
Memory Deduplication as a Threat to the Guest OS

Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, Cyrille Artho

 National Institute of Advanced Industrial Science and Technology

{k.suzaki | k-iijima | yagi-toshiki | c.artho}@aist.go.jp

ABSTRACT
Memory deduplication shares same-content memory pages and
reduces the consumption of physical memory. It is effective on
environments that run many virtual machines with the same
operating system. Memory deduplication, however, is vulnerable
to memory disclosure attacks, which reveal the existence of an
application or file on another virtual machine. Such an attack
takes advantage of a difference in write access times on
deduplicated memory pages that are re-created by Copy-On-Write.
In our experience on KSM (kernel samepage merging) with the
KVM virtual machine, the attack could detect the existence of
sshd and apache2 on Linux, and IE6 and Firefox on WindowsXP.
It also could detect a downloaded file on the Firefox browser. We
describe the attack mechanism in this paper, and also mention
countermeasures against this attack.

1. INTRODUCTION
IaaS (Infrastructure as a Service) type cloud computing uses a
tremendous number of virtual machines. Even though data centers
offer vast resources, the efficiency of a virtual machine is very
important, because it is directly linked to the cost of cloud
computing. To improve efficiency, memory deduplication
[1,2,7,9,13] reduces the consumption of physical memory.
Memory deduplication merges same-content memory pages on a
physical machine, allowing more virtual machines to run on
limited resources.

However, memory deduplication is vulnerable to memory
disclosure attacks. A shared page has to be copied when a write
access is issued to that page. This is called COW (Copy-On-
Write). While the sequence of actions is logically valid and
behaves consistently, the write access time is different between
deduplicated and non-deduplicated pages. An attacker can use the
time difference in a memory disclosure attack.

The attack used in this paper depends on a covert channel of
COW, which is known exploit to leak information [14]. It does
not violate any restriction of SLA (Service Level Agreements) of
cloud computing. It only measures the write access times of its
own memory, and guesses memory contents on other virtual
machines. The attack uses a characteristic of the shared resource
of a virtual machine, making it a kind of cross-VM side channel
attack [11].

This attack has some restrictions. It is limited to exact
matches on 4KB-pages, which are aligned on a 4KB boundary.
An attacker has to prepare the target 4KB-page contents.
Furthermore, the difference of write accesses depends on the
environment, and the matching is disturbed by different kinds of
noise: file caching, anonymous pages, and the timing of
deduplication. This paper describes how to deal with these kinds
of noise.

The attack is prevented by some improvements on the virtual
machine monitor or guest OS. However, this decreases the
performance of the virtual machine. Conversely, when used for
live memory forensics, this attack technique increases security.
For example, an administrator may detect a prohibited application
or illegal file. We describe that as future work.

This paper is organized as follows. Section 2 reviews
memory deduplication. Section 3 describes an attack on memory
deduplication. Section 4 reports the results of this attack. Section
5 discusses this attack, and Section 6 discusses countermeasures.
Related work is listed in section 7. Section 8 summarizes our
conclusions.

2. MEMORY DEDUPLICATION
The memory images of virtual machines include many same-
content pages, especially when the same guest OS runs on several
virtual machines. Memory deduplication merges these same-
content pages in physical memory.

Current virtual machine monitors are equipped with memory
deduplication. The techniques are divided into two types; disk
deduplication, which is content-aware, and memory deduplication,
which scans memory periodically.

Content-aware deduplication is used on Disco’s Transparent
Page Sharing (TPS) [2] and Satori [9] on Xen. TPS reads page
data from a special copy-on-write disk and checks whether the
same page data is already present in main memory. If the pages
match, TPS creates a shared mapping to the existing page. Satori
has a similar policy for duplicate detection, although it does not
use a special copy-on-write disk. Satori is implemented as para-
virtualization on the Xen hypervisor and requires customization of
the guest OS.

