
30 else if Y [t, M1] is undefined then

31 X1 ← M1 ⊕Lt ; Y [t, M1]
$←{0, 1}n

32 if X1 ∈ Domain(ρ) then bad ← true , Y [t, M1] ← ρ(X1)
33 ρ(X1) ← Y [t, M1]
40 u ← the largest number in [1 .. m − 1] s.t. Y [t, M1..u] is defined
41 for j ← u + 1 to m − 1 do

42 Xj ← Y [t, M1..j−1]⊕Mj ; Y [t, M1..j]
$←{0, 1}n

43 if ρ(Xj) is defined then bad ← true , Y [t, M1..j] ← ρ(Xj)
44 ρ(Xm) ← Y [t, M1..j]
50 if |Mm| = n then
51 Xm ← Y [t, M1..m−1]⊕Mm ⊕ 2L0

52 if Xm ∈ Domain(ρ) then bad ← true , T ← ρ(Xm)
53 ρ(Xm) ← T
60 if |Mm| < n then
61 Xm ← Y [t, M1..m−1]⊕ M̃m ⊕ 4L0

62 if Xm ∈ Domain(ρ) then bad ← true , T ← ρ(Xm)
63 ρ(Xm) ← T
70 for j ← 0 to s − 1 do

71 Sj
$←{0, 1}n

72 if T +j−1 ∈ Domain(ρ) then bad ← true , Sj ← ρ(T +j−1)
73 ρ(T +j−1) ← Sj

80 return T ‖ S0 · · ·Ss−1

Figure 12: Game Q2, which is equivalent to game Q1. Game R1 is obtained by omitting the highlighted
statements.

30

of is whether or not a point X has already been placed into the domain of ρ. Thus game R2 ceases to keep
track of ρ-values; instead, we record in the variable R what would be the domain of ρ at this point in time.
So R starts off as {[0]n, [1]n, [2]n} (corresponding to the fact that ρ([0]n), ρ([1]n), and ρ([2]n) are defined in
game R1) and then, whenever a point X would have been placed into the domain of ρ, with some value be-
ing assigned to ρ(X), we simply add X to the set R, not bothering with anything else. Instead of testing if
a given point is in the domain of ρ we test if it is in R. At this point we notice that the random value T is
not used until the final lines of the game, so, for added clarity, we move down in the program the choosing
of the random value T . We have that Pr[AR1 sets bad] = Pr[AR2 sets bad]. Given what we have said so far,
Advprf

OMAC[Rn
n](A) = Advdist

Q1,R2(A) ≤ Pr[AR2 sets bad]. Our job has been reduced to understanding the
adversary’s chance of setting bad in game R2.

Let us dispense right away with the chance that bad is set at line 73. The value T is chosen at random at line 70
and then we see if any of the s points T, T + 1, . . . , T + s − 1 are in the set R. Now |R| ≤ σ1 + σ2 + 3
throughout the execution of game R2 and we are testing for the presence of at most σ2 points in R, and so

Pr[bad gets set at line 73 of game R2] ≤ σ2(σ1 + σ2 + 3)
2n

(11)

Let game R3 coincide with game R2 except for eliminating line 73. The probability that bad gets set in game
R2 is at most the probability that bad gets set in line 73 of game R2 plus the probability that bad gets set in a
line other than line 73 of game R2. So by equation (11) we have that

Pr[bad gets set in game R2] ≤ Pr[bad gets set in game R3] +
σ2(σ1 + σ2 + 3)

2n
(12)

We proceed with the analysis of game R3.

The values Sj returned to the adversary in game R3 have no impact on any internal variable maintained by the
game (these values are chosen, returned to the adversary, and never used again). The only significance of the q
T -values returned to the adversary is to define some σ2 R-values—values that the adversary does not control.
Thus we will only be giving the adversary more power if we allow it to select an initial set of σ2 + 3 values
for R (the “+3” reflecting the three values that were assigned to R at line 01) and have it interact no further with
the game, since everything is at that point determined. In other words, the game is made noninteractive, but
we maximize over all possible choices {R1, . . . ,Rσ2+3} of initial values for R.The adversary’s corresponding
queries are now fixed.6 The modified game is shown in Figure 14. We regard all of q and t1, . . . , tq ∈ {0, 1, 2}
and strings M1, . . . , Mq having block lengths m1, . . . , mq and strings R1, · · · , Rσ2+3 ∈ {0, 1}n as fixed constants
associated to the game. We must bound the probability that bad gets set to true in game S. We do that with a
case analysis.

