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ABSTRACT 
Memory deduplication shares same-content memory pages and 
reduces the consumption of physical memory. It is effective on 
environments that run many virtual machines with the same 
operating system. Memory deduplication, however, is vulnerable 
to memory disclosure attacks, which reveal the existence of an 
application or file on another virtual machine. Such an attack 
takes advantage of a difference in write access times on 
deduplicated memory pages that are re-created by Copy-On-Write. 
In our experience on KSM (kernel samepage merging) with the 
KVM virtual machine, the attack could detect the existence of 
sshd and apache2 on Linux, and IE6 and Firefox on WindowsXP. 
It also could detect a downloaded file on the Firefox browser. We 
describe the attack mechanism in this paper, and also mention 
countermeasures against this attack.  

1. INTRODUCTION 
IaaS (Infrastructure as a Service) type cloud computing uses a 
tremendous number of virtual machines. Even though data centers 
offer vast resources, the efficiency of a virtual machine is very 
important, because it is directly linked to the cost of cloud 
computing. To improve efficiency, memory deduplication 
[1,2,7,9,13] reduces the consumption of physical memory. 
Memory deduplication merges same-content memory pages on a 
physical machine, allowing more virtual machines to run on 
limited resources. 

However, memory deduplication is vulnerable to memory 
disclosure attacks. A shared page has to be copied when a write 
access is issued to that page. This is called COW (Copy-On-
Write). While the sequence of actions is logically valid and 
behaves consistently, the write access time is different between 
deduplicated and non-deduplicated pages. An attacker can use the 
time difference in a memory disclosure attack. 

The attack used in this paper depends on a covert channel of 
COW, which is known exploit to leak information [14]. It does 
not violate any restriction of SLA (Service Level Agreements) of 
cloud computing. It only measures the write access times of its 
own memory, and guesses memory contents on other virtual 
machines. The attack uses a characteristic of the shared resource 
of a virtual machine, making it a kind of cross-VM side channel 
attack [11]. 

This attack has some restrictions. It is limited to exact 
matches on 4KB-pages, which are aligned on a 4KB boundary. 
An attacker has to prepare the target 4KB-page contents. 
Furthermore, the difference of write accesses depends on the 
environment, and the matching is disturbed by different kinds of 
noise: file caching, anonymous pages, and the timing of 
deduplication. This paper describes how to deal with these kinds 
of noise. 

The attack is prevented by some improvements on the virtual 
machine monitor or guest OS. However, this decreases the 
performance of the virtual machine. Conversely, when used for 
live memory forensics, this attack technique increases security. 
For example, an administrator may detect a prohibited application 
or illegal file. We describe that as future work. 

This paper is organized as follows. Section 2 reviews 
memory deduplication. Section 3 describes an attack on memory 
deduplication. Section 4 reports the results of this attack. Section 
5 discusses this attack, and Section 6 discusses countermeasures. 
Related work is listed in section 7. Section 8 summarizes our 
conclusions. 

2. MEMORY DEDUPLICATION 
The memory images of virtual machines include many same-
content pages, especially when the same guest OS runs on several 
virtual machines. Memory deduplication merges these same-
content pages in physical memory. 

Current virtual machine monitors are equipped with memory 
deduplication.  The techniques are divided into two types; disk 
deduplication, which is content-aware, and memory deduplication, 
which scans memory periodically. 

Content-aware deduplication is used on Disco’s Transparent 
Page Sharing (TPS) [2] and Satori [9] on Xen. TPS reads page 
data from a special copy-on-write disk and checks whether the 
same page data is already present in main memory. If the pages 
match, TPS creates a shared mapping to the existing page. Satori 
has a similar policy for duplicate detection, although it does not 
use a special copy-on-write disk. Satori is implemented as para-
virtualization on the Xen hypervisor and requires customization of 
the guest OS.  

Periodical memory-scan deduplication is used in Content-
based Page Sharing of VMWare ESX [13], the Differential 
Engine [7] of Xen, and KSM (Kernel Samepage Merging) [1] of 
the Linux kernel. Content-based Page Sharing scans the VM’s 
memory periodically and records fingerprints of each page. When 
the same fingerprint is found, it compares the contents of the 
relevant two pages, and shares them if they are identical. 
Differential Engine features not only memory-scan type 
deduplication, but also patching and compressing. When almost 
identical pages are found, the small difference is taken as a patch 
and the nearly identical pages are merged. Compression is used 
when a page is not active for a long time. KSM (Kernel Samepage 
Merging) included from Linux kernel 2.6.32 onward, is a general 
memory deduplication. It was developed for its virtual machine 
(KVM), but it is not limited to a virtual machine. In this paper we 
use KSM for memory deduplication. 