Periodical memory-scan deduplication is used in Content-
based Page Sharing of VMWare ESX [13], the Differential
Engine [7] of Xen, and KSM (Kernel Samepage Merging) [1] of
the Linux kernel. Content-based Page Sharing scans the VM’s
memory periodically and records fingerprints of each page. When
the same fingerprint is found, it compares the contents of the
relevant two pages, and shares them if they are identical.
Differential Engine features not only memory-scan type
deduplication, but also patching and compressing. When almost
identical pages are found, the small difference is taken as a patch
and the nearly identical pages are merged. Compression is used
when a page is not active for a long time. KSM (Kernel Samepage
Merging) included from Linux kernel 2.6.32 onward, is a general
memory deduplication. It was developed for its virtual machine
(KVM), but it is not limited to a virtual machine. In this paper we
use KSM for memory deduplication.

Most implementations of periodical memory-scan type
deduplication use the hash value of a page to check the similarity

between pages. The initial implementation of KSM used the same
technique, but it was re-implemented with another method to
avoid a patent problem. KSM uses a simple 32-bit checksum for
rough scanning. After the scanning, the exact similarity is
computed by memcmp().

KSM manages memory pages with two red-black trees; one
is for candidate pages of deduplication (called unstable tree), and
the other one is for duplicated pages (called stable tree). Pages are
identified by their 32-bit checksum in the trees. When the same
content of a candidate page is found in the stable tree, the
candidate page is merged with the stable tree. When the same
content of a candidate page is found in the unstable tree, the two
pages (candidate page and page in unstable tree) move to the
stable tree.

Pages are scanned at intervals, which is defined at
/sys/kernel/mm/ksm/sleep_millisecs. The default period is 20
msec. The time is the interval of the kernel daemon called “ksmd”.
The maximum number of pages that ksmd can use is limited (the
default is 25% of the available memory). Therefore, not all pages
are scanned at a time.

A merged page in the stable tree is re-created when a write
access is issued to the page; this technique is called Copy-On-
Write (COW). The write access is reflected in the new page.
When the old same-contents page has no other more buddy pages,
it is removed from stable tree.

3. ATTACK ON MEMORY
DEDUPLICATION
Memory deduplication may be subject to a memory disclosure
attack from the attacker’s VM to the victim’s VM. The attack
guesses a process running on a victim’s VM or a file downloaded
by a browser.

Memory deduplication shares 4KB pages which have the
same contents. When data is written to a deduplicated page, the
page is re-created with a copy of its contents (Copy On Write).
This causes the write access time to be slower than normal,
because it includes the overhead to re-create the same page. An
attacker can measure access time to determine whether a page was
deduplicated by another VM.

3.1 How to Get Matching Contents
An attacker must know the contents of 4KB memory pages which
are used by the victim’s application. It is not easy to get the exact
memory image which is used as a process fingerprint, because
some memory pages are not unique for process invocation of
target application.

Some applications, such as sshd and apache2, prevent taking
their memory image in the first place, for security reasons. They
prevent taking the core dump of a process. While a debugger
seems to be a useful tool to take a memory image, it cannot be
used to get exactly aligned contents of memory, because a
debugger has own memory mapping strategy. For example, “gdb”
loads an ELF binary with 8-bytes shifted alignment. To get
around the memory protection of sshd and apache2, we used a
development version where this protection was disabled.

Moreover, current operating systems have a security
mechanism called ASLR (Address Space Layout Randomization).

The Linux kernel started to includes ASLR in version 2.6.12,
released June 2005. ASLR changes the position of the base of
code, libraries, heap, and stack for each process. It prevents
malicious code (shellcode) injection attacks. Even though it seems
to decrease the effect of memory deduplication, most pages are
unchanged by ASLR.

Finally, the page cache prevents the matching of a memory
image of a process. An ELF binary is loaded by the ELF
interpreter (ld-linux) and assigned to aligned memory. The loaded
ELF file is also saved to the page cache. As most pages of a
process are shared with the page cache, an attacker cannot
recognize if a page is used for a running process or the page cache.
Furthermore, an ELF file is cached by copy or move commands,
so an attacker cannot decide if the ELF file has been invoked or
not. As the page cache still exists after a process terminates, an
attacker cannot decide the time of process termination. An
attacker only knows that the ELF file has been opened, by
comparing the difference of write access times of a same-content
page.