If the flag bad gets set in game S it is because a point Xs
j gets computed in one of lines 11, 21, 31, 41, 51, 61

(six possibilities), but that point was already placed in R by an earlier execution of one of lines 01, 12, 22, 33,
43, 53, 63 (seven possibilities). This gives a total of 6 × 7 = 42 cases. We refer to the “current” point as Xs

j

and the “earlier” point as Xr
i . The current point must follow the earlier point under the natural ordering. The

current point Xs
j and the earlier point Xr

i can be set as any of the following:

6 Note that, strictly speaking, the attacker can also control s for each invocation. However, it is still true that we are only giving the
adversary more power if we allow the adversary to select σ2 + 3 values in advance rather than observing the S- and T -values as we go.

31

Initialization

00 L0
$←{0, 1}n ; L1

$←{0, 1}n ; L2
$←{0, 1}n

01 R ← {[0]n, [1]n, [2]n}
02 bad ← false

On query (t, M, s), where t ∈ {0, 1, 2} and M = M1 · · ·Mm and s ∈ N

10 if |M | = n then
11 X1 ← M1 ⊕Lt ⊕ 2L0 ; if X1 ∈ R then bad ← true
12 R ← R ∪ {X1}
20 elseif |M | < n then
21 X1 ← M̃1 ⊕Lt ⊕ 4L0 ; if X1 ∈ R then bad ← true
22 R ← R ∪ {X1}
30 else if Y [t, M1] is undefined then

31 X1 ← M1 ⊕Lt ; Y [t, M1]
$←{0, 1}n

32 if X1 ∈ R then bad ← true
33 R ← R ∪ {X1}
40 u ← the largest number in [1 .. m − 1] s.t. Y [t, M1..u] is defined
41 for j ← u + 1 to m − 1 do

42 Xj ← Y [t, M1..j−1]⊕Mj ; Y [t, M1..j]
$←{0, 1}n

43 if Xj ∈ R then bad ← true
44 R ← R ∪ {Xj}
50 if |Mm| = n then
51 Xm ← Y [t, M1..m−1]⊕Mm ⊕ 2L0

52 if Xm ∈ R then bad ← true
53 R ← R ∪ {Xm}
60 if |Mm| < n then
61 Xm ← Y [t, M1..m−1]⊕ M̃m ⊕ 4L0

62 if Xm ∈ R then bad ← true
63 R ← R ∪ {Xm}
70 T

$←{0, 1}n

71 for j ← 0 to s − 1 do

72 Sj
$←{0, 1}n

73 if T +j−1 ∈ R then bad ← true
74 R ← R ∪ {T, T +1, . . . , T +s−1}
80 return T ‖ S0 · · ·Ss−1

Figure 13: Game R2, which is equivalent to R1 but no longer maintains the function ρ.

32

00 L0
$←{0, 1}n ; L1

$←{0, 1}n ; L2
$←{0, 1}n

01 R ← {R1, . . . ,Rσ2+3}
02 bad ← false

05 for s ← 1 to q do

10 if |Ms| = n then
11 Xs

1 ← Ms
1 ⊕Lts ⊕ 2L0 ; if Xs

1 ∈ R then bad ← true
12 R ← R ∪ {Xs

1}
20 elseif |Ms| < n then
21 Xs

1 ← M̃s
1 ⊕Lts ⊕ 4L0 ; if Xs

1 ∈ R then bad ← true
22 R ← R ∪ {Xs

1}
30 else if Y [ts, Ms

1] is undefined then

31 Xs
1 ← Ms

1 ⊕Lts ; Y [ts, Ms
1]

$←{0, 1}n

32 if Xs
1 ∈ R then bad ← true

33 R ← R ∪ {Xs
1}

35 u ← the largest number in [1 .. ms − 1] s.t. Y [ts, Ms
1..u] is defined

40 for j ← u + 1 to ms − 1 do

41 Xs
j ← Y [ts, Ms

1..j−1]⊕ Ms
j ; Y [ts, Ms

1..j]
$←{0, 1}n

42 if Xs
j ∈ R then bad ← true

43 R ← R ∪ {Xs
j }

50 if |Ms
ms | = n then

51 Xs
ms ← Y [ts, Ms

1..ms−1]⊕ Ms
ms ⊕ 2L0

52 if Xs
ms ∈ R then bad ← true

53 R ← R ∪ {Xs
ms}

60 if |Ms
ms | < n then

61 Xs
ms ← Y [ts, Ms

1..ms−1]⊕ M̃s
ms ⊕ 4L0

62 if Xs
ms ∈ R then bad ← true

63 R ← R ∪ {Xs
ms}

Figure 14: Game S, the noninteractive game that the analysis focuses on.