Most implementations of periodical memory-scan type 
deduplication use the hash value of a page to check the similarity 



between pages. The initial implementation of KSM used the same 
technique, but it was re-implemented with another method to 
avoid a patent problem. KSM uses a simple 32-bit checksum for 
rough scanning. After the scanning, the exact similarity is 
computed by memcmp(). 

KSM manages memory pages with two red-black trees; one 
is for candidate pages of deduplication (called unstable tree), and 
the other one is for duplicated pages (called stable tree). Pages are 
identified by their 32-bit checksum in the trees. When the same 
content of a candidate page is found in the stable tree, the 
candidate page is merged with the stable tree. When the same 
content of a candidate page is found in the unstable tree, the two 
pages (candidate page and page in unstable tree) move to the 
stable tree. 

Pages are scanned at intervals, which is defined at 
/sys/kernel/mm/ksm/sleep_millisecs. The default period is 20 
msec. The time is the interval of the kernel daemon called “ksmd”. 
The maximum number of pages that ksmd can use is limited (the 
default is 25% of the available memory). Therefore, not all pages 
are scanned at a time. 

A merged page in the stable tree is re-created when a write 
access is issued to the page; this technique is called Copy-On-
Write (COW). The write access is reflected in the new page. 
When the old same-contents page has no other more buddy pages, 
it is removed from stable tree.  

3. ATTACK ON MEMORY 
DEDUPLICATION 
Memory deduplication may be subject to a memory disclosure 
attack from the attacker’s VM to the victim’s VM. The attack 
guesses a process running on a victim’s VM or a file downloaded 
by a browser. 

Memory deduplication shares 4KB pages which have the 
same contents. When data is written to a deduplicated page, the 
page is re-created with a copy of its contents (Copy On Write). 
This causes the write access time to be slower than normal, 
because it includes the overhead to re-create the same page. An 
attacker can measure access time to determine whether a page was 
deduplicated by another VM. 

3.1 How to Get Matching Contents 
An attacker must know the contents of 4KB memory pages which 
are used by the victim’s application. It is not easy to get the exact 
memory image which is used as a process fingerprint, because 
some memory pages are not unique for process invocation of 
target application. 

Some applications, such as sshd and apache2, prevent taking 
their memory image in the first place, for security reasons. They 
prevent taking the core dump of a process. While a debugger 
seems to be a useful tool to take a memory image, it cannot be 
used to get exactly aligned contents of memory, because a 
debugger has own memory mapping strategy. For example, “gdb” 
loads an ELF binary with 8-bytes shifted alignment. To get 
around the memory protection of sshd and apache2, we used a 
development version where this protection was disabled. 

Moreover, current operating systems have a security 
mechanism called ASLR (Address Space Layout Randomization). 

The Linux kernel started to includes ASLR in version 2.6.12, 
released June 2005. ASLR changes the position of the base of 
code, libraries, heap, and stack for each process. It prevents 
malicious code (shellcode) injection attacks. Even though it seems 
to decrease the effect of memory deduplication, most pages are 
unchanged by ASLR. 

Finally, the page cache prevents the matching of a memory 
image of a process. An ELF binary is loaded by the ELF 
interpreter (ld-linux) and assigned to aligned memory. The loaded 
ELF file is also saved to the page cache. As most pages of a 
process are shared with the page cache, an attacker cannot 
recognize if a page is used for a running process or the page cache. 
Furthermore, an ELF file is cached by copy or move commands, 
so an attacker cannot decide if the ELF file has been invoked or 
not. As the page cache still exists after a process terminates, an 
attacker cannot decide the time of process termination. An 
attacker only knows that the ELF file has been opened, by 
comparing the difference of write access times of a same-content 
page.  

We measure the write access times on the pages mapping the 
contents of an ELF file. The pages which change for each process, 
are not treated specially, because they are only few. We also 
ignore file caching, because the binary files are not copied and 
moved frequently. We guess the moment of write access time 
difference to be process invocation. 

3.2 Implementation Challenges 
The memory disclosure attack on memory deduplication requires 
techniques to take care of the attacker’s own memory and the 
timing of deduplication. 

Because a memory disclosure attack may hit the attacker’s 
own memory cache, an attacker must first clean up his memory. 
Physical memory is not cleared perfectly by rebooting [4,5]. The 
re-invocation of a VM, however, is the best way for clearing 
memory contents with zero, because the pseudo-physical memory 
is zero-cleared for memory isolation. An attacker can use this 
security countermeasure to his advantage. 