We measure the write access times on the pages mapping the
contents of an ELF file. The pages which change for each process,
are not treated specially, because they are only few. We also
ignore file caching, because the binary files are not copied and
moved frequently. We guess the moment of write access time
difference to be process invocation.

3.2 Implementation Challenges
The memory disclosure attack on memory deduplication requires
techniques to take care of the attacker’s own memory and the
timing of deduplication.

Because a memory disclosure attack may hit the attacker’s
own memory cache, an attacker must first clean up his memory.
Physical memory is not cleared perfectly by rebooting [4,5]. The
re-invocation of a VM, however, is the best way for clearing
memory contents with zero, because the pseudo-physical memory
is zero-cleared for memory isolation. An attacker can use this
security countermeasure to his advantage.

When a file of target application is opened, its contents are
cached; this leads to spurious matchings (false positives). In order
to prevent false positives, the memory image for a disclosure
attack is gzipped. A target file is gzipped and then ungzipped on
4KB aligned memory. This technique is similar to a runtime
packer.

Memory deduplication takes time to be shared, because
candidate pages are examined on being identical during a certain
interval. Therefore, an attacker has to wait for a period of time.
This period depends on the environment and the size of matching
memory. If the period is too short, the prepared pages are not
deduplicated by target pages on the victim’s VM. If the period is
too long, the attack leads to a false positives, due to memory
caching or anonymous pages.

4. EXPERIMENTS
In our experiments, the target of our memory disclosure attack
consisted of applications on a VM running Linux or Windows.
We revealed the existence of executables, and discovered a file
downloaded by a browser.

We ran the experiments on a machine with an Intel
Core2Quad 3.0GHz processor and 4GB of memory. The host OS
was Debian Lenny with the standard Linux kernel 2.6.33.5 being
augmented with KSM. The attacker’s and victim’s VMs were
running on KVM (0.12.4).

The write access was issued 5 minutes after a target
application was invoked or a file was downloaded. After one byte
of data was written on a duplicated page, the write access time
was measured and analyzed.

We compared the write access times of pages containing
random data, zero data, and target file data. Pages with random
data are unique and are not merged with the stable tree of KSM.
Their write access time is normal. Pages with zero data exist many
times and are merged to stable tree of KSM. The write access time
is delayed by COW.

We compared the write access times of pages with target file
data before and after the launch of a target application on the
victim’s VM. The number of pages depends on the number of
4KB pages included in a target file.

4.1 Detected Applications on the Linux VM
We first tried to the disclose existence of secure applications on a
victim’s VM. In our experiments, these applications are sshd and
apache2. The size of the sshd ELF file was 438,852 bytes, and the
size of apache2 was 365,308 bytes. The matching target pages of
sshd and apache2 were 107 and 89 pages, respectively. The last
page which is less than 4KB is not target of matching, because the
tail of 4KB are arbitrary contents. We measured the write access
times of same-content pages on attacker’s VM, before and after
the application was invoked.

Tables 1 and 2 show the average access times on a page with
zero and random contents, and target applications. The access
time for zero data was more than 6 microseconds. Access to
random data took less than 1 microsecond. These results indicate
that the threshold is about 5 microseconds.

Figure 1 shows the difference in access times to each page.
The zero and random pages are clearly separated, making
deduplication apparent. The average write time of a page of sshd
and apache2 increased to 7.50 and 7.56 microseconds, from 0.45
and 0.53 microseconds, respectively (Tables 1 & 2). These results

indicate that the pages of the target application were deduplicated,
which delayed the write access by COW. Therefore, we
successfully detected the invocation of sshd and apache2 on the
victim’s VM.

Figure 1 also shows noise in write access times. The noise
usually increased with the access time. Spikes in access times can
be seen in the 55th page of zero data (Fig. 1 (a-2), 23
microseconds) and the 10th page of apache2 (Fig. 1 (b-2), 16
microseconds). These access times exceeded the threshold of
COW (5 micro-seconds) and may lead to false positives.
Therefore, we remove such outliers for accurate detection.