33

case earlier point Xr
i current point Xs

j Pr[Xr
i = Xs

j] explanation

1 R� Ms
1 ⊕Lts ⊕ 2L0 2−n randomness of L0

2 Mr
1 ⊕Ltr ⊕ 2L0 Ms

1 ⊕Lts ⊕ 2L0 0 or 2−n no repeated queries /
randomness of Lts

3 M̃r
1 ⊕Ltr ⊕ 4L0 Ms

1 ⊕Lts ⊕ 2L0 2−n randomness of L0

4 Mr
1 ⊕Ltr Ms

1 ⊕Lts ⊕ 2L0 2−n randomness of L0

5 Y [tr, Mr
1..i−1]⊕ Mr

i Ms
1 ⊕Lts ⊕ 2L0 2−n randomness of L0

6 Y [tr, Mr
1..mr−1]⊕ Mr

i ⊕ 2L0 Ms
1 ⊕Lts ⊕ 2L0 2−n randomness of Y [tr, Mr

1..mr−1]

7 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 Ms
1 ⊕Lts ⊕ 2L0 2−n randomness of Y [tr, Mr

1..mr−1]

8 R� M̃s
1 ⊕Lts ⊕ 4L0 2−n randomness of L0

9 Mr
1 ⊕Ltr ⊕ 2L0 M̃s

1 ⊕Lts ⊕ 4L0 2−n randomness of L0

10 M̃r
1 ⊕Ltr ⊕ 4L0 M̃s

1 ⊕Lts ⊕ 4L0 0 or 2−n no repeated queries /
randomness of Lts

11 Mr
1 ⊕Ltr M̃s

1 ⊕Lts ⊕ 4L0 2−n randomness of L0

12 Y [tr, Mr
1..i−1]⊕ Mr

i M̃s
1 ⊕Lts ⊕ 4L0 2−n randomness of L0

13 Y [tr, Mr
1..mr−1]⊕ Mr

i ⊕ 2L0 M̃s
1 ⊕Lts ⊕ 4L0 2−n randomness of Y [tr, Mr

1..mr−1]

14 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 M̃s
1 ⊕Lts ⊕ 4L0 2−n randomness of Y [tr, Mr

1..mr−1]

15 R� Ms
1 ⊕Lts 2−n randomness of Lts

16 Mr
1 ⊕Ltr ⊕ 2L0 Ms

1 ⊕Lts 2−n randomness of L0

17 M̃r
1 ⊕Ltr ⊕ 4L0 Ms

1 ⊕Lts 2−n randomness of L0

18 Mr
1 ⊕Ltr Ms

1 ⊕Lts 0 or 2−n memoization /
randomness of Lts

19 Y [tr, Mr
1..i−1]⊕ Mr

i Ms
1 ⊕Lts 2−n randomness of Lts

20 Y [tr, Mr
1..mr−1]⊕ Mr

i ⊕ 2L0 Ms
1 ⊕Lts 2−n randomness of Y [tr, Mr

1..mr−1]

21 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 Ms
1 ⊕Lts 2−n randomness of Y [tr, Mr

1..mr−1]

22 R� Y [ts, Ms
1..j−1]⊕ Ms

j 2−n randomness of Y [ts, Ms
1..j−1]

23 Mr
1 ⊕Ltr ⊕ 2L0 Y [ts, Ms

1..j−1]⊕ Ms
j 2−n randomness of Y [ts, Ms

1..j−1]

24 M̃r
1 ⊕Ltr ⊕ 4L0 Y [ts, Ms

1..j−1]⊕ Ms
j 2−n randomness of Y [ts, Ms

1..j−1]
25 Mr

1 ⊕Ltr Y [ts, Ms
1..j−1]⊕ Ms

j 2−n randomness of Y [ts, Ms
1..j−1]

26 Y [tr, Mr
1..i−1]⊕ Mr

i Y [ts, Ms
1..j−1]⊕ Ms

j 0 or 2−n memoization /
randomness of Y [tr, Mr

1..i−1]
27 Y [tr, Mr

1..mr−1]⊕ Mr
i ⊕ 2L0 Y [ts, Ms

1..j−1]⊕ Ms
j 2−n randomness of L0

28 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 Y [ts, Ms
1..j−1]⊕ Ms

j 2−n randomness of L0

29 R� Y [ts, Ms
1..ms−1]⊕ Ms

j ⊕ 2L0 2−n randomness of Y [ts, Ms
1..ms−1]

30 Mr
1 ⊕Ltr ⊕ 2L0 Y [ts, Ms

1..ms−1]⊕ Ms
j ⊕ 2L0 2−n randomness of Y [ts, Ms

1..ms−1]

31 M̃r
1 ⊕Ltr ⊕ 4L0 Y [ts, Ms

1..ms−1]⊕ Ms
j ⊕ 2L0 2−n randomness of Y [ts, Ms

1..ms−1]
32 Mr

1 ⊕Ltr Y [ts, Ms
1..ms−1]⊕ Ms

j ⊕ 2L0 2−n randomness of Y [ts, Ms
1..ms−1]