When a file of target application is opened, its contents are 
cached; this leads to spurious matchings (false positives). In order 
to prevent false positives, the memory image for a disclosure 
attack is gzipped. A target file is gzipped and then ungzipped on 
4KB aligned memory. This technique is similar to a runtime 
packer. 

Memory deduplication takes time to be shared, because  
candidate pages are examined on being identical during a certain 
interval. Therefore, an attacker has to wait for a period of time. 
This period depends on the environment and the size of matching 
memory. If the period is too short, the prepared pages are not 
deduplicated by target pages on the victim’s VM. If the period is 
too long, the attack leads to a false positives, due to memory 
caching or anonymous pages. 

4. EXPERIMENTS 
In our experiments, the target of our memory disclosure attack 
consisted of applications on a VM running Linux or Windows. 
We revealed the existence of executables, and discovered a file 
downloaded by a browser.  



We ran the experiments on a machine with an Intel 
Core2Quad 3.0GHz processor and 4GB of memory. The host OS 
was Debian Lenny with the standard Linux kernel 2.6.33.5 being 
augmented with KSM. The attacker’s and victim’s VMs were 
running on KVM (0.12.4).  

The write access was issued 5 minutes after a target 
application was invoked or a file was downloaded. After one byte 
of data was written on a duplicated page, the write access time 
was measured and analyzed.  

We compared the write access times of pages containing 
random data, zero data, and target file data. Pages with random 
data are unique and are not merged with the stable tree of KSM. 
Their write access time is normal. Pages with zero data exist many 
times and are merged to stable tree of KSM. The write access time 
is delayed by COW.  

We compared the write access times of pages with  target file 
data before and after the launch of a target application on the 
victim’s VM. The number of pages depends on the number of 
4KB pages included in a target file. 

4.1 Detected Applications on the Linux VM 
We first tried to the disclose existence of secure applications on a 
victim’s VM. In our experiments, these applications are sshd and 
apache2. The size of the sshd ELF file was 438,852 bytes, and the 
size of apache2 was 365,308 bytes. The matching target pages of 
sshd and apache2 were 107 and 89 pages, respectively. The last 
page which is less than 4KB is not target of matching, because the 
tail of 4KB are arbitrary contents. We measured the write access 
times of same-content pages on attacker’s VM, before and after 
the application was invoked. 

Tables 1 and 2 show the average access times on a page with 
zero and random contents, and target applications. The access 
time for zero data was more than 6 microseconds. Access to 
random data took less than 1 microsecond. These results indicate 
that the threshold is about 5 microseconds. 

Figure 1 shows the difference in access times to each page.  
The zero and random pages are clearly separated, making 
deduplication apparent.  The average write time of a page of sshd 
and apache2 increased to 7.50 and 7.56 microseconds, from 0.45 
and 0.53 microseconds, respectively (Tables 1 & 2). These results 

indicate that the pages of the target application were deduplicated, 
which delayed the write access by COW. Therefore, we 
successfully detected the invocation of sshd and apache2 on the 
victim’s VM. 

Figure 1 also shows noise in write access times. The noise 
usually increased with the access time. Spikes in access times can 
be seen in the 55th page of zero data (Fig. 1 (a-2), 23 
microseconds) and the 10th page of apache2 (Fig. 1 (b-2), 16 
microseconds). These access times exceeded the threshold of 
COW (5 micro-seconds) and may lead to false positives. 
Therefore, we remove such outliers for accurate detection. 

Another issue of false detection is accidental non-
deduplication. Write access times for pages 70–75th  of sshd were 
below 1 micro-second. They indicate the pages that were not 
deduplicated at measurement time. We do not know if it was 
caused by the page not yet being deduplicated, not yet loaded on 
victim’s VM, or over-written. Detection has to take care of these 
behaviors by applying statistical analysis. 

4.2 Detected Applications on WindowsXP 
We applied the same attack on a VM running Windows XP (SP3). 
The targets were Firefox (3.6.11) and IE6. The size of Firefox and 
IE6 were 912344 bytes (222 pages) and 93184 bytes (22 pages). 

Tables 3 and 4 show average access times on the contents of 
Firefox and IE6.  The results of zero and random accesses were 
almost the same and indicate that the threshold was 5 
microseconds. However, the behavior of the target applications 
was different. The average write access time before the invocation 
of Firefox was 1.92 micro-seconds, and 5.68 micro-seconds for 
IE6. 