Another issue of false detection is accidental non-
deduplication. Write access times for pages 70–75th of sshd were
below 1 micro-second. They indicate the pages that were not
deduplicated at measurement time. We do not know if it was
caused by the page not yet being deduplicated, not yet loaded on
victim’s VM, or over-written. Detection has to take care of these
behaviors by applying statistical analysis.

4.2 Detected Applications on WindowsXP
We applied the same attack on a VM running Windows XP (SP3).
The targets were Firefox (3.6.11) and IE6. The size of Firefox and
IE6 were 912344 bytes (222 pages) and 93184 bytes (22 pages).

Tables 3 and 4 show average access times on the contents of
Firefox and IE6. The results of zero and random accesses were
almost the same and indicate that the threshold was 5
microseconds. However, the behavior of the target applications
was different. The average write access time before the invocation
of Firefox was 1.92 micro-seconds, and 5.68 micro-seconds for
IE6.

Figure 2 shows the access times of each page. The results of
Figure 2(a-1) and 2(b-1) indicate that some pages already existed
before the target application was invoked, especially at the head
of the executable file. We guess that some content pages were
preloaded; common contents are used in other applications or
preloaded for a faster application invocation. For IE6, 14 out of
22 pages were preloaded. After invocation, three pages are not
deduplicated. We have tried this experiment several times, but the
behavior was unstable. The existence of IE6 on a victim's VM is
difficult to detect, because IE6 uses only 22 pages and seems to
benefit from optimization by Windows XP.

Table 1. Average write access times of the contents of sshd (in
microseconds).

 zero random sshd

Before invocation 6.60 0.55 0.45

After invocation 6.51 0.42 7.50

Table 2. Average write access times of the contents of apache2
(in microseconds).

 zero random apache2

Before invocation 6.45 0.37 0.53

After invocation 6.24 0.40 7.56

Table 3. Average write access time of the contents of Firefox
(in micro-seconds).

 zero random Firefox

Before invocation 6.45 0.43 1.92

After invocation 6.49 0.37 7.68

Table 4. Average write access times of the contents of IE6 (in
micro-seconds).

 zero random IE6

Before invocation 6.59 0.27 5.68

After invocation 6.32 0.68 7.00

4.3 Detection of Downloaded Files
The memory disclosure attack can also be applied to find an
opened file on a victim’s VM. We have tried to detect a logo file
when Firefox shows a home page.

We confirmed that the Google logo file was detected if page
caching is enabled on Firefox. When the page cache was set to 0,
detection failed. If an attacker leads a victim to a malicious home
page which includes an identifiable logo file, the attacker can
detect the page view from the victim’s VM.

This disclosure attack is dangerous because it detects a page
view even if the network is encrypted by TLS/SSL. Especially in a
multi-tenant data center, this attack is serious, because it does not
violate any SLA statements on cloud computing.

5. IMPACT ON SECURITY
Our memory disclosure attack has limitations, but still important
privacy implications. Conversely, this technique may also be used
by an administrator to increase security.

5.1 Scope of this Attack
An attacker does not know which VM contains the same contents,
because KSM merges all pages used by VMs running on the
machine. Because an attacker only knows that the contents exist
on at least one VM which runs on the same physical machine, the
exact VM cannot be decided on unless only two VMs exist.

An attacker does not know whether an application is running
or not, because a cached binary file would not be sanitized and
may exist in an anonymous page [4,5]. Furthermore, an attacker
does not know if the binary was actually executed, because a
binary file is also cached by copy and move commands.

Still, we consider the ability to detect the existence of files
and downloaded contents to be an important privacy risk. Users of
cloud computing should be aware that the partition between VMs
is not a full protection against all types of attacks.

5.2 Security Enhancement
Papers [4,5] mention that data life time on memory is longer than
we expect. Most users do not realize that memory keeps important
data after an application terminates. The technique of memory
deduplication attack is used to warn the remaining data on
memory, especially it is useful for education because we confirm
the effect using virtual machines.

For an administrator of cloud computing, memory
deduplication attack may be used for live memory forensics. It can
detect prohibited applications and files on other VMs. For
example, insecure applications, a P2P downloader, or illegal data
can be detected. The benefit of our method is that it only measures
the write access time on the attacker's own VM. If an
administrator can use live migration on any VM, he may move
suspicious VMs to another CPU to narrow down the search for a
particular VM containing the prohibited application or file.