33 Y [tr, Mr
1..i−1]⊕ Mr

i Y [ts, Ms
1..ms−1]⊕ Ms

j ⊕ 2L0 2−n randomness of L0

34 Y [tr, Mr
1..mr−1]⊕ Mr

i ⊕ 2L0 Y [ts, Ms
1..ms−1]⊕ Ms

j ⊕ 2L0 0 or 2−n no repeated queries /
randomness of Y [ts, Ms

1..ms−1]

35 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 Y [ts, Ms
1..ms−1]⊕ Ms

j ⊕ 2L0 2−n randomness of L0

36 R� Y [ts, Ms
1..ms−1]⊕ M̃s

j ⊕ 4L0 2−n randomness of Y [ts, Ms
1..ms−1]

37 Mr
1 ⊕Ltr ⊕ 2L0 Y [ts, Ms

1..ms−1]⊕ M̃s
j ⊕ 4L0 2−n randomness of Y [ts, Ms

1..ms−1]

38 M̃r
1 ⊕Ltr ⊕ 4L0 Y [ts, Ms

1..ms−1]⊕ M̃s
j ⊕ 4L0 2−n randomness of Y [ts, Ms

1..ms−1]

39 Mr
1 ⊕Ltr Y [ts, Ms

1..ms−1]⊕ M̃s
j ⊕ 4L0 2−n randomness of Y [ts, Ms

1..ms−1]

40 Y [tr, Mr
1..i−1]⊕ Mr

i Y [ts, Ms
1..ms−1]⊕ M̃s

j ⊕ 4L0 2−n randomness of L0

41 Y [tr, Mr
1..mr−1]⊕ Mr

i ⊕ 2L0 Y [ts, Ms
1..ms−1]⊕ M̃s

j ⊕ 4L0 2−n randomness of L0

42 Y [tr, Ms
1..mr−1]⊕ M̃r

i ⊕ 4L0 Y [ts, Ms
1..ms−1]⊕ M̃s

j ⊕ 4L0 0 or 2−n no repeated queries /
randomness of Y [ts, Ms

1..ms−1]

Figure 15: Case analysis for the proof of OMAC

34

line 01 X0
� R�

line 12 Xr
1 Mr

1 ⊕Ltr ⊕ 2L0

line 22 Xr
1 M̃r

1 ⊕Ltr ⊕ 4L0

line 33 Xr
1 Mr

1 ⊕Ltr

line 44 Xr
i Y [tr, Mr

1..i−1]⊕ Mr
i

line 53 Xr
mr Y [tr, Mr

1..mr−1]⊕ Mr
i ⊕ 2L0

line 63 Xr
mr Y [tr, Mr

1..mr−1]⊕ M̃r
i ⊕ 4L0

line 11 Xs
1 Ms

1 ⊕Lts ⊕ 2L0

line 21 Xs
1 M̃s

1 ⊕Lts ⊕ 4L0

line 31 Xs
1 Ms

1 ⊕Lts

line 41 Xs
j Y [ts, Ms

1..j−1]⊕ Ms
j

line 51 Xs
ms Y [ts, Ms

1..ms−1]⊕ Ms
j ⊕ 2L0

line 61 Xs
ms Y [ts, Ms

1..ms−1]⊕ M̃s
j ⊕ 4L0

Each current point Xs
j that gets considered during game S has a “type” which is one of the six possibilities

above. Each earlier point Xr
i likewise has a “type” which is one of the seven possibilities above. The type of

a point does not depend on random choices made during the execution of the game S; the type of a point is
determined once the constants associated to the game are fixed. If we look at a pair of earlier/current points
(Xr

i , Xs
j) each point will have some particular type—there are 42 pairs of types in all.

We now claim that for any current point Xs
j and any earlier point Xr

i , the probability that the values assigned to
these two points are the same is at most 2−n. This is verified by a case analysis, going over all 42 possibilities for
the type of Xr

i and Xs
i . The case analysis is outlined in Figure 15. We add justification to three representative

examples:

Case 2. We are trying to bound Pr[Mr
1 ⊕Ltr ⊕ 2L0 = Ms

1 ⊕Lts ⊕ 2L0] = Pr[Mr
1 ⊕ Ms

1 = Ltr ⊕Lts]
where r < s. Here |M r| < n and |M s| < n. Subcase 2A: if tr = ts then M r = M s because of the
constraint that adversary A was allowed to make no (t, M, s) query following an earlier (t, M, r) query,
and so the indicated probability is 0. Subcase 2B: if tr = ts then Ltr and Lts are random and independent,
and so Pr[Mr

1 ⊕ Ms
1 = Ltr ⊕Lts] = 2−n.