Figure 2 shows the access times of each page. The results of 
Figure 2(a-1) and 2(b-1) indicate that some pages already existed 
before the target application was invoked, especially at the head 
of the executable file. We guess that some content pages were 
preloaded; common contents are used in other applications or 
preloaded for a faster application invocation. For IE6, 14 out of 
22 pages were preloaded. After invocation, three pages are not 
deduplicated. We have tried this experiment several times, but the 
behavior was unstable. The existence of IE6 on a victim's VM is 
difficult to detect, because IE6 uses only 22 pages and seems to 
benefit from optimization by Windows XP. 

 

Table 1. Average write access times of the contents of sshd (in 
microseconds). 

 zero random sshd 

Before invocation 6.60 0.55 0.45 

After invocation 6.51 0.42 7.50 

 

Table 2. Average write access times of the contents of apache2 
(in microseconds). 

 zero random apache2 

Before invocation 6.45 0.37 0.53 

After invocation 6.24 0.40 7.56 

Table 3. Average write access time of the contents of Firefox  
(in micro-seconds). 

 zero random Firefox 

Before invocation 6.45 0.43 1.92 

After invocation 6.49 0.37 7.68 

 

Table 4. Average write access times of the contents of IE6 (in 
micro-seconds). 

 zero random IE6 

Before invocation 6.59 0.27 5.68 

After invocation 6.32 0.68 7.00 



4.3 Detection of Downloaded Files 
The memory disclosure attack can also be applied to find an 
opened file on a victim’s VM. We have tried to detect a logo file 
when Firefox shows a home page. 

We confirmed that the Google logo file was detected if page 
caching is enabled on Firefox. When the page cache was set to 0, 
detection failed. If an attacker leads a victim to a malicious home 
page which includes an identifiable logo file, the attacker can 
detect the page view from the victim’s VM. 

This disclosure attack is dangerous because it detects a page 
view even if the network is encrypted by TLS/SSL. Especially in a 
multi-tenant data center, this attack is serious, because it does not 
violate any SLA statements on cloud computing. 

5. IMPACT ON SECURITY 
Our memory disclosure attack has limitations, but still important 
privacy implications. Conversely, this technique may also be used 
by an administrator to increase security. 

5.1 Scope of this Attack 
An attacker does not know which VM contains the same contents, 
because KSM merges all pages used by VMs running on the 
machine. Because an attacker only knows that the contents exist 
on at least one VM which runs on the same physical machine, the 
exact VM cannot be decided on unless only two VMs exist. 

An attacker does not know whether an application is running 
or not, because a cached binary file would not be sanitized and 
may exist in an anonymous page [4,5]. Furthermore, an attacker 
does not know if the binary was actually executed, because a 
binary file is also cached by copy and move commands. 

Still, we consider the ability to detect the existence of files 
and downloaded contents to be an important privacy risk. Users of 
cloud computing should be aware that the partition between VMs 
is not a full protection against all types of attacks.  

5.2 Security Enhancement 
Papers [4,5] mention that data life time on memory is longer than 
we expect. Most users do not realize that memory keeps important 
data after an application terminates. The technique of memory 
deduplication attack is used to warn the remaining data on 
memory, especially it is useful for education because we confirm 
the effect using virtual machines. 

For an administrator of cloud computing, memory 
deduplication attack may be used for live memory forensics. It can 
detect prohibited applications and files on other VMs. For 
example, insecure applications, a P2P downloader, or illegal data 
can be detected. The benefit of our method is that it only measures 
the write access time on the attacker's own VM. If an 
administrator can use live migration on any VM, he may move 
suspicious VMs to another CPU to narrow down the search for a 
particular VM containing the prohibited application or file. 

6. COUNTERMEASURES 
Our attack depends on the difference in write access times. It is 
prevented, if the target of memory deduplication contains only  
read-only pages, because they do not change during the life time 

of a page. In order to apply this solution, a virtual machine 
monitor has to know which pages are read-only. Read and write 
permissions are defined in the page table entries of virtual 
memory on a VM. Memory deduplication may use this 
information to implement this countermeasure. We also have to 
know the number of same-page read-only pages in the target 
operating system. 

This attack is also prevented, if the victim's OS uses 
obfuscation code to change every runtime memory image. The 
binary loader may also change the cached file image. Then, an 
attacker cannot prepare an identical page for a target application.  

It is not good idea to include a delay in write access, because 
that destroys the merit of deduplication. It is not clear how much 
delay time is suitable and how one randomly inserts a delay. 