6. COUNTERMEASURES
Our attack depends on the difference in write access times. It is
prevented, if the target of memory deduplication contains only
read-only pages, because they do not change during the life time

of a page. In order to apply this solution, a virtual machine
monitor has to know which pages are read-only. Read and write
permissions are defined in the page table entries of virtual
memory on a VM. Memory deduplication may use this
information to implement this countermeasure. We also have to
know the number of same-page read-only pages in the target
operating system.

This attack is also prevented, if the victim's OS uses
obfuscation code to change every runtime memory image. The
binary loader may also change the cached file image. Then, an
attacker cannot prepare an identical page for a target application.

It is not good idea to include a delay in write access, because
that destroys the merit of deduplication. It is not clear how much
delay time is suitable and how one randomly inserts a delay.

Memory sanitization seems to prevent a memory disclosure
attack. However, it also works the other way. Memory sanitization
helps an attacker to know that an application is running on a
victim’s VM. Because the cache and anonymous page are cleaned
up, an attacker knows the exact launch and termination time of an
application.

7. RELATED WORK
A different type of cross-VM side channel attack [11] also
discloses applications running on the victim’s VM. It monitors the
behavior of a physically shared cache of CPUs, which runs the
attacker’s and victim’s VMs. That cross-VM side channel attack
also has strong restrictions, but it only accesses the physical cache
assigned to a VM. It does not violate any SLA statements on
cloud computing, like our memory disclosure attack.

A covert channel of memory deduplication is mentioned in
Satori [9]. Satori can prevent this attack because Satori is content-
aware disk deduplication and can recognize illegal matching.
Satori also has a mechanism to refuse memory deduplication to
prevent the exploit. These are strong defenses, but Satori requires
para-virtualization on guest OS and is not applied to any OS.
Currently widely-used memory deduplication scans memory
periodically and is independent of the guest OS. This paper treats
memory-scan-type memory deduplication and shows a real
vulnerability and exploit.

A cold-boot attack [8] is a kind of physical side channel
attack, which freezes physical memory and scans the data. The
attack discloses any data in memory. It has no restriction on
alignment and page size, but it requires elaborate equipment. Our
memory disclosure attack assumes a virtual machine monitor that
uses memory deduplication, which we think will be commonly
used on next-generation cloud computing.

The IEEE 1394 attack is also physical side channel attack for
memory disclosure. IEEE 1394 enables us to read from and write
to physical memory by accessing a DMA controller, while an
operating system owns the memory. It also has alignment and
page size restrictions, but it does not require exact pattern
matching. While that attack has weaker restrictions than ours, it
requires physical equipment.

Countermeasures against memory disclosure attacks between
VMs are considered in advanced virtual machine monitors.
Overshadow [3] and SP3 [12] make difficult to access pseudo

physical memory from another VM. While that security
architecture is effective, it does not go together with memory
deduplication, because the memory of each VM is encrypted by a
different key.

SLINKY [6] uses memory deduplication to increase security.
SLINKY shows that memory deduplication reduces the increased
memory caused by statically linked shared libraries, which
protects against the vulnerability of dynamically linked shared
libraries. Unfortunately this technique is not applied on current
Linux distributions, because many applications use dynamically
linked shared libraries to avoid license contamination problems.
Paper [10] uses a self-contained binary translator to integrate
shared libraries into an ELF file. These results show that the
contents of a guest OS should consider the existence of memory
deduplication.

8. CONCLUSIONS
This paper describes a memory disclosure attack on another VM
that uses memory deduplication. The attack measures write access
times on pages that are re-created by COW (Copy On Write) of
memory deduplication.

The attack has some restrictions (only matching on aligned
4KB pages, noise, wait time of merging, etc.), but it can detect
running applications and downloaded files on a victim’s VM. In
our experiments, the attack detected sshd and apache2 on Linux
and Firefox on WindowsXP on a victim’s VM. The detection of
IE6 of WindowsXP was difficult, because it contains few pages,
some of which are preloaded.