Case 9. We are bounding Pr[Mr
1 ⊕Ltr ⊕ 2L0 = M̃s

1 ⊕Lts ⊕ 4L0] = Pr[Mr
1 ⊕ M̃s

1 = Ltr ⊕Lts ⊕ 6L0]. If
tr = ts then this is Pr[Mr

1 ⊕ M̃s
1 = 6L0] = 2−n because L0 is random and independent of the left-hand

side. If tr = 0 and ts = 0 then this is Pr[Mr
1 ⊕ M̃s

1 ⊕Lts = 7L0] = 2−n because L0 is random and
independent of the left-hand side. The case for tr = 0 and ts = 0 is the same way, as is the case for
tr = 0 and ts = 0 and tr = ts.
Case 34. This case arises for messages Mr and Ms having two or more blocks and both messages having
a full final block. We want to bound Pr[Y [tr, Mr

1..mr−1]⊕ Mr
i ⊕ 2L0 = Y [ts, Ms

1..ms−1]⊕ Ms
j ⊕ 2L0] which

is Pr[Mr
i ⊕ Ms

j = Y [tr, Mr
1..mr−1]⊕Y [ts, Ms

1..ms−1]]. Observe that Y [tr, Mr
1..mr−1]and Y [ts, Ms

1..ms−1] are
random from {0, 1}n, being chosen from this set in an earlier execution of line 41 or line 31. If they are
the identical random variable, that is, tr = ts and Mr less its final block is identical to Ms less its final
block, then Pr[Mr

i ⊕ Ms
j = 0] = 0 because there are no repeated queries. If they are different random

variables then they are independent and Pr[Mr
i ⊕ Ms

j = Y [tr, Mr
1..mr−1]⊕Y [ts, Ms

1..ms−1]] = 2−n.

The justifications for the remaining 39 cases are analogous. We leave the reader to check the table, which is the
technical heart of the proof.

We are now ready to conclude the proof. As the σ1 current points Xs
j are considered the probability that the

kth current point Xs
j collides with a given earlier one of the k − 1 + σ2 + 3 earlier points Xr

i is at most 1/2n.
Thus the probability that the kth current point coincides with some earlier point is at most (k + σ2 + 2)/2n.
So the probability that some current point coincides with some earlier one is at most

∑σ1
k=1(k + σ2 + 2)/2n =

σ1(σ2 + 3)/2n +
∑σ1

k=1(k − 1)/2n ≤ (σ1σ2 + 3σ1 + 0.5σ2
1)/2n. Combining with Equation (12) and the prior

35

arguments we conclude that

Advdist
OMAC[Rn

n],$n
(σ1, σ2) ≤ σ1σ2 + 3σ1 + 0.5σ2

1

2n
+

σ2(σ1 + σ2 + 3)
2n

=
0.5σ2

1 + 2σ1σ2 + σ2
2 + 3σ1 + 3σ2

2n

≤ (σ1 + σ2 + 3)2

2n

This completes the proof.

E Proof of Security of EAX

Proof of Theorem 5: We begin with the privacy claim. Let A be an adversary using resources (q, σ) that is
trying to distinguish EAX[Rn

n, τ] from a source of random bits. We construct an adversary B that distinguishes
OMAC[Rn

n] from a source of random bits. Adversary B has an oracle g that responds to queries (t, M, s) ∈
{0, 1, 2} × {0, 1}∗ × N with a string R S0S1 · · ·Ss−1, each named component an n-bit string. Adversary B
works as follows:

Algorithm Bg

10 Run A
11 When A makes an oracle call (Ni, Hi, Mi), do the following:
12 s ← �|Mi|/n�
13 Ni S0 . . . Ss−1 ← g(0, Ni, s)
14 Ci ← Mi ⊕ (S0 · · ·Ss−1 [first |Mi| bits])
15 Hi ← g(1, Hi, 0)
16 Ci ← g(2, Ci, 0)
17 Ti ← Ni ⊕Ci ⊕Hi [first τ bits]
18 Return, in response to A’s query, Ci ‖ Ti

19 When A halts, outputting a bit b, return b

We may assume that adversary A makes q > 1 queries since, otherwise, the result follows immediately. Then,
under our conventions for the data complexity, adversary B uses resources at most (2σ − 3, σ). Observe that
Pr[AEAX[Rn

n,τ] = 1] = Pr[BOMAC[Rn
n] = 1]. Also, since A is nonce respecting, B is length-committing and

Pr[A$ = 1] = Pr[B$n = 1]. Using Lemma 4 we conclude that

Advpriv
EAX[Rn

n,τ](A) = Pr[AEAX[Rn
n,τ] = 1] − Pr[A$ = 1]

= Pr[BOMAC[Rn
n] = 1] − Pr[B$n = 1]

≤ Advdist
OMAC[Rn

n,$n](2σ − 3, σ)

≤ (3σ)2

2n

≤ 9σ2

2n

This completes the privacy claim.