Memory sanitization seems to prevent a memory disclosure 
attack. However, it also works the other way. Memory sanitization 
helps an attacker to know that an application is running on a 
victim’s VM.  Because the cache and anonymous page are cleaned 
up, an attacker knows the exact launch and termination time of an 
application.  

7. RELATED WORK 
A different type of cross-VM side channel attack [11] also 
discloses applications running on the victim’s VM. It monitors the 
behavior of a physically shared cache of CPUs, which runs the 
attacker’s and victim’s VMs. That cross-VM side channel attack 
also has strong restrictions, but it only accesses the physical cache 
assigned to a VM. It does not violate any SLA statements on 
cloud computing, like our memory disclosure attack.  

A covert channel of memory deduplication is mentioned in 
Satori [9]. Satori can prevent this attack because Satori is content-
aware disk deduplication and can recognize illegal matching. 
Satori also has a mechanism to refuse memory deduplication to 
prevent the exploit. These are strong defenses, but Satori requires 
para-virtualization on guest OS and is not applied to any OS. 
Currently widely-used memory deduplication scans memory 
periodically and is independent of the guest OS. This paper treats 
memory-scan-type memory deduplication and shows a real 
vulnerability and exploit. 

A cold-boot attack [8] is a kind of physical side channel 
attack, which freezes physical memory and scans the data. The 
attack discloses any data in memory. It has no restriction on 
alignment and page size, but it requires elaborate equipment. Our 
memory disclosure attack assumes a virtual machine monitor that 
uses memory deduplication, which we think will be commonly 
used on next-generation cloud computing. 

The IEEE 1394 attack is also physical side channel attack for 
memory disclosure. IEEE 1394 enables us to read from and write 
to  physical memory by accessing a DMA controller, while an 
operating system owns the memory. It also has alignment and 
page size restrictions, but it does not require exact pattern 
matching. While that attack has weaker restrictions than ours, it 
requires physical equipment. 

Countermeasures against memory disclosure attacks between 
VMs are considered in advanced virtual machine monitors. 
Overshadow [3] and SP3 [12] make difficult to access pseudo 



physical memory from another VM. While that security 
architecture is effective, it does not go together with memory 
deduplication, because the memory of  each VM is encrypted by a 
different key. 

SLINKY [6] uses memory deduplication to increase security. 
SLINKY shows that memory deduplication reduces the increased 
memory caused by statically linked shared libraries, which 
protects against the vulnerability of dynamically linked shared 
libraries. Unfortunately this technique is not applied on current 
Linux distributions, because many applications use dynamically 
linked shared libraries to avoid license contamination problems. 
Paper [10] uses a self-contained binary translator to integrate 
shared libraries into an ELF file. These results show that the 
contents of a guest OS should consider the existence of memory 
deduplication. 

 

8. CONCLUSIONS 
This paper describes a memory disclosure attack on another VM 
that uses memory deduplication. The attack measures write access 
times on pages that are re-created by COW (Copy On Write) of 
memory deduplication. 

The attack has some restrictions (only matching on aligned 
4KB pages, noise, wait time of merging, etc.), but it can detect 
running applications and downloaded files on a victim’s VM. In 
our experiments, the attack detected sshd and apache2 on Linux 
and Firefox on WindowsXP on a victim’s VM. The detection of 
IE6 of WindowsXP was difficult, because it contains few pages, 
some of which are preloaded.   

Our attack also successfully detected the Google logo file 
download by Firefox, if page caching is enabled on Firefox. This 
suggests that an attacker can detect a page view, if that page 
includes an identifiable logo file. It works even if the network is 
encrypted by TLS/SSL. This attack is serious, because it does not 
violate any SLA statements on cloud computing. 

Fortunately, the attack can be prevented by some 
countermeasures: restriction of deduplication to read-only pages, 
or obfuscation of the guest OS. These countermeasures, however, 
decrease the performance of deduplication. The analysis of the 
trade-off between security and performance constitutes future 
work. 
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(a-1)  Before sshd launches on victim VM 

 
( a-2) After sshd launches on victim VM 

 
(b-1)  Before apache2 launches on victim VM 

 
(b-2)  After apache2 launches on victim VM 

Figure 1. Write access time on attacker’s VM before and after sshd/apache2 is launched on victim’s VM of Linux. 

 

 
(a-1)  Before Firefox launches on victim VM 

 
( a-2) After FireFox launches on victim VM 

 
(b-1)  Before IE-6 launches on victim VM 

   
(b-2)  After IE-6 launches on victim VM 

Figure 2. Write access time on attacker’s VM before and after FireFox/IE-6 is launched on victim’s VM of Windows XP. 