Our attack also successfully detected the Google logo file
download by Firefox, if page caching is enabled on Firefox. This
suggests that an attacker can detect a page view, if that page
includes an identifiable logo file. It works even if the network is
encrypted by TLS/SSL. This attack is serious, because it does not
violate any SLA statements on cloud computing.

Fortunately, the attack can be prevented by some
countermeasures: restriction of deduplication to read-only pages,
or obfuscation of the guest OS. These countermeasures, however,
decrease the performance of deduplication. The analysis of the
trade-off between security and performance constitutes future
work.

REFERENCES
[1] Arcangeli, A., Eidus, I,. and Wright, C., Increasing memory

density by using KSM, Linux Symposium, 19–28, 2009.

[2] Bugnion, E., Devine, S., and Rosenblum, M., Disco:
Running Commodity Operating Systems on Scalable

Multiprocessors, Symposium on Operating Systems
Principles (OSDI), 143–156, 1997.

[3] Chen, X., Garfinkel, T., Lewis E.C., Subrahmanyam, P.,
Waldspurger, C.A., Boneh, D., Dwoskin, J., and Ports D. R.
K., Overshadow: A Virtualization-Based Approach to
Retrofitting Protection in Commodity Operating Systems,
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2–13, 2008.

[4] Chow, J., Pfaff, B., Garfinkel, T., and Rosenblum, M.,
Shredding your garbage: reducing data lifetime through
secure deallocation, USENIX Security, 22–22, 2005.

[5] Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., and
Rosenblum, M. Understanding data lifetime via whole
system simulation, USENIX Security, 321–336, 2004.

[6] Collberg, C., Hartman, J.H., Babu, S., and Udupa, S.K.,
SLINKY: Static Linking Reloaded, USENIX Annual Tech,
309–322, 2005.

[7] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C.,
Varghese, G., Voelker, G.M., and Vahdat, A., Difference
Engine: Harnessing Memory Redundancy in Virtual
Machines, Operating Systems Design and Implementation
(OSDI), 309–322, 2008.

[8] Halderman J.A., Schoen, S.D., Heninger, N., Clarkson, W.,
Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J.,
and Felten, E.W., Lest We Remember: Cold Boot Attacks
on Encryption Keys, USENIX Security, 45–60, 2008.

[9] Miło´s, G., Murray, D., Hand, S., and Fetterman, M.A.,
Satori: Enlightened page sharing, USENIX Annual Tech,
2009.

[10] Suzaki, K., Yagi, T. Iijima, K., Quynh, N.A., Artho, C., and
Watanabe, Y., Moving from Logical Sharing of Guest OS to
Physical Sharing of Deduplication on Virtual Machine,
USENIX Workshop on Hot topics in Security (HotSec),
2010.

[11] Ristenpart,T., Tromer, E., Shacham, H., and Savage, S., Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds, Proceedings of the 16th ACM
conference on Computer and Communications Security,
199–212, 2009.

[12] Yang, J., and Shin, K., Using Hypervisor to Provide
Application Data Secrecy on a Per-Page Basis, Conference
on Virtual Execution Environments (Vee), 2008.

[13] Waldspurger, C.A., Memory Resource Management in
VMware ESX Server, Symposium on Operating Systems
Principles (OSDI), 181–194, 2002.

[14] Warner, A., Li, Q., Keefe. T.F., and Pal S., The impact of
multilevel security on database buffer management, 4th
European Symposium on Research in Computer Security
(ESORICS), 1996.

(a-1) Before sshd launches on victim VM

(a-2) After sshd launches on victim VM

(b-1) Before apache2 launches on victim VM

(b-2) After apache2 launches on victim VM

Figure 1. Write access time on attacker’s VM before and after sshd/apache2 is launched on victim’s VM of Linux.

(a-1) Before Firefox launches on victim VM

(a-2) After FireFox launches on victim VM

(b-1) Before IE-6 launches on victim VM

(b-2) After IE-6 launches on victim VM

Figure 2. Write access time on attacker’s VM before and after FireFox/IE-6 is launched on victim’s VM of Windows XP.