36

Moving on to authenticity and reusing the name, let A be an adversary for attacking the authenticity of
EAX[Rn

n, τ] that uses resources at most σ. Let

α1 = Advauth
EAX[Rn

n,τ](A)

α2 = Advauth
EAX2[CTR[Rn

n],R∗
n,τ](A)

δ = α1 − α2

By Lemma 2 and known results about the privacy of CTR (cf. [1]) we have

α2 ≤ 1
2τ

+ Advpriv
CTR[Rn

n](σ)

≤ 1
2τ

+
σ2

2n
.

Hence

α1 = α2 + δ ≤ δ +
σ2

2n
+

1
2τ

.

We now turn to bounding δ. To do this, reusing the name, we construct from A (the authenticity-attacking
adversary) an adversary B (with an oracle for g and intended for distinguishing OMAC[Rn

n] from a source of
random bits):

Algorithm Bg

10 Run A
20 When A makes an oracle call (Ni, Hi, Mi), do the following:
21 s ← �|Mi|/n�
22 Ni S0 . . . Ss−1 ← g(0, Ni, s)
23 Ci ← Mi ⊕ (S0 · · ·Sm−1 [first |Mi| bits])
24 Hi ← g(1, Hi, 0)
25 Ci ← g(2, Ci, 0)
26 Ti ← Ni ⊕Ci ⊕Hi

27 In response to A’s query, return Ci ‖ Ti

30 When A outputs a forgery attempt (N, H, C ‖ T) and halts:
31 c ← �|C|/n�
32 N ← g(0, N, 0)
33 H ← g(1, H, 0)
34 C ← g(2, C, 0)
35 T ′ ← N⊕C⊕H [first τ bits]
36 if T = T ′ and (N, H, C ‖ T) = (Ni, Hi, Ci ‖ Ti) for all i
37 then return 1 else return 0

As before, one may assume that A makes q > 1 queries and, according to our conventions, the complexity of B
will then be at most (2σ − 3, σ). Also, α1 = Advauth

EAX[Rn
n,τ](A) = Pr[BOMAC[Rn

n] = 1].

Next, define the function E[ρ, f] : {0, 1, 2} × {0, 1}∗ × N → {0, 1}∗ by

Algorithm E[ρ, f] (t, M, s)

10 R ← f([t]n||M)
11 for j ← 0 to s − 1 do Sj ← ρ(R + j)
12 return R S0S1 · · ·Ss−1

37

Note that
α2 = Advauth

EAX2[CTR[Rn
n],R∗

n,τ](A) = Pr[BE[Rn
n,R∗

n] = 1].

Moreover,

Advdist
$n,E[Rn

n,R∗
n] ≤

σ2
2

2n+1

for all adversaries that request a total of σ2 keystreams, since E[Rn
n,R∗

n] can only be distinguished from $n if
there is a collision in the inputs to ρ, and there are σ2 inputs to ρ. As a trivial consequence,

Pr[BE[Rn
n,R∗

n] = 1] ≥ Pr[B$n = 1] − σ2

2n+1

and thus

α2 = Advauth
EAX2[CTR[Rn

n],R∗
n,τ](A) ≥ Pr[B$n = 1] − σ2

2n+1
.

Also, adversary B is length-committing, since A is nonce-respecting (we use here the fact that the last three
queries B makes all take the form g(·, ·, 0), so those last three queries cannot violate the length-committing
condition). So, using Lemma 4, we conclude that

δ = α1 − α2 ≤ (3σ)2

2n
+

σ2

2n+1
≤ 9.5σ2

2n

This completes the authenticity claim and the proof.

F Recommended API

Some important features of EAX can only be utilized if one accesses EAX functionality through an appro-
priate user interface. In this section we therefore put forward an API that permits (a) incremental encryption,
(b) incremental decryption, (c) authenticity verification without ciphertext recovery, and (d) static headers with
negligible per-message cost. Providing of these features results in an API that is a bit more elaborate than some
programmers may want or need, so we also include some simpler, “all-in-one” calls.

/*
* We provide two interfaces:
* 1. A simple interface that does not support streaming data.
* 2. An incremental interface that supports streaming data.
* See below for documentation on both.
*/

/***
* -- How to encrypt, the simplified interface --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet, call
* eax_encrypt()
* When all done, call
* eax_zeroize()

* -- How to decrypt, the simplified interface --
* First, call
* eax_init()

38

* to setup the key and set the parameters.
* Then, for each packet:
* eax_decrypt()
* When all done, call
* eax_zeroize()
* It is the caller’s responsibility to check tag validity
* by examining the return value of eax_decrypt().
**/

/***
* -- How to encrypt, incrementally --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet, call
* eax_provide_nonce()
* {eax_provide_header(), eax_compute_ciphertext()}*
* eax_compute_tag()
* Here {x,y} means x or y, and z* means any number of iterations of z.
* When all done, call
* eax_zeroize()
*
* Note that encryption can be done on the fly, and header and message data
* may be provided in any order and in arbitrary chunks.

* -- How to decrypt, incrementally --
* First, call
* eax_init()
* to setup the key and set the parameters.
* Then, for each packet:
* eax_provide_nonce()
* {eax_provide_header(), eax_provide_ciphertext()}*
* eax_check_tag()
* eax_compute_plaintext() // only do this if tag was valid
* When all done, call
* eax_zeroize()
* Note that decryption may be done on the fly, and header and message data
* may be provided in any order and in arbitrary chunks.
* It is the caller’s responsibility to check tag validity
* by examining the return value of eax_check_tag().
**/

typedef enum {AES128,AES192,AES256} block_cipher; /* "standard" ciphers */
typedef unsigned char byte;
typedef void eax_state; /* EAX context; opaque */

/***
* Calls common to incremental and non-incremental API
**/

/*
* eax_init

39

*
* Key and parameter setup to init a EAX context data structure.
* If you don’t know what to pass for t,E, use t=16, E=AES128.
*/
eax_state *
eax_init(
byte* Key, // The key, as a string.
unsigned int t, // The tag length, in bytes.
block_cipher E // Enumerated that indicates what cipher to use.

);

/*
* eax_provide_header
*
* Supply a message header. The header "grows" with each call
* until a eax_provide_header() call is made that follows a
* eax_encrypt(), eax_decrypt(), eax_provide_plaintext(),
* eax_provide_ciphertext() or eax_compute_plaintext() call.
* That starts reinitializes the header.
*/
int
eax_provide_header(
eax_state *K, // The EAX context.
byte *H, // The header (associated data) (possibly more to come)
unsigned int h // having h bytes

);

/*
* eax_zeroize
*
* Session is over; destroy all key material and cleanup!
*/
void
eax_zeroize(

eax_state *K // The EAX context to remove
);

/***
* All-in-one, non-incremental interface
**/

/*
* eax_encrypt
*
* Encrypt the given message with the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().
*/
int
eax_encrypt(
eax_state *K, // The caller provides the EAX context,
byte* N, // the nonce and
unsigned int n, // its length (in bytes), and
byte* M, // the plaintext and

40

unsigned int m, // its length (in bytes).
byte* C, // The m-byte ciphertext
byte* T // and the tag T are returned.

);

/*
* eax_decrypt()
*
* Decrypt the given ciphertext with the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().
* Returns 1 for a valid ciphertext, 0 for an invalid ciphertext.
*/
int
eax_decrypt(
eax_state *K, // The caller provides the EAX context,
byte* N, // the nonce and
unsigned int n, // its length (in bytes), and
byte* C, // the ciphertext and
unsigned int c, // its length (in bytes), and the
byte* T, // tag.
byte* P // If valid, return the c-byte plaintext.

);

/***
* Incremental interface
**/

/*
* eax_provide_nonce
*
* Provide a nonce. For encryption, do this before calling
* eax_compute_ciphertext() and eax_compute_tag();
* for decryption, do this before calling
* eax_provide_ciphertext(), eax_check_tag, or eax_compute_plaintext().
*/
int
eax_provide_nonce(
eax_state *K, // The EAX context,
byte* N, // the nonce, and
unsigned int n // the length of the nonce (in bytes).

);

/*
* eax_compute_ciphertext
*
* Encrypt a message or a part of a message.
* The nonce needs already to have been
* specified by a call to eax_provide_nonce().
*/
int
eax_compute_ciphertext(// Encrypt (part of) a message

41

eax_state *K, // Given a EAX context K
byte *M, // and a message M (possibly more to come)
unsigned int m, // having m bytes.
byte *C // Return a ciphertext body C also having m bytes.

);

/*
* eax_compute_tag
*
* Message and header finished: compute the authentication tag that is a part
* of the complete ciphertext.
*/
int
eax_compute_tag(
eax_state *K, // Given a EAX context
byte *T // compute the tag T for it.

);

/*
* eax_provide_ciphertext
*
* Supply the ciphertext, or the next piece of ciphertext.
* This is used to check for the subsequent authenticity check eax_check_tag().
*/
int
eax_provide_ciphertext(
eax_state *K, // Given a EAX context
byte *C, // and a ciphertext C (possibly more to come)
unsigned int c // having c bytes.

);

/*
* eax_check_tag
*
* The nonce, ciphertext and header have all been fully provided; check if
* they are valid for the given tag.
* Returns 1 for a valid ciphertext, 0 for an invalid ciphertext
* (in which case plaintext/ciphertext might be zeroized as well).
*/
int
eax_check_tag(
eax_state *K, // Given a EAX context and
byte *T // the tag that accompanied the ciphertext.

);

/*
* eax_compute_plaintext
*
* Recover the plaintext from the provided ciphertext.
* A call to eax_provide_nonce() needs to precede this call.

42

* The caller is responsible for separately checking if the ciphertext is valid.
* Normally this would be done before computing the plaintext with
* eax_compute_plaintext().
*/
int
eax_compute_plaintext(

eax_state *K, // Given a EAX context
byte *C, // and a ciphertext C (possibly more to come)
unsigned int c, // having c bytes,
byte *M // return the corresponding c bytes of plaintext.

);

G Test Vectors

The following EAX-AES128 test vectors were graciously provided by Jack Lloyd. They were later verified by
Brian Gladman.

MSG:
KEY: 233952DEE4D5ED5F9B9C6D6FF80FF478
NONCE: 62EC67F9C3A4A407FCB2A8C49031A8B3
HEADER: 6BFB914FD07EAE6B
CIPHER: E037830E8389F27B025A2D6527E79D01

MSG: F7FB
KEY: 91945D3F4DCBEE0BF45EF52255F095A4
NONCE: BECAF043B0A23D843194BA972C66DEBD
HEADER: FA3BFD4806EB53FA
CIPHER: 19DD5C4C9331049D0BDAB0277408F67967E5

MSG: 1A47CB4933
KEY: 01F74AD64077F2E704C0F60ADA3DD523
NONCE: 70C3DB4F0D26368400A10ED05D2BFF5E
HEADER: 234A3463C1264AC6
CIPHER: D851D5BAE03A59F238A23E39199DC9266626C40F80

MSG: 481C9E39B1
KEY: D07CF6CBB7F313BDDE66B727AFD3C5E8
NONCE: 8408DFFF3C1A2B1292DC199E46B7D617
HEADER: 33CCE2EABFF5A79D
CIPHER: 632A9D131AD4C168A4225D8E1FF755939974A7BEDE

MSG: 40D0C07DA5E4
KEY: 35B6D0580005BBC12B0587124557D2C2
NONCE: FDB6B06676EEDC5C61D74276E1F8E816
HEADER: AEB96EAEBE2970E9
CIPHER: 071DFE16C675CB0677E536F73AFE6A14B74EE49844DD

MSG: 4DE3B35C3FC039245BD1FB7D
KEY: BD8E6E11475E60B268784C38C62FEB22
NONCE: 6EAC5C93072D8E8513F750935E46DA1B
HEADER: D4482D1CA78DCE0F
CIPHER: 835BB4F15D743E350E728414ABB8644FD6CCB86947C5E10590210A4F

MSG: 8B0A79306C9CE7ED99DAE4F87F8DD61636
KEY: 7C77D6E813BED5AC98BAA417477A2E7D
NONCE: 1A8C98DCD73D38393B2BF1569DEEFC19
HEADER: 65D2017990D62528

43

CIPHER: 02083E3979DA014812F59F11D52630DA30137327D10649B0AA6E1C181DB617D7F2

MSG: 1BDA122BCE8A8DBAF1877D962B8592DD2D56
KEY: 5FFF20CAFAB119CA2FC73549E20F5B0D
NONCE: DDE59B97D722156D4D9AFF2BC7559826
HEADER: 54B9F04E6A09189A
CIPHER: 2EC47B2C4954A489AFC7BA4897EDCDAE8CC33B60450599BD02C96382902AEF7F832A

MSG: 6CF36720872B8513F6EAB1A8A44438D5EF11
KEY: A4A4782BCFFD3EC5E7EF6D8C34A56123
NONCE: B781FCF2F75FA5A8DE97A9CA48E522EC
HEADER: 899A175897561D7E
CIPHER: 0DE18FD0FDD91E7AF19F1D8EE8733938B1E8E7F6D2231618102FDB7FE55FF1991700

MSG: CA40D7446E545FFAED3BD12A740A659FFBBB3CEAB7
KEY: 8395FCF1E95BEBD697BD010BC766AAC3
NONCE: 22E7ADD93CFC6393C57EC0B3C17D6B44
HEADER: 126735FCC320D25A
CIPHER: CB8920F87A6C75CFF39627B56E3ED197C552D295A7CFC46AFC253B4652B1AF3795B124AB6E

44

